Automatisierte Dossier- Erstellung mittels Text-Mining

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Automatisierte Dossier- Erstellung mittels Text-Mining"

Transkript

1 Automatisierte Dossier- Erstellung mittels Text-Mining Paul Assendorp Grundseminar Paul Assendorp Automatisierte Dossier-Erstellung 1

2 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 2

3 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 3

4 Motivation Editors don t scale (nach Dr. Carsten Brosda, Amt Medien, Senatskanzlei Hamburg) Paul Assendorp Automatisierte Dossier-Erstellung 4

5 Was ist ein Dossier? Zusammenstellung von Dokumenten Zu thematischem Hintergrund politisch, historisch oder kulturell Aber: Keine eindeutige Definition Paul Assendorp Automatisierte Dossier-Erstellung 5

6 Automatisierte Dossier-Erstellung We emphasize that the complexity of language implies that automated content analysis methods [ ] are best thought of as amplifying and augmenting careful reading and thoughtful analysis [Grim13] Paul Assendorp Automatisierte Dossier-Erstellung 6

7 Automatisierte Dossier-Erstellung (2) Ansatz: Optimierung der Dossier-Erstellung Vorschläge für Domäne-Experten Leitartikel als Vorgabe Paul Assendorp Automatisierte Dossier-Erstellung 7

8 Automatisierte Dossier-Erstellung (3) [Sch14] Paul Assendorp Automatisierte Dossier-Erstellung 8

9 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 9

10 Textmining [FPSS96] Paul Assendorp Automatisierte Dossier-Erstellung 10

11 Textmining [FPSS96] Paul Assendorp Automatisierte Dossier-Erstellung 11

12 Preprocessing von Dokumenten Wie sehen Dokumente aus? Semistrukturierte Text-Dokumente Paul Assendorp Automatisierte Dossier-Erstellung 12

13 Preprocessing von Dokumenten Normalisierung Stemming Stopword-Eliminierung Paul Assendorp Automatisierte Dossier-Erstellung 13

14 Textmining [FPSS96] Paul Assendorp Automatisierte Dossier-Erstellung 14

15 Transformation Dokument Bag of Words Feature-Vektor über Vector Space Model (VSP) Jeder Term als eine Dimension: Key-Words Extraction [LIU12] Paul Assendorp Automatisierte Dossier-Erstellung 15

16 Distanzfunktion Einfache Distanz nach Euklid: dist Euklid v, w = v i w i 2 i [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 16

17 Distanzfunktion (2) Cosinus-Ähnlichkeitsmaß Am meisten verbreitet beim Clustering [Feld07] cos x, y = i i xix i y i 2 y i 2 i [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 17

18 Textmining [FPSS96] Paul Assendorp Automatisierte Dossier-Erstellung 18

19 Anwendungsklassen des Data Mining Klassifizierung ( ) Cluster-Analyse Assoziationsanalyse Numerische Vorhersage Paul Assendorp Automatisierte Dossier-Erstellung 19

20 Cluster-Analyse K-means Algorithmus Einfaches, populäres Verfahren nach MacQueen [Mac67] Künstliche neuronale Netze Selbstorganisierte Karten Neuronale Gase ART-Netze Paul Assendorp Automatisierte Dossier-Erstellung 20

21 Clusterbildung mittels Self Organizing Map (SOM) [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 21

22 SOM (2) [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 22

23 SOM (3) [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 23

24 SOM (4) [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 24

25 SOM (5) [CLEV14] Paul Assendorp Automatisierte Dossier-Erstellung 25

26 SOM (6) [CLEV14], Tool: SoKo-Wismar (Self-Organizing Kohonen Map) Paul Assendorp Automatisierte Dossier-Erstellung 26

27 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 27

28 Tools zum Textmining Rapidminer (YALE) Weka (Waikato Environment for Knowledge Analysis) Beagle Search (Apache Lucene) Hadoop mit z.b. Apache Tez oder Apache Mahout auf Spark Paul Assendorp Automatisierte Dossier-Erstellung 28

