Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln"

Transkript

1 Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv /06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere Form des Kongruenzsatzes SSS angegeen mit deren Beweis wir heute eginnen wollen. Satz 2.1 Dreieckserechnung ei gegeenen Seiten Seien a c > 0 gegeen. Genau dann existiert ein Dreieck mit den Seitenlängen a c wenn die Dreiecksungleichungen a < + c < a + c und c < a + erfüllt sind. In diesem Fall ist is auf Kongruenz eindeutig estimmt und die Winkel in sind in den Standardezeichnungen gegeen durch 2 + c 2 a 2 α = arccos 2c a 2 + c 2 2 β = arccos 2ac a c 2 γ = arccos. 2a Beweis: Das die Dreiecksungleichung für die Seitenlängen eines Dreiecks immer erfüllt ist haen wir ereits in 1 eingesehen. Sei nun umgekehrt die Dreiecksungleichung erfüllt. Nach eventueller Umenennung können wir a c annehmen. Dann ist wegen a < + c auch a 2 < + c 2 = 2 + c 2 + 2c also 2 + c 2 a 2 > 2c. Weiter gelten c < a und c < c a also auch c < a und schließlich 2 + c 2 2c = c 2 < a 2 also 2 + c 2 a 2 < 2c. Dies zeigt 2 + c 2 a 2 2c < 1 und damit können wir 2 + c 2 a 2 α := arccos 0 π 2c 13-1

2 Mathematische Proleme SS 2017 Donnerstag 1.6 setzen. Sind also A := 0 0 R 2 B := c 0 R 2 und C := cos α sin α R 2 so ist = ABC ein Dreieck mit AB = c AC = und CAB = α. Nach dem Cosinussatz 1.Satz 32 ist schließlich auch BC 2 = AB 2 + AC 2 2 AB AC cos α = 2 + c c 2 a 2 = a 2 also BC = a. Damit haen wir die Existenzaussage ewiesen. Die Eindeutigkeitsaussage gilt nach 1.Satz 40. und die Formeln für die drei Winkel folgen aus dem Cosinussatz 1.Satz 32. Die effektive Konstruktion eines Dreiecks ei gegeenen a c ist jetzt auch leicht möglich. Wollen wir dies mit dem Geodreick tun so erechnen wir zunächst den Winkel α gemäß der oigen Formel und tragen dann Strecken AB und AC der Längen c und im Winkel α zueinander a. Dies git uns das gesuchte Dreieck. Die Konstruktion mit Zirkel und Lineal ist auch leicht möglich dass c gegeen ist edeutet das wir eine Strecke AB der Länge c haen und dann können wir um A einen Kreis mit Radius und um B einen Kreis mit Radius a zeichnen und erhalten C als einen Schnittpunkt der eiden Kreise. Wir schauen uns noch zwei explizite Beispiele zum een ewiesenen Satz an. 1. Seien a = 6 = 3 und c = 2. Um zu schauen o es ein Dreick mit diesen Seitenlängen git müssen wir die Dreiecksungleichung üerprüfen. Diese ist hier aer wegen a = 6 > = + c offensichtlich verletzt es git also kein Dreieck mit diesen Seitenlängen. 2. Nun seien a = 4 = 2 c = 3. Diesmal sind die Dreiecksungleichungen erfüllt es reicht ja offenar diese für die längste Seite zu verifizieren und hier haen wir a = 4 < 2+3 = +c. Es git also ein Dreieck mit diesen Seitenlängen. Die Winkel in diesem Dreieck ergeen sich jeweils auf zwei Nachkommastellen gerundet als α = arccos β = arccos γ = arccos = arccos = arccos = arccos Wir kommen nun zum nächsten Typ von Konstruktionaufgaen ei dem zwei Seiten und ein Winkel vorgegeen sind. Hier git es zwei mögliche Fälle entweder ist der Winkel der von den eiden Seiten eingeschlossene Winkel oder einer der eiden anderen Winkel. Im ersten Fall spricht man vom Kongruenzsatz SWS für Seite Winkel Seite und im zweiten Fall vom Kongruenzsatz SSW für Seite Seite Winkel. Diese eiden Fälle unterscheiden sich recht deutlich voneinander und wir eginnen mit dem komplizierteren der eiden dies ist der SSW-Satz. Angenommen wir wollen in den Standardezeichnungen die eiden Seiten c und den Winkel β vorgeen. Dann tragen wir 13-2

