START MATHEMATIK-STAFFEL 2008 Du hast 60 Minuten Zeit um die 20 Aufgaben zu bearbeiten. Insgesamt kann man 500 Punkte erreichen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "START MATHEMATIK-STAFFEL 2008 Du hast 60 Minuten Zeit um die 20 Aufgaben zu bearbeiten. Insgesamt kann man 500 Punkte erreichen."

Transkript

1 START MATHEMATIK-STAFFEL 2008 Du hast 60 Minuten Zeit um die 20 Aufgaben zu bearbeiten. Insgesamt kann man 500 Punkte erreichen. Staffel-Aufgabe 1 (30 Punkte, Rest 470 Punkte) Ausradiert In die Kreise hat jemand die Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9 geschrieben, und in jedes Dreieck die Summe der Zahlen, die in den Ecken des Dreiecks stehen. In den Kreisen kommt jede Zahl genau einmal vor. Danach hat jedoch jemand die Zahlen in den Kreisen und auch die Zahlen in den untersten vier Dreiecken ausradiert ??? Welche Zahl hat im untersten Dreieck gestanden?

2 Staffel-Aufgabe 2 (20 Punkte, Rest 450 Punkte) Kuchen Ein kreisförmiger Kuchen ist durch sechs gerade Schnitte in sechzehn Stücke geteilt worden: Jemand macht zusätzlich noch zwei gerade Schnitte. Welches ist die größste Anzahl an Stücken, in die der Kuchen dadurch geteilt werden kann?

3 Staffel-Aufgabe 3 (20 Punkte, Rest 430 Punkte) Durchstreichen Streiche Zahlen so durch, dass in jeder Reihe und jeder Spalte höchstens eine 1, eine 2, eine 3, und eine 4 übrig bleiben Welches ist die kleinste Anzahl an Zahlen, die du durchstreichen musst?

4 Staffel-Aufgabe 4 (20 Punkte, Rest 410 Punkte) Der Schachwürfel Auf jede der sechs Seitenflächen eines Würfels wird ein Schachbrett gemalt: ein Muster aus 8 8 weißen und schwarzen Quadraten, so dass zwei aneinander grenzende Quadrate jeweils verschiedene Farben haben. An einigen Kanten des Würfels werden Paare von weißen Quadraten oder Paare von schwarzen Quadraten aneinander grenzen. Welches ist die kleinste Anzahl von Paaren von Quadraten der gleichen Farbe?

5 Staffel-Aufgabe 5 (30 Punkte, Rest 380 Punkte) Gräben und Rücken Ein Blatt Papier wird acht mal gefaltet. Die Faltlinien sind A, B, C, D, K, L, M, N. Die Faltungen wurden aber nicht in dieser Reihenfolge vorgenommen. Wenn das Papier wieder aufgefaltet wird, siehst du, dass jedes Stück Faltlinie ein Graben (Talfalte) oder ein Rücken (Bergfalte) ist. In der unten stehenden Figur sind die Gräben mit G bezeichnet und die Rücken mit R. A B C D K L M N G G G G G R R R R G R R R G R R R G G G G R G R G R G G G G R G R R G R G R G R K L M N A B C D In welcher Reihenfolge sind die acht Linien gefaltet worden? Notiere deine Antwort, wie beispielhaft hier angegeben: NMLKDCBA.

6 Staffel-Aufgabe 6 (30 Punkte, Rest 350 Punkte) Fünfen und Sechsen In wievielen der Zahlen zwischen 3000 und 4000 kommen als Ziffern mehr Fünfen als Sechsen vor?

7 Staffel-Aufgabe 7 (20 Punkte, Rest 330 Punkte) Bohren Ein großer Würfel besteht aus kleinen Würfeln. In jede Seitenfläche werden 5 Löcher gebohrt, und zwar senkrecht zur Seitenfläche und durch den Würfel hindurch. Die Stellen der Löcher sind in der unten stehenden Zeichnung angegeben. Wieviele kleine Würfel bleiben unberührt?