29 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 29

30 Aktueller Stand Vorarbeit durch Marcel Schöneberg (M.-Inf.), Nina Hälker (M.-Next Media) Datenbasis Eurozine Netzwerk (www.eurozine.com) [Sch2014] 2700 Journalistische Artikel Meta-Informationen semi-strukturiert in XML (Autor, Abstract, Überschriften usw.) Größtenteils englisch Paul Assendorp Automatisierte Dossier-Erstellung 30

31 Aktueller Stand (2) Einfache Distanzfunktion Distanz nach Euklid gemäß Gewichtung Dossier-Vorschläge anhand ähnlicher Dokumente Keine multimedialen Dossiers Paul Assendorp Automatisierte Dossier-Erstellung 31

32 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 32

33 Ausblick Verbesserung der Gewichtung durch Kenntnis der Fachdomäne Linguistische Verbesserungen Optimierung der Distanzfunktion Evaluierung von Methoden zum Clustering Entwicklung einer Toolchain Paul Assendorp Automatisierte Dossier-Erstellung 33

34 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick Konferenzen & Forschung Paul Assendorp Automatisierte Dossier-Erstellung 34

35 Konferenzen ACM SIGKKD Knowledge Discovery & Data Mining ACM SIGMOD Management of Data IEEE Big Data 2014 ISC Big Data Paul Assendorp Automatisierte Dossier-Erstellung 35

36 Forschung (Digital Journalism) Center for Digital Journalism Jay Rosen Digital Storytelling Bryan Alexander Paul Assendorp Automatisierte Dossier-Erstellung 36

37 Quellen [Clev14] CLEVE, Jürgen; LÄMMEL, Uwe: Data Mining. De Gruyter, 2014 [Grim13] GRIMMER, Justin; STEWARD, Brandon M.: Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Stanford University, 2013 [FPSS96] [Sch14] [Feld07] [Mac67] [Lui12] FAYYAD, Usma M.; PIATETSKY-SHAPIRO, Gregory; SMYTH, Padhraic: From Data Mining to Knowlege Discovery: An Overview. In: FYYAD, Usama M.; PIATETSKY-SHAPIRO, Gregory; SMYTH, Padhraic; UTHURU-SAMY, Ramasamy (Hrsg.): Advances in Knowlege Discovery and Data Mining. Menlo Park, Cambridge, London: MIT Press, 1996, S SCHÖNEBERG, Marcel: Automatisierte Erstellung von Pressedossiers durch Textmining: Kontextualierung im journalistischen Umfeld Masterseminar Ausarbeitung FELDMAN, Ronen; SANGER, James: The Text Mining Handbook: Advanced Approaches in Analysing Unstructured Data. Cambridge University Press, 2007 MACQUEEN, J.: Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1: London, UK: Cambridge University Press LIU, Yuan-Chao; LIU, Ming; WANG, Ming: Application of Self-Organizing Maps in Text Clustering: A Review, Applications of Self-Organizing Maps Paul Assendorp Automatisierte Dossier-Erstellung 37

38 Vielen Dank für die Aufmerksamkeit! Gibt es Fragen? Paul Assendorp Automatisierte Dossier-Erstellung 38

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Grundseminar HAW Master Informatik 18.04.2017 Inhaltsübersicht Data Mining & Begriffswelt des Data Mining Klassifikation & Klassifikatoren

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

DATA MINING FÜR BIG DATA. Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov

DATA MINING FÜR BIG DATA. Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov DATA MINING FÜR BIG DATA Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov 29.10.2013 2 Agenda Motivation Data Mining Assoziationsanalyse Clusteranalyse Big Data Map Reduce Apache Hadoop Relevante

Mehr

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014 Text Mining Joachim Schole Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg Grundseminar, WS 2014 Joachim Schole (HAW Hamburg) Text Mining Grundseminar, WS 2014 1 / 26 Agenda