3 Mathematische Proleme SS 2017 Donnerstag 1.6 zunächst eine Strecke AB der Länge c a. Der Winkel β git uns einen Strahl H mit Startpunkt B vor auf dem der dritte Eckpunkt C des gesuchten Dreiecks liegen muss und die Länge git einen Kreis K mit Radius und Mittelpunkt A auf dem C liegen muss. Der gesuchte dritte Punkt C ist also ein Schnittpunkt der Halgeraden H mit dem Kreis K. Eine Halgerade schneidet einen Kreis in entweder keinem in genau einem oder in zwei Punkten und diese drei Möglichkeiten führen auf verschiedene Fälle. C a A c β B A β c B Fall < c Fall > c Es können drei verschiedene Fälle auftreten. Ist < c so sind wir in der links gezeigten Situation K ist entweder so klein das er von H verfehlt wird oder so groß das er von H gleich zweimal getroffen wird. Im ersten Fall git es dann üerhaupt kein Dreieck mit den vorgegeenen Werten und im zweiten Fall git es genau zwei nicht kongruente und passende Dreiecke. Eine eindeutige Lösung git es nur in dem Randfall das H tangential an K ist. Dann ist im Schnittpunkt C ein rechter Winkel γ = π/2 und somit muss /c = sin β sein. Im rechts gezeigten Fall > c ist dagegen alles unprolematisch der Strahl H trifft den Kreis K in genau einem Punkt C und wir haen die eindeutige Lösung ABC. Im nicht gezeigten Ausartungsfall = c git es dagegen für β < π/2 eine eindeutige Lösung während die Aufgae für β π/2 nicht lösar ist. Damit ist uns die Situation zumindest qualitativ klar. Wir wollen uns auf den Hauptfall > c eschränken und diesen im folgenden Satz ehandeln. Satz 2.2 Dreieckserechnung ei zwei Seiten und einem äußeren Winkel Seien > c > 0 und ein Winkel 0 < β < π gegeen. Dann existiert ein is auf Kongruenz eindeutiges Dreieck = ABC mit AC = und AB = c dessen Winkel ei B gleich β ist. In den Standardezeichungen haen wir dann a = c cos β + 2 c 2 sin 2 β α = arccos γ = arccos c sin 2 β cos β 2 c 2 sin 2 β 2 c 2 c cos β + 2 c 2 sin 2 β + c cos β 13-3.

4 Mathematische Proleme SS 2017 Donnerstag 1.6 Beweis: Wir eginnen mit der Existenzaussage. Zunächst trage eine Strecke AB der Länge AB = c a und ezeichne K den Kreis mit Radius und Mittelpunkt A. Wegen AB = c < liegt B innerhal des Kreises K. Bezeichne S den Strahl mit Startpunkt B und A S und trage einen weiteren Strahl H mit Startpunkt B im Winkel β zu S a es gelte also S H = β. Da H uneschränkt ist enthält H Punkte die außerhal von K liegen der Startpunkt B von H liegt dagegen innerhal des Kreises K da H zusammenhängend ist schneiden sich H und K also in einem Punkt C. Wegen 0 < β < π ist S H nicht kollinear also sind auch A B C nicht kollinear und ABC ist ein Dreieck mit AB = c und AC = da der Radius von K ist. Außerdem ist der Winkel dieses Dreiecks ei B gerade der Winkel zwischen S und H also β. Damit ist die Existenzaussage ewiesen. Sei jetzt umgekehrt ABC ein Dreieck mit AB = c AC = und Winkel β ei B. In den Standardezeichnungen liefert der Cosinussatz 1.Satz 32 2 = a 2 + c 2 2ac cos β also a 2 2ac cos β + c 2 2 = 0 Dies ist eine quadratische Gleichung für a und wir erhalten a = c cos β ± c 2 cos 2 β + 2 c 2 = c cos β ± 2 c 2 sin 2 β. Wegen > c ist auch 2 c 2 sin 2 β > c 2 c 2 sin 2 β = c 2 cos 2 β also 2 c 2 sin 2 β > c cos β und damit ist a = c cos β + 2 c 2 sin 2 β. Dies eweist zum einen die Berechnungsformel für a und zum anderen ist a durch c β festgelegt also ist das Dreieck ABC nach 1.Satz 40. is auf Kongruenz eindeutig festgelegt. Weiter haen wir 2 + c 2 a 2 sowie 2c = 2c2 2ac cos β 2c = c c cos2 β cos β 2 c 2 sin 2 β = c sin2 β cos β 2 c 2 sin 2 β a c 2 2a = 22 c 2 + 2ac cos β 2a = 2 c 2 + c cos β a 2 c 2 = c cos β + 2 c 2 sin 2 β + c cos β und nach Satz 1 gelten α = arccos c sin 2 β cos β 2 c 2 sin 2 β 13-4