8 Staffel-Aufgabe 8 (20 Punkte, Rest 310 Punkte) Fussball Deutschland, Niederlande, Belgien und Luxemburg bilden eine Gruppe in der Vorrunde einer Fussballweltmeisterschaft. Sie spielen alle einmal gegen einander. Der Gewinner eines Spiels bekommt 3 Punkte, der Verlierer 0. Bei Unentschieden erhalten beide Mannschaften 1 Punkt. Am Ende wird der Tabellenstand durch die Anzahl der Punkte bestimmt, die jedes Land erhalten hat. Welche der folgenden Tabellen sind möglich? Tabelle 1 Tabelle 2 Tabelle 3 Tabelle 4 Tabelle 5 Tabelle 6 Deutschland Niederlande Belgien Luxemburg

9 Staffel-Aufgabe 9 (20 Punkte, Rest 290 Punkte) Schneiden Ein quadratisches Blatt Papier wird gefaltet, viermal horizontal und viermal vertikal, so dass ein kleines Quadrat mit 25 Schichten entsteht. Danach wird dieses Quadrat durchgeschnitten, und zwar entlang einer Linie, die parallel zur Diagonalen aber nicht die Diagonale selbst ist. Zum Schluss wird wieder alles aufgefaltet. Wieviele Stücke Papier hast du dann?

10 Staffel-Aufgabe 10 (20 Punkte, Rest 270 Punkte) Punkte In einem regelmäßigen rechteckigen Punktmuster von 40 Reihen mit je 66 Punkten wird einen Diagonale gezogen Wieviele Punkte liegen auf der Diagonalen (inklusive Anfangs- und Endpunkt)?

11 Staffel-Aufgabe 11 (30 Punkte, Rest 240 Punkte) Linsenfläche Der Radius des großen Kreises beträgt 4. Wie groß ist die graue Fläche?

12 Staffel-Aufgabe 12 (20 Punkte, Rest 220 Punkte) Drehen Innerhalb eines Winkels mit dem Scheitelpunkt A liegt ein Punkt P. X 2 P Y 2 A X 1 Y 1 X 1 und X 2 sind die Fußpunkte der Lote, die von P aus auf die Schenkel des Winkels gefällt werden. Die Lote werden um einen Winkel von 45 gegen den Uhrzeigersinn um den Punkt P herum gedreht. So entstehen die Punkte Y 1 und Y 2. Die Länge der Strecke X 1 X 2 beträgt 6. Wie lang ist die Strecke Y 1 Y 2?

13 Staffel-Aufgabe 13 (30 Punkte, Rest 190 Punkte) Labyrinth Ein Platz ist gepflastert mit quadratischen Pflastersteinen. Wir sagen, dass zwei Steine aneinander grenzen wenn sie eine Seite gemeinsam haben, und sich berühren, wenn sie keine Seite, aber wohl eine Ecke gemeinsam haben. Die Steine am Rand sind dunkel. Vom Rand ausgehend schlängelt sich ein Pfad aus grauen Steinen der nummeriert ist mit 1, 2,.... Die übrigen Steine sind weiß. Stein 1 grenzt an den Rand, die anderen Steine des Pfades nicht. Die Steine 1 und 2 grenzen aneinander, ebenso 2 und 3, usw., die Steine 1 und 3, sowie 3 und 5 berühren einander, wie alle Steine vor und nach einer Kurve. Ansonsten grenzen oder berühren sich keine weiteren Steine des Pfades. Es gibt kein 2 2 Quadrat, dass nur aus weißen Steinen besteht. Das untenstehende Beispiel zeigt eine solche Situation für einen Platz; es gibt dort einen Pfad aus 72 grauen Steinen, und ansonsten gibt es 56 dunkele Steine und 97 weiße Aus wie vielen grauen Steinen besteht der Pfad in dem Platz?

14 Staffel-Aufgabe 14 (30 Punkte, Rest 160 Punkte) Der Hinzugekommene In einem Raum befindet sich eine Gruppe von Menschen, bestehend aus mindestens 2 und höchstens 24 Personen. Jemand bemerkt: Unsere Anzahl ist gerade. Stille. Jemand bemerkt: Unsere Anzahl ist teilbar durch 3. Stille. Jemand bemerkt: Wenn noch zwei Menschen hinzukommen, ist unsere Anzahl ein Vielfaches von 5. Stille. Jemand bemerkt: Unsere Anzahl ist keine Primzahl. Stille. Jemand bemerkt: Unsere Anzahl ist ungerade. Alle fünf Bemerkungen waren richtig in dem Moment, in dem sie ausgesprochen wurden, aber während einer der stillen Pausen ist eine Person hinzugekommen. Wie viele Menschen sind am Ende im Raum?

