9.Vorlesung EP WS2008/9

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "9.Vorlesung EP WS2008/9"

Transkript

1 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Versuche: Messung der Oberflächenspannung Büroklammer auf Wasser Druck in Seifenblasen Kapillaren Bernoulli (Druckänderung bei Änderung des Rohrdurchmessers) Abdecken eines Hauses Turbulente und laminare Strömungen Magnuseffekt in Wasser

2 c) Oberflächenspannung u. Kapillarität Grenzflächen zwischen flüssig, fest und gasförmig Beobachtung: Oberfläche einer Flüssigkeit an Gas verhält sich wie eine elastische Haut. Beispiele: Wassertropfen, Seifenblase F=0 F E pot Kraft F r zwischen zwei Molekülen F r Moleküle einer Flüssigkeit ziehen sich an! Kohäsion = Anziehung zwischen den Molekülen einer Flüssigkeit - Im Inneren einer Flüssigkeit hat jedes Molekül viele Nachbarn (keine resultierende Anziehung, geringe Energie) - An der Oberfläche zum Gas gibt es weniger Nachbarn, d.h. es muß Arbeit geleistet werden um die Oberfläche zu vergrößern, d.h. um Moleküle an die Oberfläche zu bringen.

3 Oberflächenspannung: Bei der Vergrößerung einer Flüssigkeitsoberfläche um A muß Arbeit W verrichtet werden. Oberflächenspannung σ W A J m = 2 Beispiel: Benötigte Arbeit W beim Herausziehen einer Lamelle, siehe Bilder rechts u unten. Vernachlässigung von Schwerkraft und resultierender Hubarbeit. W F s =σ A =σ (2L s) c) Oberflächenspannung σ = F / 2L In diesem Fall bildet sich eine Oberfläche A auf beiden Seiten, deshalb Randlänge = 2 Bügellänge L. F Querschnitt des Bügels mit beidseitigen Flüssigkeitsoberflächen. Oberfläche nspannung σ= am Rand angreifende Kraft Länge des Randes N m (alternative Definition) Versuch Messung der Oberflächenspannung mit Lamelle

4 σ: eine Konstante, in begrenztem Bereich der äusseren Spannung (wie bei E,G,K), abhängig von Temperatur, evtl. gelösten Stoffen und von Umgebung (Außenmedium) Beispiele: Wasser : J/m 2 Benzol : J/m 2 Quecksilber : J/m 2 Tenside verringern die Oberflächenspannung drastisch. Ungestörte Oberflächen nehmen immer die kleinstmögliche Gesamtfläche ein (Minimalflächen). Wenn keine äußeren Kräfte wirken Kugelgestalt, weil Kugel bei gegebenem Volumen die kleinste Oberfläche hat.

5 h Versuch Büroklammer

6 Versuch mit Seifenblasen Innendruck einer Seifenblase mit Kugelradius r als Folge der Oberflächenspannung σ : p = p innen p aussen = 2 σ / r Verbindet man verschieden große Seifenblasen, dann schluckt die große die kleine

7 Kapillaren Grenzflächen zwischen fest und flüssig: Abhängig davon, ob die Anziehungskraft (Adhäsion) zwischen Flüssigkeits- und Festkörpermolekülen oder die Kohäsion der Flüssigkeitsmoleküle stärker ist. Bei vollständiger Benetzung ist ϕ=0 Bei Kapillaren führt unterschiedliche Adhäsion entweder zu Kapillar-Attraktion oder Kapillar- Depression Bsp.: Glas - Wasser Bsp.: Glas - Quecksilber

8 Kapillaren Steighöhe: h = r 2σ ρ Flüss g (Herleitung: Glaskapillare vollständig benetzt F 0 = Randlänge σ = 2πr σ F G =(V ρ) g = π r² h ρ g F 0 =F G 2r σ= r² h ρ g obige Formel)

9 6. Hydro- und Aerodynamik: 6. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien im linken Bild Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die Geschwindigkeit Strömungsfeld charakterisiert durch Geschwindigkeitsverteilung im Raum stationär = nicht zeitabhängig (zunächst ohne Reibung, Viskosität)

10 a) Kontinuitätsgleichung Volumenstrom und Kontinuitätsgleichung : Volumenstrom durch eine Fläche A i I = V t Kontinuitätsgleichung (für inkompressibles, ideales Fluid) I = V t = Ai vi = const. v 1 /v 2 = A 2 /A 1 Die Strömungsgeschwindigkeit nimmt an einer Engstelle zu, Ursache der Beschleunigung?