5 Mathematische Proleme SS 2017 Donnerstag 1.6 und 2 c 2 γ = arccos c cos β + 2 c 2 sin 2 β + c cos β. Wir kommen zum nächsten der Konstruktionssätze ei dem zwei Seiten und der von ihnen eingeschlossene Winkel vorgegeen sind. In den Standardezeichnungen seien etwa die eiden Seiten c > 0 und der von ihnen eingeschlossene Winkel 0 < α < π gegeen. Dass es dann ein zu diesen Vorgaen passendes Dreieck git ist klar wir müssen ja nur eine Strecke AB der Länge c und eine Strecke AC der Länge im Winkel α atragen und haen dann ein Dreieck ABC der gewünschten Art. Dafür müssen wir wieder eine Eindeutigkeitsaussage nachweisen also zeigen das das Dreieck durch c α is auf Kongruenz eindeutig festgelegt ist man spricht dann auch vom Kongruenzsatz SWS für Seite Winkel Seite. All dies läßt sich wieder equem üer den Cosinussatz durchführen. Satz 2.3 Dreieckserechnung ei zwei Seiten und dem eingeschlossenen Winkel Seien c > 0 und 0 < α < π gegeen. Dann existiert ein is auf Kongruenz eindeutiges Dreieck ABC mit AC = und AB = c so dass α der Winkel ei A ist. In den Standardezeichnungen gelten weiter a = 2 + c 2 2c cos α c cos α β = arccos 2 + c 2 2c cos α c cos α γ = arccos. 2 + c 2 2c cos α Beweis: Die Existenz eines Dreiecks ABC mit den verlangten Eigenschaften haen wir ereits eingesehen. Nach dem Cosinussatz 1.Satz 32 gilt in jedem solchen Dreieck in den ülichen Bezeichnungen a = 2 + c 2 2c cos α und insesondere ist das Dreieck nach Satz 1 is auf Kongruenz eindeutig estimmt. Weiter haen wir a 2 + c 2 2 2ac = 2c2 2c cos α 2ac = c cos α 2 + c 2 2c cos α und nach Satz 1 ist damit c cos α β = arccos. 2 + c 2 2c cos α Die Gleichung für γ ergit sich analog. Es verleien nur noch die Konstruktionsaufgaen mit einer vorgegeenen Seite und zwei vorgegeenen Winkeln. Als ersten Schritt üerlegen wir uns das die Winkelsumme 13-5

6 Mathematische Proleme SS 2017 Donnerstag 1.6 in einem Dreieck immer π ist und es ist hilfreich hierzu ein kleines Lemma vorauszuschicken. Lemma 2.4 Seiten ei parallelen Schnitten Seien g h R 2 zwei verschiedene Geraden die sich in einem Punkt C schneiden. Weiter seien A h\{c} und B g\{c} und ezeichne m die Verindungsgerade von A und B. Schließlich sei n R 2 eine Gerade mit C n und m n und sei D n\{c} ein Punkt so dass A und D auf verschiedenen Seiten von g liegen. Dann liegen B und D auf derselen Seite von h. Beweis: Wähle u v R 2 mit u = v = 1 und c d R mit g = {x R 2 u x = c} und h = {x R 2 v x = d}. Wegen A / g und B / h können wir durch eventuellen Üergang zu u eziehungsweise zu v annehmen das u A < c und v B > d sind. Wegen A C h und B C g gelten weiter C D u B = u C = c und v A = v C = d. Da n D / g ist und A und D auf verschiedenen Seiten von g liegen ist auch u D > c. Wegen m n haen A h B wir außerdem D C Rn = Rm = R B A g m also existiert ein λ R mit D = C + λ B A. Es folgt c < u D = u C + λ u B u A = c + λc u A und wegen c u A > 0 ist auch λ > 0. Hieraus folgt schließlich v D = v C + λ v B v A = d + λ v B d > d d.h. D und B liegen auf derselen Seite von h. 13-6