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Clustering mit dem K-Means-Algorithmus (Ein Experiment)

Clustering mit dem K-Means-Algorithmus (Ein Experiment) Clustering mit dem K-Means- (Ein Experiment) Andreas Runk 7. März 2013 Index 1 2 3 4 5 Andreas Runk Clustering mit dem K-Means- 2/40 Ziele: des K-Means Finde/erstelle geeignetes Testcorpus möglichst gute

Mehr

Methoden & Tools für die Expressionsdatenanalyse. Vorlesung Einführung in die Bioinformatik - Expressionsdatenanalyse U. Scholz & M.

Methoden & Tools für die Expressionsdatenanalyse. Vorlesung Einführung in die Bioinformatik - Expressionsdatenanalyse U. Scholz & M. Methoden & Tools für die Expressionsdatenanalyse U. Scholz & M. Lange Folie #7-1 Vorgehensmodell Expressionsdatenverarbeitung Bildanalyse Normalisierung/Filterung Datenauswertung U. Scholz & M. Lange Folie

Mehr

Seminar aus Netzwerke und Sicherheit

Seminar aus Netzwerke und Sicherheit Seminar aus Netzwerke und Sicherheit Security in Business Applications Vorbesprechung 16.10.2008 Dr. Andreas Putzinger WS09/10 1 Intention Seminar kann als 2h BAK Seminar angerechnet werden. Zweiergruppen

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome Big Data bei unstrukturierten Daten AW1 Vortrag Sebastian Krome Agenda Wiederholung Aspekte von Big Data Datenverarbeitungsprozess TextMining Aktuelle Paper Identification of Live News Events Using Twitter

Mehr

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels TDWI Konferenz München, 24.06.2014 M.Sc.Susann Dreikorn Institut für Wirtschaftsinformatik, 2014 Agenda

Mehr

Themen für Beiträge Seminar Selbstorganisation und Emergenz im Sommersemester 2009 Arbeitsgruppe Datenbionik Prof. Dr.

Themen für Beiträge Seminar Selbstorganisation und Emergenz im Sommersemester 2009 Arbeitsgruppe Datenbionik Prof. Dr. Themen für Beiträge Seminar Selbstorganisation und Emergenz im Sommersemester 2009 Arbeitsgruppe Datenbionik Prof. Dr. Alfred Ultsch Don t panic! Die Vorträge dürfen auf Deutsch oder Englisch gehalten

Mehr

Text Mining für News-Sites Nina Hälker

Text Mining für News-Sites Nina Hälker Ablauf Department Informatik, HAW Hamburg Sommersemester 2014 A Motivation Aufbauprojekt Was sagt das Ausland? Fokus der Masterarbeit: Text Mining für News-Sites B Drei Papers: Fokus, Ergebnisse, eigenes

Mehr

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion Web Information Retrieval Hauptseminar Sommersemester 2003 Thomas Mandl Überblick Mehrsprachigkeit Multimedialität Heterogenität Qualität, semantisch, technisch Struktur Links HTML Struktur Technologische

Mehr

Business Intelligence & Machine Learning

Business Intelligence & Machine Learning AUSFÜLLHILFE: BEWEGEN SIE DEN MAUSZEIGER ÜBER DIE ÜBERSCHRIFTEN. AUSFÜHRLICHE HINWEISE: LEITFADEN MODULBESCHREIBUNG Business Intelligence & Machine Learning Kennnummer Workload Credits/LP Studiensemester

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Opinion Mining in der Marktforschung

Opinion Mining in der Marktforschung Opinion Mining in der Marktforschung von andreas.boehnke@stud.uni-bamberg.de S. 1 Überblick I. Motivation Opinion Mining II. Grundlagen des Text Mining III. Grundlagen des Opinion Mining IV. Opinion Mining

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Rheinlandtreffen 7. November 2006

Rheinlandtreffen 7. November 2006 Dirk Thorleuchter No 1 Inhalt Einleitung Motivation Aufgabenstellung Methode / Vorgehensweise KDT-Prozess Beispiele Evoluation Zusammenfassung No 2 1 Einleitung Motivation Trend zur kontinuierlich ansteigende

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

SALSAH eine virtuelle Forschungsumgebung für die Geisteswissenschaften

SALSAH eine virtuelle Forschungsumgebung für die Geisteswissenschaften SALSAH eine virtuelle Forschungsumgebung für die Geisteswissenschaften Zusammenfassung: Abstract: Einführung genuin digital Virtuelle Forschungsumgebungen für die Geisteswissenschaften in Bezug auf die

Mehr

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Vektormodelle Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Gliederung Vektormodelle Vector-Space-Model Suffix Tree Document Model

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

Modellierung eines Epidemie- Frühwarnsystems mit. Nicolas With Master Seminar WS 2012/13

Modellierung eines Epidemie- Frühwarnsystems mit. Nicolas With Master Seminar WS 2012/13 Modellierung eines Epidemie- Frühwarnsystems mit SocialMedia Mining Nicolas With Master Seminar WS 2012/13 Agenda Einstieg Motivation Abgrenzung Ziel Status Projekt 1 Projekt 2 Ausblick Chancen Risiken

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Data Mining Approaches for Instrusion Detection Espen Jervidalo WS05/06 KI - WS05/06 - Espen Jervidalo 1 Overview Motivation Ziel IDS (Intrusion Detection System) HIDS NIDS Data

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Projekt Eurodelphes: Multimedia im Geschichtsunterricht

Projekt Eurodelphes: Multimedia im Geschichtsunterricht Projekt Eurodelphes: Multimedia im Geschichtsunterricht Priv.Doz. Gerrit Kalkbrenner Gliederung Ziele des Projektes Partner Didaktisches Konzept Ergebnisse Vorführung 2 Ziele des Projektes Multimedia im

Mehr

Datenbanken-Themen im OS "Data Mining" SS 2010

Datenbanken-Themen im OS Data Mining SS 2010 Prof. Dr.-Ing. Thomas Kudraß HTWK Leipzig, FIMN Datenbanken-Themen im OS "Data Mining" SS 2010 Die Vorträge sollten eine Dauer von 60 Minuten (Einzelvortrag) bzw. 45 Minuten (Doppelvortrag) haben. Nachfolgend

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Mit XML-basierten Web-Standards zur Lernplattform im Projekt ITO

Mit XML-basierten Web-Standards zur Lernplattform im Projekt ITO Mit XML-basierten Web-Standards zur Lernplattform im Projekt ITO Martin Rotard Institut für Visualisierung und Interaktive Systeme Universität Stuttgart 1 / 17 Überblick Projekt ITO Mit konventionellen

Mehr

Ausarbeitung AW2 SS2012. Jan-Christoph Meier Data Mining in der Cloud

Ausarbeitung AW2 SS2012. Jan-Christoph Meier Data Mining in der Cloud Ausarbeitung AW2 SS2012 Jan-Christoph Meier Data Mining in der Cloud Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science Inhaltsverzeichnis

Mehr

Datenanalyse mit Data Mining

Datenanalyse mit Data Mining Datenanalyse mit Data Mining von Jan-Christoph Meier Hamburg, 19.01.2012 1 Ablauf Motivation Speicherung der Daten für das Data Mining Data Mining Algorithmen Ausblick auf die Masterarbeit Konferenzen

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Vorbesprechung Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2015 Vorbesprechung, SS 2015 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source:

Mehr

Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik. Exposé zur Bachelorarbeit

Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik. Exposé zur Bachelorarbeit Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik Exposé zur Bachelorarbeit eingereicht von Irina Glushanok 23.04.2015 1 Einführung Um eine bequeme Suche nach passender Literatur