15 Staffel-Aufgabe 15 (30 Punkte, Rest 130 Punkte) Ausgeschnittene Stücke Wir wählen einen Punkt innerhalb eines Dreiecks mit Seiten der Längen 5, 6 und 8. Durch diesen Punkt ziehen wir Linien parallel zu den Seiten des Dreiecks. Die Linien schneiden aus den Seiten des Dreiecks Stücke der Länge 1, 3 und x aus, entsprechend dem zweiten Bild x Wie groß ist x?

16 Staffel-Aufgabe 16 (20 Punkte, Rest 110 Punkte) Der Spaziergang Hier unten ist ein Grundriss eines Stadtparks abgebildet. Die Punkte geben die Stellen an, an denen eine Statue steht. Wir wollen einen Spaziergang durch den Park machen, der am Eingang (bei A) beginnt und endet, und zwar so, dass wir an jeder Statue genau einmal vorbeikommen. A Wie viele Möglichkeiten gibt es?

17 Staffel-Aufgabe 17 (20 Punkte, Rest 90 Punkte) Rollende Münzen A, B und C sind drei gleichgroße Münzen. Sie liegen in einer Reihe, B in der Mitte, und A und C berühren B, so wie im unten stehenden Schema. A B C Zur selben Zeit beginnen A und C im Uhrzeigersinn ohne zu rutschen über den Rand von B zu rollen, C zweimal so schnell wie A. Die Bewegung stoppt, sobald C auf A stößt. l m n k o j i h g p q r s t f e d u v c w b a x In dem oben stehenden Diagram sind 24 Punkte des Randes von B mit Buchstaben benannt worden. Bestimme den Buchstaben des Punktes von B, den A im Moment des Stoppens berührt.

18 Staffel-Aufgabe 18 (30 Punkte, Rest 60 Punkte) Glasbausteine Ein Künstler baut einen Würfel aus gleich großen würfelförmigen Blöcken. Ihm stehen Glasblöcke in verschiedenen Farben zur Verfügung. Er möchte den großen Würfel so bauen, dass bei Drehungen oder Spiegelungen des Würfels in sich, die Blöcke stets auf Stellen landen, an denen vorher ein Block derselben Farbe war. So müssen unter anderem die beiden hellgrauen Blöcke im unten stehenden Diagram dieselbe Farbe bekommen. Dasselbe gilt für die drei dunkelgrauen Blöcke. Welche ist die größte Anzahl von Farben, die der Künstler benutzen kann?

19 Staffel-Aufgabe 19 (30 Punkte, Rest 30 Punkte) Römische Zahlen Die römischen Ziffern und ihr Wert werden durch unten stehende Liste beschrieben: I = 1 V = 5 X = 10 L = 50 C = 100 D = 500 M = 1000 Wir erstellen Kombinationen bestehend aus zwei römischen Ziffern. Der Wert einer Kombination wird durch die folgende Regel bestimmt: Wenn eine kleinere Ziffer vor einer größeren steht, muss die kleinere von der größeren abgezogen werden; anderenfalls werden die Ziffern addiert. Beispiele: VD hat den Wert 495 und CI hat den Wert 101. Es sind jedoch nicht alle Kombinationen gültig; ungültig ist jede Kombination mit einem Wert, welcher auch durch eine einzige Ziffer ausgedrückt werden kann. So ist LC nicht gültig, da ihr Wert gleich dem von L ist. Auch VV ist ungültig, denn ihr Wert ist gleich dem von X. Wie groß ist die Summe der Werte aller gültigen Kombinationen aus zwei römischen Ziffern?

20 Staffel-Aufgabe 20 (30 Punkte, Rest 0 Punkte) Maximales Produkt Die Zahl 101 kann auf verschiedene Weise in eine Summe von ungeraden Zahlen zerlegt werden. Bei welcher Zerlegung ist das Produkt der Summanden maximal?