11 b) Bernoulli -Gleichung Energiebilanz an der Engstelle: Beschleunigung Kraft auf Strecke (Arbeit) Druckdifferenz (p 2 > p 1 ) Aus Energieerhaltung: kinetischer Energie + Stempelarbeit p V= const. folgt ( ρ v 2 2) + p = const = Gesamtdruck Bernoulli Gleichung Staudruck (dynamischer Druck) + Stempeldruck (statischer Druck) = const. Ändert sich außer dem Rohrdurchmesser auch noch die Höhe h über dem Boden (ansteigendes oder abfallendes Rohr), so muß zusätzlich der Schweredruck berücksichtigt werden: ( ρ gh) + ( ρ v 2 2) + p = const.

12 (Detaillierte Herleitung der Bernoulli-Gleichung E kin = ½ M v 1 ² < ½ M v 2 ², weil wegen der Kontinuitätsgleichung v 1 /v 2 = A 2 /A 1. Energie-Erhaltung: ½ M v 2 ² - ½ M v 1 ² = Arbeit durch Druck F 1 x 1 F 2 x 2 =p 1 A 1 x 1 p 2 A 2 x 2 =p 1 V p 2 V ½ M v² 2 + p 2 V = ½ M v² 1 +p 1 V = const. (d.h. überall). Geteilt durch V: ρ v 2 + p const. 2 =

13 Folgen der Bernoulli-Gl.: Hydrodynamisches Paradoxon: In Bereichen mit hoher Strömungsgeschwindigkeit herrscht ein reduzierter statischer Druck Bunsenbrenner Haus im Sturm Innendruck > stat. Druck oben Zerstäuber Tragfläche

14 Weitere Beispiele für die Verringerung des statischen Drucks in Regionen hoher Geschwindigkeit: Die Gebiete zusammengedrängter Stromlinien (Unterdruck) ziehen An den Seiten der Scheibe ( Drehmoment im mittleren Bild) Beispiel: fallende Blätter

15 Magnus-Effekt bei Umströmung eines rotierenden Körpers Wegen Adhäsion an der Kugeloberfläche führt Kugel eine Wasserschicht mit sich herum*. (*Superposition der Geschwindigkeiten, s. z.b. Bergmann-Schäfer Bd I) Dadurch ist Strömungsgeschwindigkeit des Wassers rechts größer als links. Der gleiche Effekt tritt bei rotierenden Bällen in Luft auf.

16 b) Viskosität Strömung viskoser Flüssigkeiten und Gase Kohäsionskräfte behindern die Bewegung der Teilchen in einem Fluid ( innere Reibung). Wir betrachten zunächst laminare Strömung. Flüssigkeitsschichten gleiten aneinander vorbei und üben eine Schubspannung auf die benachbarten Schichten aus. Ist die Adhäsion zur Wand größer als die Kohäsion, so haftet die an die Wand angrenzende Schicht (v=0). Andernfalls bewegt sie sich reibend an der Wand ( äußere Reibung). Die innere Reibungskraft ist proportional zum Geschwindigkeits- Gradienten v/ z: Reibungskraft F R = η A v z Materialkonstante η = Viskosität

17 η in [Pa s] (Pascalsekunde) = Ns 2 m Zahlenwerte für η bei 20 C in Einheiten [Pa s]: Stoff Öl Wasser Luft Blut η ~ , Flüssigkeiten mit η unabhängig von v/ z heißen Newtonsche Flüssigkeiten. Blut ist eine nicht-newtonsche Flüssigkeit (oben ist der Mittelwert seiner Viskosität eingetragen). Eine Druckdifferenz p= p 1 -p 2 = F R /A ist nötig, um konstanten Volumenstrom I = V/ t z.b. durch ein Rohr zu erreichen. Für Newtonsche Flüssigkeiten und laminare Stoffe (unverwirbelt) gilt p = R s I p 1 p 2 mit R s = Konstante = Strömungswiderstand, der von Rohrgeometrie und Viskosität abhängt. Damit ergibt sich ein Druckgefälle beim Durchströmen eines Rohrsystems, siehe Bild u Versuch:

18 Bei gleichmäßiger Strömung muss die Reibungskraft durch eine Druckdifferenz ausgeglichen werden. Es folgt ein linearer Druckabfall im Rohr: I = V/ t = 1 R s p Bei hohen Geschwindigkeiten v> v k geht die laminare Strömung in eine turbulente über v k 1000 η/ρr mit r = Rohrradius. R s steigt dramatisch (etwa prop. v 2 )

19 Strömung nach Hagen-Poiseuille Strömt ein viskoses Fluid durch ein Rohr (Ader), so bildet sich eine parabolische Geschwindigkeitsverteilung aus u(r) ~ (R-r) 2 d.h. Strömungswiderstand R S = (8ηL/πR 4 ) Der gesamte Volumenstrom ist proportional zur Druckdifferenz umgekehrt proportional zur Viskosität und umgekehrt proportional zur Rohrlänge proportional zur vierten Potenz des Radius

20 Folgen der R 4 Abhängigkeit des Volumenstroms Bei Verengung des Rohrs entweder starke Stromreduzierung oder zur Kompensation starke Druckerhöhung notwendig...

21 Blutkreislauf Blutkreislauf ist parallel angelegt, Lunge und Körper aber in Serie Gesamtquerschnittsfläche der Kapillaren ist ca fach größer als in der Aorta, also die Geschwindigkeit entsprechen kleiner Druckabfall erfolgt in den Kapillaren mit kleinem Radius Druck Gesamt-Querschnitt mittlere Geschwindigkeit Arterien Kapillaren Venen

22 Druckabfall erfolgt in den Kapillaren mit kleinem Radius um Hagen Poiseuille zu entschärfen, reduziert sich die Viskosität des Bluts in den Kapillaren (Fahraeus-Lindquist Effekt) Arterien, Venen Kapillaren Ordnung der roten Blutkörperchen reduziert Strömungswiderstand dv ~ dz = Druck Rote Blutkörperchen in einer Glaskapillare von 10 µm Durchmesser

23 Bemerkung zum Blutkreislauf beim Menschen Typische Drucke im Blutkreislauf: im Lungenkreislauf p = 10 bis 20 Torr im Körperkreislauf p = 70 bis 140 Torr Blutvolumen gepumpt: ca. 5 Liter/Minute Aortadurchmesser ca. 2,5 cm. Gesamtquerschnitt der verzweigten Blutgefäße (Kapillaren) entspricht dem Tausendfachen des Querschnitts in der Aorta. Deshalb ist die Geschwindigkeit in den Kapillaren ein Tausendstel der Geschwindigkeit in der Aorta (Kontinuitätsgleichung). Die Geschwindigkeit in den Kapillaren ist 0,3 mm/sek. Kleiner Radius in den Kapillaren ergibt sehr hohen Widerstand, d.h. der Druckabfall erfolgt im Wesentlichen in den dünnen Blutgefäßen. Blutverteilung im Körper kann über die Radiusänderung der Adern gesteuert werden. Beim gesunden Körper ist die Blutströmung im allgemeinen laminar (Ausnahme Herzklappen). Beim kranken Körper werden durch Ablagerungen an den Blutgefäßen turbulente Strömungen auftreten, die hörbar werden. Im Körperkreislauf variiert der Blutdruck zwischen der Systole (Kontraktion des Herzens) mit ca. 140 Torr und der Diastole mit 80 Torr (Rückbewegung im Herzen). Die Aorta ist elastisch und gleicht Druckschwankungen, die von der Pumpe Herz erzeugt werden, aus.

24 Blutdruckmessung Druck in einer großen Arterie ist etwa gleich dem in der Aorta Abdrücken des Blutflusses mit Manschette bis kein Puls mehr spürbar Druckablassen bis Turbulenzgeräusche hörbar (systolischer Druck) Ablassen bis Turbulenzgeräusche verschwinden, das Blut zirkuliert jetzt laminar (diastolischer Druck)

25 Viskositätsmessung h Kugelfallviskosimeter: Stokes sche Reibung bremst ~ η r v Schwerkraft (-Auftrieb) beschleunigt ~ ρ r 3 Konstante Sinkgeschwindigkeit, wenn beide Kräfte sich kompensieren, ist proportional zum Quadrat des Radius Medizin: Messung der Blutsenkung (Sinkgeschwindigkeit der im Blutplasma suspendierten roten Blutkörperchen), durch Agglomeration bei Infektionen reduziert alternative Meßmethoden: Kapillarviskosimeter (s. nächste Seite), Rotationsviskosimeter

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

5. Hydro- und Aerodynamik

5. Hydro- und Aerodynamik Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte Gasdruck: Gesetz von Boyle-Mariotte Bei konstanter Teilchenzahl und Temperatur ist das Produkt aus Druck p und Volumen V konstant VL 13/1 30.10.2012 Brustkorb Lungenaktion 3. Mechanik deformierbarer Körper

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

I. Mechanik. 10.Vorlesung EP WS2009/10

I. Mechanik. 10.Vorlesung EP WS2009/10 10.Vorlesung EP WS2009/10 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Definition von Viskosität Hagen-Poiseuille - und Stokes - Gesetz 7. Schwingungen Versuche: Druckabfall

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: uf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

Physik für Pharmazeuten und Biologen FLUIDE. Ruhende Flüssigkeiten und Gase Grenzflächeneffekte Bewegte Flüssigkeiten und Gase

Physik für Pharmazeuten und Biologen FLUIDE. Ruhende Flüssigkeiten und Gase Grenzflächeneffekte Bewegte Flüssigkeiten und Gase Physik für Pharmazeuten und Biologen FLUIDE Ruhende Flüssigkeiten und Gase Grenzflächeneffekte Bewegte Flüssigkeiten und Gase Flüssigkeiten Nahordnung frei beweglich geringe thermische Bewegung kleiner

Mehr

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck:

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: = Druck einer senkrecht über einer Fläche A Stehenden Substanz (auch Flächen innerhalb der Flüssigkeit, nicht nur am Boden) Schweredruck steigt linear

Mehr

Kapitel 3 Mechanik von Flüssigkeiten und Gasen. 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide

Kapitel 3 Mechanik von Flüssigkeiten und Gasen. 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide Kapitel 3 3.1 Druck 3.2 Oberflächenspannung, Kapillarität 3.3 Strömungen 3.4 Reale Fluide Das hydrostatische Paradoxon h 1 2 3 A A A Beobachtung: Gleicher Druck am Boden Das hydrostatische Paradoxon h

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Oberflächenspannung I

Oberflächenspannung I Oberflächenspannung I In einer Flüssigkeit wirkt auf ein Molekül von allen Seiten die gleiche Wechselwirkungskraft mit anderen Molekülen. Diese Symmetrie ist an der Oberfläche verletzt. Ein Molekül hat

Mehr

3. Mechanik deformierbarer Körper

3. Mechanik deformierbarer Körper 3. Mechanik deformierbarer Körper 3.1 Aggregatzustände 3.2 Festkörper Struktur der Festkörper Verformung von Festkörpern 3.3 Druck Schweredruck Auftrieb 3.4 Grenzflächen Oberflächenspannung, Kohäsion,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

107 Oberflächenspannung (Bügel- und Steighöhenmethode)

107 Oberflächenspannung (Bügel- und Steighöhenmethode) 107 Oberflächenspannung (Bügel- und Steighöhenmethode) 1. Aufgaben 1.1 Bestimmen Sie die Oberflächenspannung von Wasser und von Spülmittellösungen unterschiedlicher Konzentrationen mit der Abreißmethode!

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 10.Vorlesung EP WS2008/9 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 7. Schwingungen Versuche: Pendel mit zwei Längen Sandpendel

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Druck: Kraft pro Fläche

Druck: Kraft pro Fläche Druck Druck: Kraft pro Fläche F A P = F A P: Druck F: Kraft A: Fläche Kolbendruck Einheit: [P] = 1 N m 2 = 1Pa = 10 5 bar 1 bar Atmosphärendruck - Der Druck im Kolben ist an allen Stellen mit derselben

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Vorlesung Physik für Pharmazeuten PPh - 05

Vorlesung Physik für Pharmazeuten PPh - 05 Vorlesung Physik für Pharmazeuten PPh - 05 Festkörper Mechanik deformierbarer Körper Hydrostatik Grenzflächenspannung Hydrodynamik Der kristalline Festkörper Kristallformen - Raumgitter (Kristallgitter)

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Die Oberflächenspannung

Die Oberflächenspannung Die Oberflächenspannung Theoretische Grundlagen Kohäsionskraft Die Kohäsionskraft, ist diejenige Kraft, die zwischen den Molekülen der Flüssigkeit auftritt. Jedes Molekül übt auf die Umliegenden ein Kraft

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril)

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril) Name: PartnerIn in Crime: Datum : Versuch: Oberflächenspannung und innere Reibung 1105B Einleitung: Oberflächenspannung wird durch zwischenmolekulare Kräfte kurzer Reichweite hervorgerufen (Kohäsionskräfte).

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

x=o p,_, Dampfsättigungsdruck der gleichen Flüssigkeit bei ebener Oberfläche ' ' r UF1 _ 2o f!s

x=o p,_, Dampfsättigungsdruck der gleichen Flüssigkeit bei ebener Oberfläche ' ' r UF1 _ 2o f!s Druckp!1F p=!1a Isotherme Druckänderung Ap für die relative Volumänderung /1 VIV!1V!1p=K ; K= l/x Speziell ideale Flüssigkeit: Speziell ideales Gas: x=o X= l/p Einheit: 1 N/m 2 = 1 Pascal Pa 1 Bar bar

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Hydrostatik II - Grenzflächenerscheinungen

Hydrostatik II - Grenzflächenerscheinungen Physik A VL16 (15.11.2012) Hydrostatik II - Grenzflächenerscheinungen Kohäsion und Adhäsion Die Oberflächenspannung Benetzung und Kapillarwirkung 1 Kohäsion und Adhäsion Grenzflächenerscheinungen Moleküle

Mehr

5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009

5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009 5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009 Kapitel 1 Einführung 21.10. 1. Einführung 28.10. 2. Beispiel Intelligentes Herbizid, Miniprojekt Produkt-Analyse Kapitel 2 Grundlegende Prinzipien

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Vorlesung 25.11.2016 Kapitel 8: Ruhende Gase, Hydrodynamik, Viskosität Dr. Björn Wonsak 1 Platz für Fehlerrechnung 2 Platz für Fehlerrechnung 3 Platz für Fehlerrechnung

Mehr

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf.

[ ε] = J m Phänomene an Flüssigkeitsgrenzflächen. ε = ΔW. Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. 6.4 Phänomene an Flüssigkeitsgrenzflächen Kräfte von Nachbarmolekülen heben sich in der Flüssigkeit auf. effektive Kräfte nur in Grenzschichten. Oberflächenspannung Energie nötig, um Molekül von innen

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

M20. Oberflächenspannung

M20. Oberflächenspannung M0 Oberflächenspannung Untersucht werden Kräfte an Ober- bzw. Grenzflächen von Flüssigkeiten und ihre Abhängigkeit von der Temperatur. 1. Theoretische Grundlagen 1.1 Oberflächenspannung, Grenzflächenspannung

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

Technische Universität München Lehrstuhl I für Technische Chemie

Technische Universität München Lehrstuhl I für Technische Chemie Technische Universität München Lehrstuhl I für Technische Chemie Klausur WS 2012/2013 zur Vorlesung Grenzflächenprozesse Prof. Dr.-Ing. K.-O. Hinrichsen, Dr. T. Michel Frage 1: Es ist stets nur eine Antwort

Mehr

V7 Strömungsmechanik, Kreislaufmodell

V7 Strömungsmechanik, Kreislaufmodell V7 Strömungsmechanik, Kreislaufmodell In der Physiologie des Blutkreislaufs spielen die Funktionen des Gefäßsystems eine sehr wesentliche Rolle. Zu deren Verständnis sind Kenntnisse der physikalischen

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Biophysik für Pharmazeuten

Biophysik für Pharmazeuten Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.

Mehr

Mechanik der Kontinua Guido Schmitz,

Mechanik der Kontinua Guido Schmitz, Mechanik der Kontinua Guido Schmitz, 8.0.0 Nachdem wir uns in der vorangehenden Vorlesung mit Fluiden im uhezustand befasst haben, soll nun die Bewegung fluider Medien studiert werden. 3. Hydrodynamik

Mehr

Experimentalphysik 1. Vorlesung 3

Experimentalphysik 1. Vorlesung 3 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 Vorlesung 3 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Oberflächenspannung Dichte

Oberflächenspannung Dichte Versuch 1 1 Versuch 1A: Oberflächenspannung Dichte Physikalische Grundbegriffe Druck Schweredruck, hydrostatischer Druck, Auftrieb spezifische Oberflächenenergie, Oberflächenspannung Kapillarität Dichte

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum:

Versuch M11 - Viskosität von Flüssigkeiten. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch M11 - Viskosität von Flüssigkeiten Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Warum ist Wasser nass???

Warum ist Wasser nass??? Warum ist Wasser nass??? Beitrag für eine WDR-Wissenssendung, Januar 2011 Prof. Dr. Manfred Koch, Institut für Geotechnologie und Geohydraulik, Uni Kassel Das Gefühl, Wasser als nass auf der Haut zu spüren,

Mehr

LS6. Viskosität und Oberflächenspannung Version vom 26. Februar 2015

LS6. Viskosität und Oberflächenspannung Version vom 26. Februar 2015 Viskosität und Oberflächenspannung Version vom 26. Februar 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Grundlagen

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Strömungen. Kapitel 10

Strömungen. Kapitel 10 Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F G

Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F G 2.9.3 Flüssigkeiten Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F Abbildung 2.46: Kräfte bei Rotation von Flüssigkeiten F Z =

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Erläuterungen) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

Alle Stoffe bestehen aus Teilchen (= Moleküle) Kohäsion (= Zusammenhaltskraft)! gleiche Moleküle. Anziehungskräfte zwischen Teilchen von

Alle Stoffe bestehen aus Teilchen (= Moleküle) Kohäsion (= Zusammenhaltskraft)! gleiche Moleküle. Anziehungskräfte zwischen Teilchen von DAS TEILCHENMODELL Zustandsform Adhäsion (= Haftkraft) fest! verschiedene Moleküle flüssig gasförmig Alle Stoffe bestehen aus Teilchen (= Moleküle) Diffusion (= Durchmischung) Kohäsion (= Zusammenhaltskraft)!

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Stehende Wellen. => Ausbreitung in x-richtung mit Geschwindigkeit u. = -Ao sin[ t + kx]

Stehende Wellen. => Ausbreitung in x-richtung mit Geschwindigkeit u. = -Ao sin[ t + kx] Stehende Wellen 1) Ausbreitung in x-richtung: (x,t) = Ao sin[ t - kx] mit = 2 f und k = 2 Am ersten Maximum gilt: t kxm = /2 xm = /2k + ( /k) t => Ausbreitung in x-richtung mit Geschwindigkeit u u = dx

Mehr

Volumenstrommessung in industriellen Anwendungen

Volumenstrommessung in industriellen Anwendungen Sensoren Volumenstrommessung in industriellen Anwendungen Ralf Udally 09.07.2010 09.07.2010 Ralf Udally 1 Begriffe der Volumenstrommessung Messverfahren in der Industrie Die industrielle Anwendung Volumenstrommessung

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Versuch M9 für Physiker Oberflächenspannung

Versuch M9 für Physiker Oberflächenspannung Versuch M9 für Physiker Oberflächenspannung I. Physikalisches Institut, Raum 103 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, links) angeben bitte Versuchspartner angeben bitte

Mehr

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung

Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung Zusammenfassung der hämodynamischen Modellierung Typische medizinische Gegebenheiten und auftretende Probleme bei der Modellierung 1. Blut (Bettina Wiebe) 2. Gefäße und Kreislaufsystem (Stella Preußler)

Mehr