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/16 15:12:32 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/16 15:12:32 hk Exp $ $Id: dreieck.tex,v 1.14 2015/04/16 15:12:32 hk Exp $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke etrachtet haen, kommen wir nun zur Einführung der trigonometrischen

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/12 15:30:18 hk Exp hk $ $Id: dreieck.tex,v 1.3 2013/04/12 15:30:18 hk Exp hk $ 1 Dreiecke 1.2 Der Strahlensatz Nachdem wir in der letzten Sitzung rechtwinklige Dreiecke betrachtet haben, kommen wir nun zur Einführung der trigonometrischen

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Mathematische Probleme, SS 2017 Donnerstag 22.6

Mathematische Probleme, SS 2017 Donnerstag 22.6 $Id: dreieck.tex,v 1.38 017/06/19 16:13:49 hk Exp $ $Id: trig.tex,v 1.17 017/06/ 1:46:01 hk Exp $ Dreiecke.4 Einige Sätze üer Kreise m Ende der letzten Sitzung hatten wir den Umkreisradius R eines Dreiecks

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $ $Id: dreieck.tex,v 1.11 2013/04/29 15:15:02 hk Exp $ $Id: trig.tex,v 1.2 2013/04/29 15:15:28 hk Exp hk $ 1 Dreiecke 1.6 Einige Sätze über Kreise m Ende der letzten Sitzung hatten wir den Feuerbachkreis

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $

1 Dreiecke. 1.1 Rechtwinklige Dreiecke. Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/15 14:02:10 hk Exp $ $Id: dreieck.tex,v 1.21 20/04/15 14:02:10 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Am Ende der letzten Sitzung hatten wir begonnen die primitiven pythagoräischen Tripel zu bestimmen, und in einem

Mehr

4 Ähnlichkeitsabbildungen

4 Ähnlichkeitsabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 41 DEISSLER 4 Ähnlichkeitsaildungen eispiele Verkleinerungen, Vergrößerungen ijektive, geradentreue ildungen, ei denen die Winkel erhalten werden, aer nicht notwendig

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Elementare Geometrie Vorlesung 10

Elementare Geometrie Vorlesung 10 Elementare Geometrie Vorlesung 10 Thomas Zink 24.5.2017 1.Kongruenz von Dreiecken Es sei E eine Ebene. Wir verstehen in dieser Vorlesung unter einem Dreieck eine Folge von drei Punkten ABC in E, die nicht

Mehr

6 Lineare Abbildungen der euklidischen Ebene

6 Lineare Abbildungen der euklidischen Ebene 6 Lineare Aildungen der euklidischen Eene In diesem Kapitel etrachten wir nur noch lineare Aildungen der euklidischen Eene auf sich seler: f : E E oder f : R 2 R 2 Zudem verwenden wir das Skalarprodukt

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.28 2017/05/29 14:49:16 hk Exp $ $Id: dreieck.tex,v 1.29 2017/05/29 14:54:26 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir hatten zwei Teilmengen

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Kongruenz Dreiecke.notebook. April 08, Feb 21 10:31. Feb 20 12:03. Feb 26 06:57. Feb 26 09:18. Feb 20 12:02. Feb 20 12:02

Kongruenz Dreiecke.notebook. April 08, Feb 21 10:31. Feb 20 12:03. Feb 26 06:57. Feb 26 09:18. Feb 20 12:02. Feb 20 12:02 Thema: Konstruktion von Dreiecken und besondere Linien im Dreieck. Konstruktion von Dreiecken Wir einigen uns auf folgende Regeln der Geometrie: Hauptlinien und Hilfslinien werden unterschiedlich dick

Mehr

Vierte Schularbeit Mathematik Klasse 5B am 24. Mai 2018

Vierte Schularbeit Mathematik Klasse 5B am 24. Mai 2018 Vierte Schulareit Mathematik Klasse 5B am 4. Mai 018 KORREKTURVORLAGE Version 1.0 (13:41 evt. Noch Fehlerchen) Aufgae 1. (P) Zahlenmengen AG 1.1 Kreuzen Sie diejenige Menge an, zu welcher die Zahl 5 10

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

Drei Kreise im Dreieck

Drei Kreise im Dreieck Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt

Mehr

π und die Quadratur des Kreises

π und die Quadratur des Kreises π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge

Mehr

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe

Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe PH Heidelberg, Fach Mathematik Klausur zur Akademischen Vorprüfung Mathematische Grundlagen II: Einführung in die Geometrie Sekundarstufe Wintersemester 12/13 12. Februar 2013 Aufgabe 8: Definieren Nr.

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/27 12:19:07 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/27 12:19:07 hk Exp $ $Id: covete,v 130 2016/05/27 12:19:07 hk Ep $ 3 Kovegeometrie 32 Die platoische Körper User mometaes Ziel ist die Berechug der geometrische Date der platoische Körper Gemäß des i der letzte itzug eschrieee

Mehr

1 Angeordnete Körper und Anordnung

1 Angeordnete Körper und Anordnung 1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Winkel im rechtwinkeligen Dreieck

Winkel im rechtwinkeligen Dreieck Theorie 1 1 Winkel im rechtwinkeligen Dreieck Winkel im rechtwinkeligen Dreieck Für die Winkel im rechtwinkeligen Dreieck gilt: Gegenkathete sin Hypotenuse Gegenkathete tan Ankathete cos cot Ankathete

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos

SWS-Kongruenzsatz. A B = d(a,b) = A B und A C = d(a,c) ) = A C. Dann ist das Winkelmaß BAC = arccos SWS-Kongruenzsatz. SWS-Kongruenzsatz. Es seien A,B,C und A,B,C Punkte des R 2, s.d. weder A,B,C noch A,B,C auf einer Geraden liegen. Dann gilt: es gibt eine Isometrie I, mit A A, B B, C C, genau dann wenn

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

m= und schneidet die y-achse im Punkt P(0/3).

m= und schneidet die y-achse im Punkt P(0/3). Aufgae (Pflichtereich 999) Eine Parael hat die Gleichung y = x 6x+, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

MAT746 Seminar über Euklidische Geometrie Philipp Becker

MAT746 Seminar über Euklidische Geometrie Philipp Becker MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Selbsttest in Schulwissen Mathematik

Selbsttest in Schulwissen Mathematik Selsttest in Schulwissen Mathematik Falls Sie den Test von uns korrigieren und ewerten lassen wollen, machen Sie itte folgende Angaen: Name: Schulaschluss im Jahre: Vorname: im Bundesland oder Staat: Schulische

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Ganzrationale Funktionen. 2. Grades. Die wichtigsten Aufgabentypen. Alle Methoden ganz ausführlich. Datei Nr Stand 8.

Ganzrationale Funktionen. 2. Grades. Die wichtigsten Aufgabentypen. Alle Methoden ganz ausführlich. Datei Nr Stand 8. Analysis Funktionentraining Ganzrationale Funktionen. Grades Die wichtigsten Aufgaentypen Alle Methoden ganz ausführlich Datei r. 50 Stand 8. Septemer 06 FRIEDRICH W. BUCKEL ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

Elliptische Integrale und das allgemeine geometrische Mittel (agm):

Elliptische Integrale und das allgemeine geometrische Mittel (agm): Elliptische Integrale und das allgemeine geometrische Mittel (agm): Typische Aufgaen der Analysis waren im 8. Jahrhundert nach der Erfindung der Differential- und Integralrechnung durch Leiniz und Newton,

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2009/2010

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2009/2010 Landeswettewer Mathematik Baden-Württemerg Musterlösungen. Runde 009/00 Aufgae Wird zu einer natürlichen Zahl ihre Quersumme addiert, so erhält man 00. Bestimme alle Zahlen, ei denen dies zutrifft. Lösung:

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/19 15:02:00 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln.