Färbungsbeweise. 1 Aufgaben

Färbungsbeweise. 1 Aufgaben Schweizer Mathematik-Olympiade smo osm Färbungsbeweise Aktualisiert: 1. Dezember 2015 vers. 1.0.0 1 Aufgaben Einstieg 1.1 Kann man überlappungsfrei und ohne Löcher die Figuren auf den Bildern unten mit

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

KÄNGURU DER MATHEMATIK

KÄNGURU DER MATHEMATIK KÄNGURU DER MATHEMATIK 2015 23. 3. 2015 Kategorie: Ecolier, Schulstufe: 3 4 Name: Schule: Klasse: Arbeitszeit: 60 min. 24 Basispunkte jede richtige Antwort Beispiel 1. 8.: jede richtige Antwort Beispiel

Mehr

Lösungen Klasse 3. Klasse 3

Lösungen Klasse 3. Klasse 3 Klasse 3 Lösungen Klasse 3 1. Welche der folgenden Figuren kann man zeichnen ohne dabei den Bleistift abzuheben und ohne eine bereits gezeichnete Linie erneut nachzufahren? (A) (B) (C) (D) (E) Lösung:

Mehr

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha?

2) Anna und Bertha haben zusammen 10 Zuckerln. Bertha hat 2 mehr als Anna. Wie viele hat Bertha? - 3 Punkte Beispiele - ) Was ist 2005 00 + 2005? A) 2005002005 B) 20052005 C) 2007005 D) 22055 E) 202505 200500 + 2005 = 202505 2) Anna und Bertha haben zusammen 0 Zuckerln. Bertha hat 2 mehr als Anna.

Mehr

Städtewettbewerb Frühjahr 2010

Städtewettbewerb Frühjahr 2010 Städtewettbewerb Frühjahr 010 Lösungsvorschläge Hamburg 3. März 010 [Version 19. April 010] M Mittelstufe Aufgabe M.1 (3 P.). In sechs Körben befinden sich Äpfel, Birnen und Pflaumen. In jedem Korb liegen

Mehr

Logic Masters 2015 Runde 5: Gemischte Rätsel

Logic Masters 2015 Runde 5: Gemischte Rätsel NAME Logic Masters 2015 Runde 5: Gemischte Rätsel Bearbeitungszeit: 90 Minuten 5.1 Arukone...5 Punkte 5.2 Arukone...5 Punkte 5.3 Sikaku...5 Punkte 5.4 Zickzack... 10 Punkte 5.5 Masterword... 15 Punkte

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. Schulstufe) Österreich

Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. Schulstufe) Österreich Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. chulstufe) Österreich - 6.3.2006-3 Punkte Beispiele - ) 3 2006 = 2005 + 2007 +?. Welche Zahl fehlt? A) 2005 B) 2006 C) 2007 D) 2008 E) 2009 3 2006

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht. MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei

Mehr

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,

Mehr

Mathematik Aufnahmeprüfung 2015

Mathematik Aufnahmeprüfung 2015 Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 200 LÖSUNGEN GRUPPE BENJAMIN ) Josef hat 7 Stücke Schnur. Er schneidet eines entzwei. Wie viele Stücke hat er jetzt? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 6 Stücke Schnur bleiben unversehrt,

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2014 HEFT 1. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2014 HEFT 1. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 014 HEFT 1 Realschulabschluss Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Origami-Kuh. Karlottas

Origami-Kuh. Karlottas Karlottas Origami-Kuh Das brauchst Du dazu: Zwei gleichgroße braune (oder weiße) Papier-Quadrate Einen schwarzen Stift Klebstoff und ein Stück Bindfaden Und so funktioniert s: 1. Für den Kopf lege ein

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe)

Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe) 1 Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe) 18.3.2004-3 Punkte Beispiele - 1) Wie viel ist 1000 100+10 1? A) 111 B) 900 C) 909 D) 990 E) 999 1000 100 + 10 1 = 900 + 9 = 909 2)

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 205 7. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

Beispiellösungen zu Blatt 17

Beispiellösungen zu Blatt 17 aktualisiert4. April 2002 blattnr17 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 eispiellösungen zu latt 17 Frau Porta hat in ihren 1 Meter

Mehr

Schritt für Schritt zu tollen Origami-Figuren

Schritt für Schritt zu tollen Origami-Figuren Schritt für Schritt zu tollen Origami-Figuren Für Anfänger: Schmetterling Benötigtes Material: Papier-Quadrat in beliebiger Farbe (80 g/m 2, ca. 20x20cm) Schritt 1: Falten Sie das Faltblatt als Dreieck,

Mehr

Fragenkatalog. Fragenkatalog

Fragenkatalog. Fragenkatalog Pangea-Mathematikwettbewerb Fragenkatalog Fragenkatalog 2014 8. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die

Mehr

Landeswettbewerb Mathematik

Landeswettbewerb Mathematik Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 010/011 Aufgabe 1 In einem 10x10-Gitter mit quadratischen Feldern werden 10 Spielsteine so gesetzt, dass in jeder Spalte und jeder Zeile

Mehr

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 - Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter

Mehr

KÄNGURU DER MATHEMATIK

KÄNGURU DER MATHEMATIK KÄNGURU DER MATHEMATIK 2016 17. 3. 2016 Name: Kategorie: Ecolier, Schulstufe: 3 4 Schule: Klasse: Arbeitszeit: 60 min. jede richtige Antwort Beispiel 1. 8.: 3 Punkte jede richtige Antwort Beispiel 9. 16.:

Mehr

Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe)

Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe) Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe) 20.3.2003 3 Punkte Beispiele 1) Welche der folgenden Zahlen ist am größten? A) 2 + 0 + 0 + 3 B) 2 0 0 3 C) (2 + 0) (3 + 0) D) 20 0 3 E)

Mehr

Aufgaben Klassenstufe 5

Aufgaben Klassenstufe 5 Aufgaben Klassenstufe 5 Oma Streifstrumpf strickt für Peppi neue Socken. Peppi hat drei Lieblingsfarben und zwar rot, gelb und blau, die alle in den drei Streifen vorkommen sollen. a) Die Oma hat Wolle

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

partie 1 52 défis mathématiques pour les classes bilingues (cycle 3) traduit à partir du site de J-L SIGRIST www.jlsigrist.com

partie 1 52 défis mathématiques pour les classes bilingues (cycle 3) traduit à partir du site de J-L SIGRIST www.jlsigrist.com 52 défis mathématiques pour les classes bilingues (cycle 3) partie 1 traduit à partir du site de J-L SIGRIST www.jlsigrist.com par ILTIS Stéphane STUDER Yann-Noël HEINTZ Yannick Wie viele Vierecke siehst

Mehr

Anleitungen für die Papierverpackungen ab Seite 86

Anleitungen für die Papierverpackungen ab Seite 86 1 Anleitungen für die Papierverpackungen ab Seite 86 Engelchen 2 Stück Papier im Format 10x15 cm ein Stück Schnur eine Perle mit Durchmesser 3 cm Für die Engel nimmt man 2 Stück Papier in der Größe 10

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Mathematik-Olympiade Schulrunde 2012

Mathematik-Olympiade Schulrunde 2012 Aufgaben Klassenstufe 5 Zeichne zwei Kreise und zwei Geraden so, dass die jeweilige Figur a) genau neun Schnittpunkte aufweist, b) genau zehn Schnittpunkte aufweist, c) genau elf Schnittpunkte aufweist.

Mehr

Aufgabe S1 (4 Punkte)

Aufgabe S1 (4 Punkte) Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

10. Fragenkatalog. Pangea-Mathematikwettbewerb. Klasse VORRUNDE

10. Fragenkatalog. Pangea-Mathematikwettbewerb. Klasse VORRUNDE 10. Klasse VORRUNDE Pangea-Mathematikwettbewerb Fragenkatalog www.pangea-wettbewerb.de 2013 Pangea Ablaufvorschrift Antwortbogen Trage bitte Name, Nachname, Klasse und die Lehrer-ID (gibt Dir Deine Lehrkraft)

Mehr

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf?

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 1 Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 2 Udo gibt seinem Freund ein Rätsel auf: Ich denke mir eine dreistellige

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 2001 LÖSUNGEN GRUPPE ÉCOLIER 1) Wie viel ist 123 + 45 =? (A) 678 (B) 573 (C) 568 (D) 178 (E) 168 2) Karin wog vor 2 Jahren 37 kg. Jetzt wiegt sie 41 kg. Wie viel hat sie zugenommen?

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11

Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 Faltanleitung In Weiß & Gold Abbildung & Materialangaben siehe Seite 10/11 1 Das Quadrat mit der Rückseite nach oben auflegen und einmal vertikal und einmal horizontal falten. 2 Alle vier Ecken des Quadrates

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Minis im Museum. Begleitmaterial zum Thema Fische für Kitas und Grundschulen. ozeaneum.de

Minis im Museum. Begleitmaterial zum Thema Fische für Kitas und Grundschulen. ozeaneum.de Minis im Museum Begleitmaterial zum Thema Fische für Kitas und Grundschulen Kontakt Museumspädagogik: OZEANEUM Stralsund GmbH Hafenstraße 11 18439 Stralsund Tel.: +49 (0) 3831 2650 690 Fax: +49 (0) 3831

Mehr

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung 15. Übungsblatt Ausgabe: 28.04.04 Abgabe: 05.05.04 Name: Benötigte Zeit für alle Aufgaben: Wiederholung Römische Zahlen Eine Zahl verwandelt man am einfachsten in eine römische Zahl, indem man jeweils

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

29. Essener Mathematikwettbewerb 2013/2014

29. Essener Mathematikwettbewerb 2013/2014 Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und nicht nur berühren;

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Lösungen Mathematik-Basis-Test

Lösungen Mathematik-Basis-Test FACHMITTELSCHULE GLARUS AUFNAHMETEST / 2. TEIL 2016 Lösungen Mathematik-Basis-Test 1. Multipliziere aus und vereinfache so weit als möglich: 2. Multipliziere aus und vereinfache so weit als möglich: 3.

Mehr

Aufgaben der 2. Runden

Aufgaben der 2. Runden Aufgaben der 2. Runden 1991-1999 23 2. Runde 1991 Begründe, daß alle Differenzen der Form 2 3-1 3 3 3-2 3 4 3-3 3 bei der Division durch 6 den Rest 1 lassen. Gegeben ist ein rechter Winkel mit dem Scheitel

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte. JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Addieren und subtrahieren

Addieren und subtrahieren Addieren und subtrahieren Zahlenmauern Mirko und Luca schreiben möglichst oft die Ziffer in ihre Zahlenmauer.. Mirko 0 0 8 Luca 0 0 Basissteine:, 0, (Die Zahl 0 ist verboten.) 90 0 Basissteine:,,, 0 (Die

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Känguru der Mathematik 2014 Gruppe Kadett (7. und 8. Schulstufe) Österreich

Känguru der Mathematik 2014 Gruppe Kadett (7. und 8. Schulstufe) Österreich Känguru der Mathematik 04 Gruppe Kadett (7. und. Schulstufe) Österreich - 0..04 - Punkte Beispiele -. Der Känguruwettbewerb findet jedes Jahr am dritten Donnerstag im März statt. Was ist das letztmögliche

Mehr

Knobelaufgaben ============================================================================== Aufgabe 1 :

Knobelaufgaben ============================================================================== Aufgabe 1 : Knobelaufgaben ============================================================================== Aufgabe 1 : Untersuche, ob man die Zahl 1 000 000 000 in ein Produkt aus zwei natürlichen Zahlen zerlegen kann,

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1997/98 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender

Mehr

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse in NRW Lösungsvorschläge der dritten Runde 0/0 Aufgabe : Buchstabensumme Setze für die Buchstaben Ziffern ein. Gleiche Buchstaben

Mehr

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben 50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der

Mehr

Känguru der Mathematik 2006 Gruppe Kadett (5. und 6. Schulstufe) Österreich

Känguru der Mathematik 2006 Gruppe Kadett (5. und 6. Schulstufe) Österreich Känguru der Mathematik 2006 Gruppe Kadett (5. und 6. Schulstufe) Österreich - 16.3.2006-3 Punkte Beispiele - 1) Das Känguru der Mathematik hat in Europa jährlich seit 1991 stattgefunden. Der Wettbewerb

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr