Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema."

Transkript

1 Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur Schema Beispiel Laufzeit Sicherheit 2

2 Nachricht Hashwert Prinzip der Digitalen Signatur secret Geheimer Schlüssel Nachricht Signatur public Öffentlicher Schlüssel Signatur Nachricht + Signatur unsecure channel (Internet) Bob Alice Hashwert? = Entschlüsselte Signatur Allgemeines Signaturschema (P, A, K, S, V) P: Menge von Nachrichten A: Menge von Signaturen K: Menge von Schlüsseln S: Menge von Funktionen, sodass es für alle k K ein sign k S gibt mit: V: Menge von Funktionen, sodass es für alle k K ein verify k V gibt mit: sign k : P A verify k : P x A {true,false} Für alle Nachrichten m P und jede Signatur y A muss gelten: verify(m,y) = {y = sign(m)} Ein Tupel (m,y), m P, y A, heißt signierte Nachricht mit Anhang 4

3 Hash Funktionen Ziele: Nachrichtengröße verkleinern: H: {0,1} * {0,1} t Einfach: h = H(m) zu berechnen Nicht einfach: Ein m zu gegebenem h zu berechnen Sicherheit bezüglich: Kollisionsresistenz Urbild (Preimage) 2. Urbild (2 nd -Preimage) Beispiele: SHA-1 (160 bit) MD5 (128 bit) 5 Ordnung und Generator Ein Element α Z p* mit p prim, besitzt die Ordnung n, wenn n die kleinste natürliche Zahl ist für die gilt: α n 1 mod p Ein erzeugendes Element α Z p* mit p prim, kann durch potenzieren jedes Element aus Z p* erzeugen: Z p * = <α> = {α i 0 i p-2} 6

4 Diskreter Logarithmus Gegeben: Multiplikative Gruppe Z p * mit p prim α Z p* mit der Ordnung n Ein Element β <α> Problem: Finde die Zahl a mit 0 a < n und α a = β mod p Anders formuliert: Berechne a = log α β mod p NP-vollständig? Algorithmus Baby-Step Giant-Step (Shanks) Pohlig-Hellman Laufzeit O( p) O( c q) Absicherung Großes p wählen Großen Primteiler in p-1 Index calculus ( 1 o(1)) ln plnln p O ( e + ) Großes p wählen 7 ElGamal Schlüsselgenerierung Z p* mit p prim und p Erzeugendes Element α Z p * Geheimer Schlüssel a Z p* beliebig Öffentlicher Schlüssel β = α a mod p k = (p, α, a, β) K Öffentlich: (p, α, β) Geheim: a 8

5 ElGamal Signieren & Verifizieren Signieren einer Nachricht m: Verifizieren von (m, (γ, δ)): Zufällig k Z * p-1 γ = α k mod p δ = k -1 (H(m) - aγ) mod p-1 Sende (m, (γ, δ)) Korrekt, wenn α H(m) = β γ γ δ mod p β γ γ δ = α aγ α kδ = α aγ + h(m) - aγ = α h(m) (mod p) Erinnerung: Erzeugendes Element α Z p * β = α a 9 Warum die Schnorr Signatur? Einsatzgebiet: Schwache Rechner, schmale Bandbreite Kommunikation Smartcards Terminals Geforderte Eigenschaften: Kleine Signaturgröße Geringer Signieraufwand Hohe Sicherheit Schnorr Authentifizierungs Protokoll Gleiches Prinzip 10

6 Schnorr Schlüsselgenerierung Z p* mit p prim und p Primzahl q mit q und q p-1 α: q-te Wurzel von 1 mod p Mit einem erzeugenden Element α 0 Z p* wähle α = α 0 (p-1)/q mod p Geheimer Schlüssel a Z p* beliebig Öffentlicher Schlüssel β = α a mod p k = (p, q, α, a, β) K Öffentlich: (p, q, α, β) Geheim: a 11 Schnorr Signieren & Verifizieren Signieren einer Nachricht m: Verifizieren von (m, (γ, δ)): 1. Zufälliges k Z * q 2. x = α k mod p 3. γ = H(m x) 4. δ = k + aγ mod q 5. Sende (m, (γ, δ)) 1. x = β -γ α δ mod p 2. Korrekt, wenn H(m x ) = γ x = β -γ α δ = α -aγ α k + aγ = α -aγ + k + aγ = α k = x (mod p) Erinnerung: α Z p* mit Ordnung q β = α a 12

7 Schnorr Effizienz Schlüsselerzeugung: α = α (p-1)/q 0 mod p lange O((log p)³) β = α a mod p lange O((log p)³) Signieren: x = α k mod p lange O((log p)³) γ = H(m x) sehr kurz O(h) δ = k + aγ mod q kurz O((log q)²) Verifizieren: x = β -γ α δ mod p lange O((log p)³) H(m x ) = γ sehr kurz O(h) 13 Parameterwahl Sicherheit Total break Selektive Fälschung Andere Sicherheitsaspekte nicht bekannt Da die Nachricht m zusammen mit dem zufälligen k gehasht wird, wird ein Angriffpunkt aus ElGamal eleminiert [1] Per existentieller Fälschung unter adaptivly chosen message Angriff kann der d-log in der Untergruppe gelöst werden [3] 14

8 Security Complexity 2 t Schnorr Parameter Damit Signaturen die Sicherheit 2 t besitzt: q 2 2t Sicherheit vor Baby-Step Giant-Step 2 t e ln plnln p Sicherheit vor Index calculus Vorgeschlagene Mindestgrößen: t = 72 q p Total break Signaturschema ist gebrochen, wenn: Privater Schlüssel berechnet werden kann Beliebige Nachrichten signiert werden können Öffentlich: (p, q, α, β) Um geheimen Schlüssel zu bekommen, β = α a mod p lösen a = log α β mod p muss berechnet werden Bisher nicht in polynomieller Zeit lösbar 16

9 Selektive Fälschung Signieren einer beliebigen Nachricht m: 1. Zufällig k Z * q 2. x = α k mod p 3. γ = h(m x) a. δ = k + aγ mod q b. δ = log α (x β γ ) mod p Erinnerung verify(m,(γ,δ)): x = β -γ α δ mod p return γ = h(m,x) Da a unbekannt ist, δ raten. W keit für korrekte Signatur ca. 1/q Oder: d-log mod p berechnen 17 Schnorr ElGamal, RSA Schema Schnorr ElGamal RSA Signatur-Länge (mod: 512 bit) γ: 72 bit δ: 140 bit γ: 512 bit δ: 512 bit y: 512 bit #Mult mod p ** [1] sign: verify: 228 sign: 750 verify: >2 Laufzeit (mod: 1024 bit) [5] KeyGen*: 6500 ms Sign*: 7 ms Verify*: 27 ms KeyGen: 1100 ms Sign: 43 ms Verify: 0.6 ms Schnorr und ElGamal: randomisiert RSA: deterministisch * Laufzeit vom vergleichbaren DSA ** Nicht-optimierte Laufzeiten! 18

10 Vorteile: Schnorr auf einen Blick Kleine Signaturgröße Effiziente Signierung Wahrscheinlich ähnlich sicher wie ElGamal Nachteile: (Un)Sicherheit nicht bewiesen Berechnungen in Untergruppe der Größe q Sicherheitsaspekt nicht bekannt Einsatzgebiete: Z. B. Smartcards 19 Quellen [1] C. P. Schnorr, Efficient Signature Generation by Smart Cards. Journal of Cryptography 4(3): , [2] D. R. Stinson, Cryptography Theory and Practice 2nd Ed., CRC Press, [3] D. Pointcheval, J. Stern, Security Proofs for Signature Schemes, Advances in Cryptology, Proc. of Eurocrypt '96, pages , [4] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, [5] M.J.Wiener, "Performance Comparison of Public-Key Cryptosystems", RSA CryptoBytes, Volume 4, Number 1,

Digitale Signaturen Einführung und das Schnorr Signaturschema

Digitale Signaturen Einführung und das Schnorr Signaturschema Digitale Signaturen Einführung und das Schnorr Signaturschema Patrick Könemann paphko@upb.de Proseminar: Public-Key Kryptographie Prof. Dr. rer. nat. J. Blömer Universität Paderborn 27. Januar 2006 Abstract

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

Digitale Signaturen. Kapitel 8

Digitale Signaturen. Kapitel 8 Digitale Signaturen Kapitel 8 Handschriftliche vs. digitale Unterschrift digitalisieren mp3 Unterschrift digitale Unterschrift von D.H. für mp3? (Scannen und als Bitmap anhängen z.b. zu leicht zu fälschen)

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle Digitale Unterschriften Auch digitale Signaturen genannt. Nachrichten aus Nachrichtenraum: M M. Signaturen aus Signaturenraum: σ S. Schlüssel sind aus Schlüsselräumen: d K 1, e K 2. SignierungsverfahrenS

Mehr

Digitale Signaturen - Signatur Systeme

Digitale Signaturen - Signatur Systeme Digitale Signaturen - Signatur Systeme Anne Baumgraß Christian Aethner Kryptographie 14. Juli 2005 A.Baumgraß, C.Aethner (Kryptographie) Digitale Signaturen 14. Juli 2005 1 / 46 Inhalt 1 Grundlagen 2 Digitale

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16 1 / 16 06. 06. 2011 2 / 16 Übersicht Motivation Verfahren 3 / 16 Motivation Relativ sicher, da auf der Schwierigkeit mathematischer Probleme beruhend (z.b. Diskreter Logarithmus, Faktorisieren) Schnellere

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle Orientierung Haben bisher im Public-Key Bereich nur Verschlüsselung betrachtet. Haben dafür geeignete mathematische Strukturen und ihre Eigenschaften diskutiert. RSA, Rabin: Restklassenringe modulo n,

Mehr

Public Key Kryptographie

Public Key Kryptographie 4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Andere Protokolle für digitale Unterschriften Wintersemester 2006/2007 Gliederung 1 Provably Secure Signature Schemes Lamport Signature Scheme Full Domain Hash 2 Undeniable Signatures 3 Fail-stop Signature

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen

Mehr

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Kryptographische Systeme auf Basis des diskreten Logarithmus

Kryptographische Systeme auf Basis des diskreten Logarithmus Kryptographische Systeme auf Basis des diskreten Logarithmus Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Potenzieren..................................... 3 1.2 Logarithmieren...................................

Mehr

Der diskrete Logarithmus und der Index-Calculus

Der diskrete Logarithmus und der Index-Calculus Der diskrete Logarithmus und der Index-Calculus Uli Schlachter 20. Juli 2012 Uli Schlachter Index Calculus 20. Juli 2012 1 / 26 Inhalt 1 Motivation 2 Der diskrete Logarithmus 3 Der Index-Calculus 4 Implementierung

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 3: Hashfunktionen und asymmetrische Verfahren Inhalt Hashfunktionen Asymmetrische kryptographische Verfahren Harald Baier Datensicherheit

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Verteilte Kyroptographie

Verteilte Kyroptographie Verteilte Kyroptographie Klassische kryptographische Verfahren Kryptographische Hash-Funktionen Public-Key-Signaturen Verteilte Mechanismen Schwellwert-Signaturen Verteilt generierte Zufallszahlen Verteilte

Mehr

Hintergründe zur Kryptographie

Hintergründe zur Kryptographie 3. Januar 2009 Creative Commons by 3.0 http://creativecommons.org/licenses/by/3.0/ CAESAR-Chiffre Vigenère CAESAR-Chiffre Vigenère Einfache Verschiebung des Alphabets Schlüsselraum: 26 Schlüssel Einfaches

Mehr

Blinde Signaturen, geheime Abstimmungen und digitale Münzen

Blinde Signaturen, geheime Abstimmungen und digitale Münzen Blinde Signaturen, geheime Abstimmungen und digitale Münzen Claus Diem Im Wintersemester 2017 / 18 Crypto 1982 Geheime Abstimmungen Eine geheime Abstimmung Problem. Eine Gruppe von Personen will per Brief

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie

Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie Anhang IV zur Vorlesung Kryptologie: Public-Key Kryptographie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

Einführung in die Kryptographie

Einführung in die Kryptographie Ä Johannes Buchmann Einführung in die Kryptographie Dritte, erweiterte Auflage Inhaltsverzeichnis 1. Einleitung 1 2. Ganze Zahlen 3 2.1 Grundlagen 3 2.2 Teilbarkeit 4 2.3 Darstellung ganzer Zahlen 5 2.4

Mehr

MAC Message Authentication Codes

MAC Message Authentication Codes Seminar Kryptographie SoSe 2005 MAC Message Authentication Codes Andrea Schminck, Carolin Lunemann Inhaltsverzeichnis (1) MAC (2) CBC-MAC (3) Nested MAC (4) HMAC (5) Unconditionally secure MAC (6) Strongly

Mehr

Gruppenbasierte Kryptographie. ElGamal Sicherheit. Drei Probleme. ElGamal Verschlüsselung. Benutzt zyklische Gruppen von (fast) Primzahlordnung:

Gruppenbasierte Kryptographie. ElGamal Sicherheit. Drei Probleme. ElGamal Verschlüsselung. Benutzt zyklische Gruppen von (fast) Primzahlordnung: Gruppenbasierte Kryptographie Benutzt zyklische Gruppen von (fast) Primzahlordnung: G = g und #G = l = cl 0 mit c klein und l 0 prim. b G : x Z : b = g x. Das Element x heißt diskreter Logarithmus von

Mehr

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch logix@foobar.franken.de KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002 FH Schmalkalden Fachbereich Informatik http://www.informatik.fh-schmalkalden.de/ 1/17 Kolloquium 21. März 2002 Entwicklung eines JCA/JCE API konformen Kryptographischen Service Providers für HBCI unter

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.05.2014 1 / 32 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign

Mehr

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde 6.3 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion 2.4 Hash-Prüfsummen Mit einer Hash-Funktion wird von einer Nachricht eine Prüfsumme (Hash-Wert oder message digest) erstellt. Diese Prüfsumme besitzt immer die gleiche Länge unabhängig von der Länge der

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische

Mehr

Was ist Kryptographie

Was ist Kryptographie Was ist Kryptographie Kryptographie Die Wissenschaft, mit mathematischen Methoden Informationen zu verschlüsseln und zu entschlüsseln. Eine Methode des sicheren Senden von Informationen über unsichere

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Das TCP/IP-Schichtenmodell Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP IP IP IP PPP

Mehr

Message Authentication Codes

Message Authentication Codes Message Authentication Codes Martin Schütte 30. Nov. 2004 Gliederung Denitionen Grundlegende Begrie Konstruktion von MACs häug benutzte MACs Einschätzung der Sicherheit Bedingungslos sichere MACs zusätzliche

Mehr

10. Woche: Elliptische Kurven Skalarmultiplikation und Anwendungen. 10. Woche: Elliptische Kurven - Skalarmultiplikation und Anwendungen 212/ 238

10. Woche: Elliptische Kurven Skalarmultiplikation und Anwendungen. 10. Woche: Elliptische Kurven - Skalarmultiplikation und Anwendungen 212/ 238 10 Woche: Elliptische Kurven Skalarmultiplikation und Anwendungen 10 Woche: Elliptische Kurven - Skalarmultiplikation und Anwendungen 212/ 238 Skalarmultiplikation Eine wichtige Fundamentaloperation in

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Das Knapsack-Kryptosystem

Das Knapsack-Kryptosystem Das Knapsack-Kryptosystem Frank Hellweg 21. Februar 2006 1 Einleitung Das Knapsack-Kryptosystem wurde 1978 von den amerikanischen Kryptologen Martin Hellman und Ralph Merkle entwickelt [MH78] und war eines

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

Diskrete Logarithmen

Diskrete Logarithmen Westfälische Wilhelms-Universität Münster Ausarbeitung Diskrete Logarithmen im Rahmen des Seminars Multimedia und Graphen Oliver Liebsch Themensteller: Prof. Dr. Herbert Kuchen Betreuer: Dipl.-Wirt.Inform.

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Digitale Signaturen. Kapitel 10 p. 178

Digitale Signaturen. Kapitel 10 p. 178 Digitale Signaturen Realisierung der digitalen Signaturen ist eng verwandt mit der Public-Key-Verschlüsselung. Idee: Alice will Dokument m signieren. Sie berechnet mit dem privaten Schlüssel d die digitale

Mehr

AES und Public-Key-Kryptographie

AES und Public-Key-Kryptographie Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert

Mehr

Überblick Kryptographie

Überblick Kryptographie 1 Überblick Kryptographie Ulrich Kühn Deutsche Telekom Laboratories, TU Berlin Seminar Kryptographie 19. Oktober 2005 2 Übersicht Was ist Kryptographie? Symmetrische Kryptographie Asymmetrische Kryptographie

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Ideen und Konzepte der Informatik Kryptographie

Ideen und Konzepte der Informatik Kryptographie Ideen und Konzepte der Informatik Kryptographie und elektronisches Banking Antonios Antoniadis (basiert auf Folien von Kurt Mehlhorn) 4. Dec. 2017 4. Dec. 2017 1/30 Übersicht Zwecke der Kryptographie Techniken

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Kryptographie und Kryptoanalyse Literaturhinweise

Kryptographie und Kryptoanalyse Literaturhinweise Kryptographie und Kryptoanalyse Literaturhinweise 21. April 2015 Begleitbuch inkl. Übungen und Musterlösungen: [1] Auswahl weiterer Bücher: [5, 10, 25, 30, 41, 45] Schlüsselaustausch: [9] Sicherheit kryptographischer

Mehr

Technikseminar SS2012

Technikseminar SS2012 Technikseminar SS2012 ECC - Elliptic Curve Cryptography Kryptosysteme basierend auf elliptischen Kurven 11.06.2012 Gliederung Was ist ECC? ECC und andere Verfahren Diffie-Hellman-Schlüsselaustausch Funktionsweise

Mehr

KRYPTOSYSTEME & RSA IM SPEZIELLEN

KRYPTOSYSTEME & RSA IM SPEZIELLEN KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)

Mehr

Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen

Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen Das TCP/IP-Schichtenmodell Session 2 / 1 Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP

Mehr

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Dozenten: Björn Kaidel Vorlesung Digitale Signaturen im Wintersemester 2017/-18 Socrative-Fragen aus der Vorlesung vom 17.11.2017 1 Quiz 1:

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VII Lattice-based Cryptography Kryptographie in Gittern Masterseminar Sebastian Rettenberger Betreuer: Dr.

Mehr

ElGamal Verschlüsselungsverfahren (1984)

ElGamal Verschlüsselungsverfahren (1984) ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z

Mehr

Digitale Signaturen in Theorie und Praxis

Digitale Signaturen in Theorie und Praxis Digitale Signaturen in Theorie und Praxis Sicherheitstage SS/05 Birgit Gersbeck-Schierholz, RRZN Gliederung Sicherheitsziele der digitalen Signatur Digitale Zertifikate in der Praxis Kryptografische Techniken

Mehr

NTRU: Effiziente gitterbasierte Kryptographie

NTRU: Effiziente gitterbasierte Kryptographie NTRU: Effiziente gitterbasierte Kryptographie Christoph Ludwig 8. April 2002 TECHNISCHE UNIVERSITÄT DARMSTADT Institut für Theoretische Informatik TU Darmstadt; Institut für Theoretische Informatik 1 Übersicht

Mehr