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/19 15:02:00 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln. Mtemtise Proleme, SS 2016 Dienstg 19.4 $Id: dreiek.tex,v 1.23 2016/04/19 15:02:00 k Ex $ 1 Dreieke 1.4 Dreiekserenung mit Seiten und Winkeln Wie m Ende der letzten Sitzung ngekündigt wollen wir den Cosinusstz

Mehr

Strahlensätze und Ähnliches

Strahlensätze und Ähnliches Strahlensätze und Ähnliches Dr. Elke Warmuth Sommersemester 2018 1 / 27 Zentrische Streckung Strahlensätze Ähnliche Figuren 2 / 27 Was ist hier passiert? 3 / 27 Zentrische Streckung mit Streckungszentrum

Mehr

Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks.

Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks. Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks. (Innenwinkel eines Dreiecks): Sei ABC ein Dreieck. Die Winkel < AB +, AC + ; < BA +, BC + und < CA +,

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

Ebene Elementargeometrie

Ebene Elementargeometrie Ebene Elementargeometrie Im Folgenden unterscheiden wir neben Definitionen (Namensgebung) und Sätzen (nachweisbaren Aussagen) so genannte Axiome. Axiome stellen der Anschauung entnommene Aussagen dar,

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Der Satz von Ceva & Satz von Menelaus

Der Satz von Ceva & Satz von Menelaus Der Satz von Ceva & Satz von Menelaus Fast Viktor 21. November 2007 Inhaltsverzeichnis Sätze und ihre Beweise Satz von Menelaus Satz von Ceva Winkelhalbierendenschnittpunkt Höhneschnittpunkt Winkelhalbierendenschnittpunkt

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Konstruierbarkeit des Siebzehnecks

Konstruierbarkeit des Siebzehnecks Konstruierbarkeit des Siebzehnecks Der Kinofilm Die Vermessung der Welt war Anstoß, sich mit der Konstruktion des regelmäßigen Siebzehnecks und damit den Gedankengängen des berühmten Mathematikgenies Carl

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Geraden am Kreis Stefan Witzel Segmente und Geraden am Kreis Sei k ein Kreis. Eine Sekante ist eine Gerade, die k in zwei Punkten schneidet.

Mehr

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.5 2013/08/13 17:21:33 hk Exp $ 5 Sphärische Trigonometrie m Ende der letzten Sitzung hatten wir mit der Untersuchung sphärischer Dreiecke begonnen. Gegeben war eine Sphäre K, oder

Mehr

Übungen zur Vorlesung. Geometrie. (x) = = 14, (xiii) 3 64 = = 4, (xiv) 4 16 = = 2, (xv) 4 64 = = = 2 2,

Übungen zur Vorlesung. Geometrie. (x) = = 14, (xiii) 3 64 = = 4, (xiv) 4 16 = = 2, (xv) 4 64 = = = 2 2, Übungen zur Vorlesung Geometrie Wiederholungsblatt Wintersemester / erstellt von: M. Evers, M. Möller, F. Springer, X. Yang M. Joachim, F. Springer Musterlösung Aufgabe (Wurzelrechnung. Berechnen Sie folgende

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Ein Problem der Dreiecksspiegelung

Ein Problem der Dreiecksspiegelung Ein Problem der Dreiecksspiegelung Tobias Schoel 10. Februar 2008 1 Die Dreiecksspiegelung 1.1 Spiegelung eines Punktes Es sei ein Dreieck ABC mit den Seiten BC = a, AC = b und AB = c gegeben und P sei

Mehr

S. 44 AAz Ich kann in Summentermen gemeinsame Faktoren finden und diese ausklammern.

S. 44 AAz Ich kann in Summentermen gemeinsame Faktoren finden und diese ausklammern. Klasse 8b Mathematik Vorbereitung zur Klassenarbeit Nr. am 12.4.2018 Themen: Algebra (Ausmultiplizieren und Ausklammern, Binomische Formeln, Gleichungen und Ungleichungen) und Geometrie (Geraden am Kreis,

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr