Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Größe: px
Ab Seite anzeigen:

Download "Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik"

Transkript

1 Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb

2 Literatur 1) T. Fließbach, Statistische Mechanik. 2) L.D. Landau, E.M. Lifschitz, Band 5, Statistische Physik. 3) K. Huang, Statistical Mechanics. 4) L.E. Reichl, A Modern Course in Statistical Mechanics. 5) R. P. Feynman, Statistical mechanics. 6) Die Skripten von P. Wölfle, G. Schön, M. Vojta

3 Zwei Hauptteile des Kurses Thermodynamik - axiomatisch, phänomenologisch Statistische Physik - mikroskopische Begründung

4 Thermodynamik Ein thermodynamisches System ist ein System mit makroskopisch vielen Freiheitsgraden. N 1 N A =6, Teilchen pro Mol Avogadro-Zahl Thermodynamischer Limes N, V, N V = const.

5 Zustandsgrößen Thermodynamischer Zustand ist vollständig bestimmt durch Angabe von wenigen makroskopischen Zustandsgrößen. Extensiv: Volumen V, Teilchenzahl N, Innere Energie U, Freie Energie F, Entropie S,... N Intensiv: Druck P, Temperatur T, Chemisches Potential µ,... N 0

6 Gleichgewicht Thermodynamisches Gleichgewicht herrscht in einem System, wenn ein stabiler, zeitunabhängiger Zustand vorliegt. Es existieren stationäre Nichtgleichgewichtszustände!

7 Zustandsgleichung Der Zusammenhang zwischen Zustandsgrößen im thermodynamischen Gleichgewicht wird Zustandsgleichung genannt. z.b. für das ideale Gas gilt PV = Nk B T U = 3 2 Nk BT Einatomiges Gas k B J K - Boltzmann-Konstante

8 Zustandsänderung Eine thermodynamische Zustandsänderung kann im Gleichgewicht nur durch Änderung der Äußeren Bedingungen herbeigeführt werden. Man unterscheidet: a) quasistatische Zustandsänderungen: langsame Änderungen, so daß das System nahe am Gleichgewicht bleibt; b) reversible Zustandsänderungen: Prozesse, die bei Zeitumkehr in den Ausgangszustand zurückführen; c) irreversible Zustandsänderung: Prozesse, die bei Zeitumkehr in endlicher Zeit nicht zum Ausgangspunkt zurüuckführen d) adiabatische Zustandsänderung: ohne Wärmeaustausch mit der Umgebung e) isotherme, isobare, isochore,... Zustandsänderungen: T =const., P =const., V =const.,...

9 Reversible Prozesse Thermodynamische Prozesse können reversibel verlaufen, d.h. quasistatisch innerhalb der Menge der Gleichgewichtszustände. Oder sie können irreversibel sein. Z.B. eine Relaxation zum Gleichgewicht ist i.a. nicht als Kurve im Phasenraum darstellbar.

10 Differenziale von Zustandsgrößen sind vollständig T Für Zustandsgrößen (z.b. Freie Energie) gilt F = F (T,V ) N = const. df = df oder df =0 V 1 2 df = F T V dt + F V T dv = adt + bdv a V = b 2 T = F V T Übung

11 Vom System geleistete Arbeit W = PdV mechanische Arbeit W = Md B W = Hd M magnetische Arbeit W - kein vollständiges Di erential Es gibt keine Zustandsgröße W

12 0 Hauptsatz Konzept der Temperatur Es gibt eine intensive Zustandsgröße "Temperatur", so dass Systeme, die miteinander im Gleichgewicht sind, denselben Wert der Temperatur haben. Definiert durch Carnot-Prozess

13 Erster Hauptsatz du = Q W + µdn Energiesatz, Äquivalenz von Arbeit und Wärme Wärme ist eine Form von Energie Q - kein vollständiges Di erential Es gibt keine Zustandsgröße Q

14 Zweiter Hauptsatz Es gibt keine thermodynamische Zustandsänderung, deren einzige Wirkung darin besteht, da (i) eine Wärmemenge einem Wärmespeicher entzogen und vollständig in Arbeit umgesetzt wird. (ii) eine Wärmemenge einem kälteren Wärmespeicher entzogen und an einen wärmeren Wärmespeicher abgegeben wird. Äquivalent: Für jedes thermodynamische System existiert eine (extensive) Zustandsgröße Entropie S. Die Entropie eines abgeschlossenen Systems nimmt nie ab. Im thermodynamischen Gleichgewicht nimmt die Entropie S ihren Maximalwert an. Wir definieren Entropie später

15 Dritter Hauptsatz lim T 0 S(T )=0 Eine Konsequenz des 3. Hauptsatzes ist, dass der absolute Nullpunkt nicht in einer endlichen Zahl von reversiblen Prozessen erreicht werden kann.

16 Carnot-Prozess Der folgende reversible Kreisprozess wird durchlaufen: 1. Das System ist in thermischem Kontakt mit dem Reservoir T2. Bei einem isothermen Prozess (hier Expansion des Gases) fließt die Wärme Q2 ins System. 2. Das System wird thermisch isoliert. Während eines adiabatischen Prozesses (hier weitere Expansion) sinkt die Temperatur von T2 nach T1. 3. Das System ist in thermischem Kontakt mit dem Reservoir T1. Bei einem isothermen Prozess (hier Kompression des Gases) fließt die Wärme Q1 aus dem System. 4. Das System wird thermisch isoliert. Während eines adiabatischen Prozesses (hier weitere Kompression) steigt die Temperatur von T1 nach T2.

17 Carnot-Prozess beim idealen Gas PV = Nk B T U = 3 2 Nk BT für 1 und 3 gilt T = const. PV = const. für 2 und 4 gilt Q =0 du = W = PdV

18 Carnot-Prozess: Wirkungsgrad du = Q W du =0 Zustandsgröße W = Q 1 + Q 2 = Q 2 Q 1 W = PdV W Q 2 =1 Q 1 Q 2 Wirkungsgrad

19 Carnot-Theorem W = Q 1 + Q 2 = Q 2 Q 1 W Q 2 =1 Q 1 Q 2 Wirkungsgrad Bei vorgegebenen Temperaturen T2 und T1 hat keine Maschine einen höheren Wirkungsgrad als die Carnot-Maschine. Beweis: Wenn es so eine Maschine gäbe, könnten wir damit die Carnot-Maschine als Wärmepumpe betreiben. Dies würde bedeuten, dass ohne Zufuhr äußerer Arbeit Wärme von der tieferen Temperatur T1 zur höheren T2 fließt.

20 Kelvin-Temperatur-Skala Alle Carnot-Maschinen mit gleichen T >,T < haben den gleichen Wirkungsgrad (T >,T < ) 1 (T o,t m )= Q 43 Q 12 = f(t o,t m ) 1 (T m,t n )= Q 65 Q 43 = f(t m,t n ) 1 (T o,t n )= Q 65 Q 12 = f(t o,t n ) Q 43 = Q 34 f(t o,t n )=f(t o,t m ) f(t m,t n ) Wir wählen f(t >,T < )= T < = Q < T > Q > Konsistent mit PV = Nk B T

21 Entropie für Carnot-Prozess gilt Q 1 T 1 + Q 2 T 2 =0 Q 1 = Q 1 < 0 für beliebige reversible Kreisprozesse gilt Q T =0 Zustandsgröße Entropie ds = Q T revers.

22 Entropie ds = Q T revers. Carnot-Prozess

23 Irreversible Prozesse für Carnot-Prozess gilt Q 1 T 1 + Q 2 T 2 =0 Q 1 = Q 1 < 0 Für reversible Prozesse Q T =0 Für irreversible Prozesse Q T < 0 Der Wirkungsgrad ist schlechter

24 Irreversible Prozesse Für reversible Prozesse Für irreversible Prozesse Q T =0 Q T < 0 ds = Q T revers. Für abgeschlossene Systeme gilt S(B) S(A) = Im allgemeinen gilt ds 0 Z B A Q T revers. Q ds T Die Entropie S ist im Gleichgewicht maximal

25 Beispiel U = 3 2 Nk BT PV = Nk B T T = const. du =0 du = Q PdV =0 ds = Q T = P T dv = Nk B dv V S Gas = Nk B ln V 2 V 1 S Gas + S Reservoir =0

26 Beispiel U = 3 2 Nk BT PV = Nk B T U =0, Q =0, W =0 T = const. S Gas = Nk B ln V 2 V 1 S Reservoir =0

27 Fundamentale Relation der Thermodynamik Q = TdS revers. Q < T ds irrevers. du = Q PdV + µdn ds = 1 T du + P T dv µ T dn ds > 1 T du + P T dv µ T dn S = S(U, V, N) 1 T = S U V,N P T = S V U,N µ T = S N U,V Für gegebene U, V, N ist S maximal im Gleichgewicht

28 Fundamentale Relation der Thermodynamik ds = 1 T du + P T dv µ T dn S( U, V, N) = S(U, V, N) d d ( S) =S = d d S( U, V, N) 1 = S U U + S V V + S N N ST = U + PV µn Euler-Gleichung

29 Thermodynamische Potentiale Innere Energie du = TdS PdV + µdn du < T ds PdV + µdn U = U(S, V, N) T = U S V,N P = U V S,N µ = U N S,V Maxwell Relationen, z.b: T V S,N = P S V,N T N S,V = µ S V,N Für gegebene S, V, N ist U minimal im Gleichgewicht

30 Thermodynamische Potentiale (Helmholtzsche) Freie Energie F = U TS= PV + µn df = SdT PdV + µdn df < SdT PdV + µdn F = F (T,V,N) S = F T V,N P = F V T,N µ = F N T,V Für gegebene T,V,N ist F minimal im Gleichgewicht

31 Thermodynamische Potentiale Enthalpie H = U + PV dh = TdS + VdP + µdn H = H(S, P, N) T = H S P,N V = H P S,N µ = H N S,V

32 Thermodynamische Potentiale (Gibbssche) Freie Enthalpie G = H TS = U + PV TS dg = SdT + VdP + µdn G = G(T,P,N) S = G T P,N V = G P T,N µ = G N T,V

33 Thermodynamische Potentiale Großkanonisches Potential = F µn = U TS µn = PV d = SdT PdV Ndµ = (T,V,µ) S = T V,µ P = V T,µ N = µ T,V Für gegebene T,V,µ ist minimal im Gleichgewicht

34 Zusammenfassung: Thermodynamische Potentiale Innere Energie U = U(S, V, N) Freie Energie F = F (T,V,N) Enthalpie H = H(S, P, N) Freie Enthalpie G = G(T,P,N) Großes Potential = (T,V,µ)

35 Response-Funktionen (lineare Antwort) Wärmekapazität Q = CdT = TdS S C x T T für V = const. gilt S = für P = const. gilt S = x F T V,N G T P,N x = V oder P C V T C P T 2 F T 2 2 G T 2 V,N P,N

36 Response-Funktionen (lineare Antwort) Kompressibilität κ y 1 V ( V ) P y y = T oder S T S 1 V 1 V V P V P T S = 1 n = 1 V n P T 2 H P 2 = 1 V S 2 G P 2 T mit n = N V und N = const.

37 Stabilität Wir betrachten 2 Teilsysteme A, B getrennt durch eine thermisch leitende, bewegliche, durchlässige Wand. A B U = U A + U B = const. V = V A + V B = const. N = N A + N B = const. S = S A + S B Gleichgewicht S maximal ds =0 T A = T B P A = P B µ A = µ B Der Austausch einer extensiven Variable zwischen 2 Teilsystemen führt dazu, dass im Gleichgewicht die konjugierte Variable in beiden Teilsystemen angeglichen ist.

38 1.Ordnung : ds =0 2.Ordnung : d (2) S<0 d (2) S = 1 2 i=a,b 2 S i U 2 i (du i ) 2 = 1 2T 2 i=a,b T i U i (du i ) 2 Konsequenz: C V = ( U T ) V,N 0 ( U ) ( 2 F ) 2 F 0 T V,N = T T 2 T analog folgt z.b.: κ T/S 0 und C X 0

39 Mischungsentropie und Gibb sches Paradoxon Entropie eines idealen Gases ( V ( U ) f 2 ) S(U, V, N) =NS 0 + Nkln N N ( S ) Beweis: V U,N = P T PV = NkT ( S ) U V,N = 1 T U = f 2 NkT

40 Mischungsentropie und Gibb sches Paradoxon Betrachten wir zwei verschiedene Gase mit N 1,N 2. Vor dem Entfernen der Trennwand sind die Volumina V 1 und V 2, danach ist es V = V 1 + V 2. x x x x x x x x V x x x V 1 x 2 x x x x x x o o o o o o o o o o o o o o o o o o o o Expansionsentropie S i = N i k ln V V i, i =1, 2 Mischungsentropie S = S 1 + S 2 > 0

41 Mischungsentropie S = S 1 + S 2 > 0 Nun enthalten und dasselbe Gas (ununterscheidbare Teilchen!!!) V 1 V 2 Gleichgewählte Anfangsbedingungen: V 1 N 1 = V 2 N 2 = V N, U 1 N 1 = U 2 N 2 = U N S = S( nach ) S( vor) = S(U, V, N) S(U 1,V 1,N 1 ) S(U 2,V 2,N 2 )=0 Gibb sches Paradoxon

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Notizen zur statistischen Physik

Notizen zur statistischen Physik Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

16. Irreversible Zustandsänderungen

16. Irreversible Zustandsänderungen 6. Irreversible Zustandsänderungen 6. Entropie und statistischer Operator Zusammenfassung der bisher betrachteten Vorschriften zur Berechnung von Gleichgewichtsmittelwerten durch Einführung des statistischen

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Statistik und Thermodynamik

Statistik und Thermodynamik Klaus Goeke Statistik und Thermodynamik Eine Einführung für Bachelor und Master STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Grundlagen der Statistik und Thermodynamik 1 1 Einleitung 3 2 Grundlagen der

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Response-Funktionen Bisher haben wir vorwiegend Eigenschaften des thermodynamischen Gleichgewichts untersucht. Diese stellen aber nur einen beschränkten Ausschnitt der interessierenden Phänomene dar. Zur

Mehr

Thermodynamik und Statistische Mechanik WS2014/2015

Thermodynamik und Statistische Mechanik WS2014/2015 Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: garcia@physik.uni-kassel.de Vorlesungsübersicht 1) Einführung: -Makroskopische

Mehr

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Thermoynamik un Statistische Physik (Kompenium Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 14. Februar 2009 1 Inhaltsverzeichnis Statistische Operatoren 3 Zustäne 3 Darstellung

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

2 Die Hauptsätze der Thermodynamik

2 Die Hauptsätze der Thermodynamik Woche 1 1 Prolegomena Thermodynamik: Alte, klassische Disziplin der theoretischen Physik, jedoch kein Teil der Klassischen Physik. Sie trifft auf alle physikalischen Systeme zu, vorausgesetzt dass sie

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Reaktionsenthalpien Satz von Hess adiabatische Zustandsänderungen: ΔQ = 0 Entropie S: Δ S= Δ Q rev (thermodynamische Definition) T 2. Hauptsatz

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermisches Gleichgewicht und nullter Hauptsatz 3 2 Arbeit, Wärme und erster Hauptsatz

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen Systemen, thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper ist im Gleichgewicht,

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4.1 Formulierung des 2. Hauptsatzes Es ist unsere Alltagserfahrung, dass man physikalischen Prozessen in der Regel eine natürliche Zeitabfolge

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

6.1 Gleichgewichts- und Stabilitätsbedingungen

6.1 Gleichgewichts- und Stabilitätsbedingungen 4. Woche 6.1 Gleichgewichts- und Stabilitätsbedingungen 6.1.1 Extremaleigenschaften der Potentiale Die Hauptsätze der Thermodynamik lauten du δq pdv (das Erste) und (das Zweite). Da (für dn 0) δq TdS gilt

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 21. 05. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 21. 05.

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Übungen zur Theoretischen Physik F SS 08. ds + dv + dn = TdS pdv + µdn. w α ln(w α )

Übungen zur Theoretischen Physik F SS 08. ds + dv + dn = TdS pdv + µdn. w α ln(w α ) Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physi F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 12 1. Alle thermodynamischen Zustandgrössen,

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

4 Entropie. 4.1 Der Zweite Hauptsatz

4 Entropie. 4.1 Der Zweite Hauptsatz 4 Entropie 4.1 Der Zweite Hauptsatz In vereinfachter Form besagt der Zweite Hauptsatz(II. HS), daß Wärme nie von selbst von niedriger zu höherer Temperatur fließen kann. Aus dieser schlichten Feststellung

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale

8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale 8.3 Ausgleichsprozesse in abgeschlossenen und nichtabgeschlossenen Systemen - thermodynamisches Gleichgewicht und thermodynamische Potentiale Rückschau: Mechanisches Gleichgewicht und Stabilität Ein Körper

Mehr

Statistische Thermodynamik I

Statistische Thermodynamik I Statistische hermodynamik I Universität Bern FS 2017 R SUSANNE REFFER Institut für theoretische Physik Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 2 1 Einführung in die klassische hermodynamik 4

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Theoretische Physik IV

Theoretische Physik IV Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1

Mehr

Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik Grundlagen Temperatur und Zustandsgleichungen

Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik Grundlagen Temperatur und Zustandsgleichungen Inhaltsverzeichnis Teil I Grundlagen der Thermodynamik 1 Grundlagen... 3 1.1 Druck und mechanisches Gleichgewicht... 4 1.2 Thermodynamische Systeme... 5 1.3 Arbeit... 8 1.3.1 Arbeit in der Mechanik...

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U.Nickel Vll Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung l 1.2 Materie ' 2 1.3 Energie

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik

Der Entropiebegriff in der Thermodynamik und der. Statistischen Mechanik Der Entropiebegriff in der Thermodynamik und der Statistischen Mechanik Kurt Schönhammer Institut für Theoretische Physik Universität Göttingen Inhaltsangabe Zur historischen Enwicklung der Thermodynamik

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik Kapitel 1 Die absolute emperaturskala und der 3. Hauptsatz der hermodynamik 1.1 Die allgemeine Definition der absoluten emperatur Bisher haben wir die emperatur über die thermische Zustandsgleichung pv

Mehr