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Big Data - Datenquellen und Anwendungen

Big Data - Datenquellen und Anwendungen Big Data - Datenquellen und Anwendungen AW1 Präsentation Gerrit Thede Fakultät Technik und Informatik Department Informatik HAW Hamburg 18. November 2013 Outline 1 Einleitung 2 Datenquellen 3 Data Science

Mehr

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Schätzung von Holzvorräten und Baumartenanteilen mittels Wahrscheinlichkeitsmodellen Haruth

Mehr

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016 Citizen Data Science Balázs Bárány Linuxwochen Wien 2016 29. April 2016 Inhalt Einführung: Data Science Werkzeuge und Methoden Citizen Data Science Daten holen Daten verstehen Daten-Vorverarbeitung Prädiktive

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Social Media as Sensors. Nikolai Bock FOSSGIS 2014

Social Media as Sensors. Nikolai Bock FOSSGIS 2014 Social Media as Sensors Nikolai Bock FOSSGIS 2014 Gliederung des Vortrags 1. Hintergrund 2. Sensornetzwerke ( People as Sensors) 3. Social Media / Analyse 4. FlexSensor Ansatz 5. Ausblick Tweetmap Projektarbeit

Mehr

Praktikum Einführung

Praktikum Einführung Praktikum Einführung Praktikum im Rahmen der Veranstaltung Sicherheit in Netzen im WS 08/09 Praktikumsleiter: Holger Plett Agenda Motivation AVISPA Einleitung Aufbau des Frameworks Elemente des Frameworks

Mehr

Service-Oriented Software in the Humanities: A Software Engineering Perspective Nicolas Gold (King's College London)

Service-Oriented Software in the Humanities: A Software Engineering Perspective Nicolas Gold (King's College London) War in Parliament: What a Digital Approach Can Add to the Study of Parliamentary History Hinke Piersma, Ismee Tames (NIOD Institute for War, Holocaust and Genocide Studies) Lars Buitinck, Johan van Doornik,

Mehr

Automatisierte Erstellung von Pressedossiers durch Textmining

Automatisierte Erstellung von Pressedossiers durch Textmining Automatisierte Erstellung von Pressedossiers durch Textmining Kontextualierung im journalistischen Umfeld Marcel Schöneberg marcel.schoeneberg@haw-hamburg.de Hochschule für Angewandte Wissenschaften Hamburg

Mehr

@inproceedings{w2005kml, author = {Thomas Weise}, title = {Entwicklung eines WYSIWYG Editors f{\"{u}}r das Erstellen von Lehrmaterial im XML Format},

@inproceedings{w2005kml, author = {Thomas Weise}, title = {Entwicklung eines WYSIWYG Editors f{\{u}}r das Erstellen von Lehrmaterial im XML Format}, @inproceedings{w2005kml, author = {Thomas Weise}, title = {Entwicklung eines WYSIWYG Editors f{\"{u}}r das Erstellen von Lehrmaterial im XML Format}, booktitle = {Proceedings of Informatiktage 2005}, series

Mehr

Optimieren Sie Ihre n2n Webseite

Optimieren Sie Ihre n2n Webseite N2N Autor: Bert Hofmänner 5.10.2011 Optimieren Sie Ihre n2n Webseite Einer der wichtigsten Faktoren für den Erfolg Ihrer Webseite in Suchmaschinen sind deren Inhalte. Diese können Sie mit einem Content

Mehr

www.uni-erfurt.de/target/ringvorlesungen

www.uni-erfurt.de/target/ringvorlesungen www.uni-erfurt.de/target/ringvorlesungen Digitale Spiele als Ab-Bild der realen Welt Die Sicht eines Computergraphikers Paul Grimm Computer Graphics Applied Computer Science Erfurt University of Applied

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz

Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz FHDW-Fachbericht Band 1/2009 Raphael Fockel Wilhelm Nüsser (Hrsg.) Carsten Weigand

Mehr

API Monitoring mit Predictive Analytics

API Monitoring mit Predictive Analytics API Monitoring mit Predictive Analytics von Björn Baltbardis Björn Baltbardis, M-INF, HAW-Hamburg! Grundseminar, Betreuung durch Prof. Dr. Olaf Zukunft! 05.12.2014! Inhalt des Vortrags Einführung! Motivation!

Mehr

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher Map Reduce on Hadoop Seminar SS09 Similarity Join Tim Felgentreff, Andrina Mascher Gliederung 2!! Aufgabe!! Demo!! Algorithmus!! Performance!! Veränderte Aufgabenstellung:!! Vergleich mit 1 Seite!! Ausblick!!

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

Information Retrieval and Semantic Technologies

Information Retrieval and Semantic Technologies Information Retrieval and Semantic Technologies Gerhard Wohlgenannt 6. April 2013 Inhaltsverzeichnis 1 Informationen zur Lehrveranstaltung 2 1.1 Inhalt................................... 2 2 Unterlagen

Mehr

Alexander Piehl Grundseminar WS14/15

Alexander Piehl Grundseminar WS14/15 Alexander Piehl Grundseminar WS14/15 Inhaltsverzeichnis Motivation Model-Based Testing Aktueller Stand der Forschung Aufgaben und Zielsetzung 27.11.2014 2 27.11.2014 3 Motivation Beruflich mit Software

Mehr

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch?

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch? Oberseminar Data Mining 07. April 2010 Methodik des Data Mining Knowledge Discovery In Databases oder auch Data Mining - Der moderne Goldrausch? Data Mining...? Hochleistungsrechnen Geoinformationssysteme

Mehr

Data Mining in der Landwirtschaft

Data Mining in der Landwirtschaft Vortrag zum Doktorandentag 02. Februar 2010 Gliederung Motivation Grundidee field uniform treatment small scale precision treatment Abbildung: Präzisionslandwirtschaft = datengetriebene Herangehensweise

Mehr

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale?

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Text Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Textklassifikationen Natürliche bzw. unstrukturierte Texte Normale Texte ohne besondere Merkmale und Struktur Semistrukturierte

Mehr

Fallbasierte automatische Klassifikation nach der RVK - k-nearest neighbour auf bibliografischen Metadaten

Fallbasierte automatische Klassifikation nach der RVK - k-nearest neighbour auf bibliografischen Metadaten Fallbasierte automatische Klassifikation nach der RVK - k-nearest neighbour auf bibliografischen Metadaten Magnus Pfeffer (Dipl.-Inform., M.A. LIS) Universität Mannheim, Universitätsbibliothek magnus.pfeffer@bib.uni-mannheim.de

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher Hauptseminar SS11 Inhalt Einführung zu hochdimensionalen Daten Visualisierungsmöglichkeiten dimensionale Teilmengen dimensionale Schachtelung Achsenumgestaltung Algorithmen zur Dimensionsreduktion Zusammenfassung

Mehr

Application Requirements Engineering

Application Requirements Engineering Application Requirements Engineering - Fokus: Ableitung von Produktanforderungen - Günter Halmans / Prof. Dr. Klaus Pohl Software Systems Engineering ICB (Institute for Computer Science and Business Information

Mehr

Exzellenz: institutionelle Konzepte

Exzellenz: institutionelle Konzepte Exzellenz: institutionelle Konzepte Prof. Dr. Andrea Schenker-Wicki Tagung des Österreichischen Wissenschaftsrats Wien, 7. November 2013 11.11.2013 Seite 1 Agenda Begrifflichkeit Institutionelle Exzellenz:

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Knowledge Discovery in Datenbanken I (IN5042)

Knowledge Discovery in Datenbanken I (IN5042) Knowledge Discovery in Datenbanken I (IN5042) Titel Knowledge Discovery in Databases I Typ Vorlesung mit Übung Credits 6 ECTS Lehrform/SWS 3V + 2Ü Sprache Deutsch Modulniveau Master Arbeitsaufwand Präsenzstunden

Mehr

Ontologien und Ontologiesprachen

Ontologien und Ontologiesprachen Ontologien und Ontologiesprachen Semantische Datenintegration SoSe2005 Uni Bremen Yu Zhao Gliederung 1. Was ist Ontologie 2. Anwendungsgebiete 3. Ontologiesprachen 4. Entwicklung von Ontologien 5. Zusammenfassung

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern

Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern Dr. André Schulz SAS Deutschland Göttingen, 6. September 2012 SAS Institute Ein Unternehmen der Zahlen SAS is the first company

Mehr

Big Data - Fluch oder Segen?

Big Data - Fluch oder Segen? mitp Professional Big Data - Fluch oder Segen? Unternehmen im Spiegel gesellschaftlichen Wandels von Ronald Bachmann, Guido Kemper, Thomas Gerzer 1. Auflage Big Data - Fluch oder Segen? Bachmann / Kemper

Mehr

Business Applications of Data Mining

Business Applications of Data Mining Business Applications of Data Mining Seminar Business Intelligence Universität Konstanz Christian Rohrdantz Outline Einleitung Was ist Data Mining Rolle des DM in Business Intelligence Herausforderungen

Mehr

Personalisierung elektronischer Märkte: Möglichkeiten und Techniken

Personalisierung elektronischer Märkte: Möglichkeiten und Techniken Personalisierung elektronischer Märkte: Möglichkeiten und Techniken Vortrag in der Lehrveranstaltung Unternehmen im internationalen Leistungswettbewerb von Stefan Marr Agenda 2 Motivation Nutzen für Kunden

Mehr

MuViPlan Autorenumgebung für Museen und Besucher

MuViPlan Autorenumgebung für Museen und Besucher MuViPlan Autorenumgebung für Museen und Besucher Museumsanwendungen mit Storytelling Dr. Stefan Göbel Digital Storytelling www.zgdv.de/distel stefan.goebel@zgdv.de (1) MuViPlan - Framework Content Learning

Mehr

Ansatz für einen CIDOC-CRM-Editor

Ansatz für einen CIDOC-CRM-Editor Ansatz für einen CIDOC-CRM-Editor HS WS 08/09: Das Semantic Web in Papierform und Praxis: CIDOC-CRM Dozent: Prof. Dr. Thaller Referent: Stefan Oertel Inhalt Grundsätzliche Anforderungen Welche Lösungen

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

Customer Service Social Media Radar

Customer Service Social Media Radar Customer Service Social Media Radar Tools für das Social Media Servicemanagement 31.10.2011 1 NICHT WAS SIE SAGEN, DEFINIERT HEUTE IHRE MARKE, SONDERN WAS DIE VERBRAUCHER ÜBER SIE SAGEN 31.10.2011 2 Kommunika?on

Mehr

PPC Account Audits. Die Gesundenuntersuchung in 15 Minuten

PPC Account Audits. Die Gesundenuntersuchung in 15 Minuten www.fredmansky.at PPC Account Audits Die Gesundenuntersuchung in 15 Minuten Wer ist das überhaupt? Ulf Weihbold im Netz unterwegs seit lange... Adwords zertifiziert seit 2008 Speaker SMX, SEOkomm, SEMSEO,...

Mehr

Data Mining im Einzelhandel Methoden und Werkzeuge

Data Mining im Einzelhandel Methoden und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Professur Technische Informationssysteme Proseminar Technische Informationssysteme Data Mining im Einzelhandel Methoden und Werkzeuge Betreuer: Dipl.-Ing.

Mehr

Einführung in das Data Mining Clustering / Clusteranalyse

Einführung in das Data Mining Clustering / Clusteranalyse Einführung in das Data Mining Clustering / Clusteranalyse Sascha Szott Fachgebiet Informationssysteme HPI Potsdam 21. Mai 2008 Teil I Einführung Clustering / Clusteranalyse Ausgangspunkt: Menge O von Objekten

Mehr

Intelligente Systeme WS 2015/16

Intelligente Systeme WS 2015/16 Lehrgebiet Intelligente Systeme WS 2015/16 Andreas Dengel Fragestellungen Automatisierung von intelligentem" Verhalten im Sinn eines Leistungsverstärkers für den Menschen, z.b. Verstehen von Bildern, Sprache

Mehr

Workflow generierte Provenienz Metadaten in PubFlow. Peer Brauer Universität zu Kiel

Workflow generierte Provenienz Metadaten in PubFlow. Peer Brauer Universität zu Kiel Workflow generierte Provenienz Metadaten in PubFlow Peer Brauer Universität zu Kiel Kiel, 23.03.2012 1 > Agenda Agenda Daten und ihre Provenienz Das Projekt PubFlow Provenienzdaten-Erfassung in PubFlow

Mehr

Erkennung von Kontext aus Sensordaten in einer intelligenten Wohnung

Erkennung von Kontext aus Sensordaten in einer intelligenten Wohnung Erkennung von Kontext aus Sensordaten in einer intelligenten Wohnung Jens Ellenberg 12.01.2011 Jens Ellenberg 1 Inhalt Motivation Ziel der Arbeit Vorarbeiten Architektur Vorgehen Zusammenfassung Literatur

Mehr

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen Big Data Modewort oder echter Mehrwert freenet Group Dr. Florian Johannsen freenet Group 2 Titel der Präsentation 07.07.2015 Mobilfunkgeschäft der freenet Group Austausch von Daten und Informationen Im

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

Complex Event Processing

Complex Event Processing [10] Armin Steudte HAW Hamburg Masterstudiengang Informatik - WS 2011/2012 Agenda Motivation Grundlagen Event Processing Networks Ausblick Quellen 2 Agenda Motivation Grundlagen Event Processing Networks

Mehr

Testing for and fixing common security issues

Testing for and fixing common security issues Testing for and fixing common security issues Fatih Kilic, Thomas Kittel [kilic kittel]@sec.in.tum.de Lehrstuhl für Sicherheit in der Informatik / I20 Prof. Dr. Claudia Eckert Technische Universtität München

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Social Media Analytics Aktuelle Herausforderungen

Social Media Analytics Aktuelle Herausforderungen Lehrstuhl für Informatik 5 Informationssysteme RWTH Aachen Social Media Analytics Aktuelle Herausforderungen Ralf Klamma RWTH Aachen I5-KL-111010-1 Gesellschaft für Informatik Regionalgruppe Köln Themenabend

Mehr

Graphalgorithmen in massiv parallelen Umgebungen

Graphalgorithmen in massiv parallelen Umgebungen Grundseminar SS 2017 Graphalgorithmen in massiv parallelen Heinrich Latreider Grundseminar Vortrag am 27.06.2017 Betreuer: Prof. Dr. Olaf Zukunft 1 Inhaltsübersicht Motivation Graphentheorie Big Data Graph

Mehr

Techniken zur Analyse von Logdaten

Techniken zur Analyse von Logdaten Techniken zur Analyse von Logdaten Yevgen Mexin Institut für Informatik, Fakultät EIM Prof. Dr. Kleine Büning, Dr. Anderka Einleitung Logs Protokolle Arbeitsprozess Erfolgreich erfüllte Aufgaben Entstehende

Mehr

Organisation und Systeme SOA: Erstellung von Templates für WebService Consumer und Provider in Java

Organisation und Systeme SOA: Erstellung von Templates für WebService Consumer und Provider in Java SOA: Erstellung von Templates für WebService Consumer und Provider in Java Entwicklung von Java WebService Provider- und Consumer-Bibliotheken zur Standardisierung der Karmann WebService Landschaft. Konzeption

Mehr