Kapitel 4. Versuch 415 T-Flipflop

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4. Versuch 415 T-Flipflop"

Transkript

1 Kapiel 4 Versuch 415 T-Flipflop Flipflops, die mi jeder seigenden oder mi jeder fallenden Takflanke in den engegengesezen Zusand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können aus anderen Flipflops aufgebau werden. In der ersen Zeile sind einfache T-Flipsflops dargesell (ohne Enable-Eingang). Sie besizen nur einen Takeingang. Das (linke) D-FF oggle, wenn man den Q -Ausgang auf den D-Eingang rückkoppel. Rechs is ein kombinieres RS-JK- Flipflop abgebilde. Um ein reines JK-Flipflop zu erhalen, werden die S und R Eingänge auf 1 geleg. Das JK-Flipflop oggle, wenn man J = K = 1 sez. In der zweien Zeile sind Enwürfe für T-Flipflops mi Enable-Eingang dargesell. Der Enable-Eingang leg fes, ob das Flipflop oggle (seinen Zusand änder) oder speicher (seinen Zusand nich veränder). Erzeugen Sie in der Daei v415 aus den Schalungen der 2. Zeile zwei Makros T-FF D und T- FF JK. Überlegen sie, welches Gaer beim D-Flipflop eingesez werden muss bzw. wie J und K mi Enable verbunden werden müssen. Tesen Sie die Makros mi der uneren Schalung. Bei welchem Wer für Enable ogglen die Schalungen, und bei welcher Flanke? Falls erforderlich, modifiziern Sie beide Schalungen so, dass sie zum einen bei Enable = 1 ogglen, und zum anderen (mi ggfs. kleiner Verögerung) auf der aufseigenden Flanke schalen. 4-1

2 Versuch 420 Einfacher asynchroner Zähler (Ripple Couner) In dem aufzubauenden Zähler schalen ( kippen ) die T-Flipflops nacheinander, das erse (linke) Flipflop bei jedem Tak, das zweie jeden zweien, das drie jeden vieren usw. Die Takflanken wandern wie eine Wellenfron von links nach rechs durch die Schalung (Ripple: kleine Welle). Vervollsändigen Sie die Schalung in der Daei v420, um das gefordere Verhalen zu erreichen. Der Zähler soll nach dem Einschalen 0000 anzeigen und dann hochzählen. Beachen Sie, dass das niederwerigse Bi links seh. Ergänzen Sie ab dem Zählersand 0000 das nachfolgende Timing. Nehmen Sie an, dass die Verzögerungszei eines Flipflops ewa einem mm auf der Achse ensprich. Jedes Flipflops soll die gleiche Verzögerungszei haben. Die leeren Diagramme sehen von oben nach unen für die Flipflops von links nach rechs. Das oberse Diagramm sell den Tak (Leerase) dar. 4-2

3 Versuch 425 Synchroner Zähler Bei einem synchronen Zähler werden alle Flipflops gleichzeiig geake. In der Daei v425 finden sie die Grundschalung eines synchronen 4-Bi Zählers mi T-Flipflops. Für alle Zähler gil: Das FF an der niederwerigsen Selle soll jeden Tak zählen (ogglen). Das FF an der zwei-niederwerigsen Selle soll jeden zweien Tak zählen. Das FF an der dri-niederwerigsen Selle soll jeden vieren Tak zählen. Allgemein: Das FF an der n-en Selle (beginnend mi n=0 für die erse niederwerigse Selle) soll jeden 2 n -en Tak zählen. Simulaorbeding zeig der Zähler nach Einschalen der Simulaion lauer Einsen an und fäll ers nach der ersen Takflanke in den Anfangszusand (lauer Nullen) zurück. Wir berachen ers ab diesem Zeipunk das Verhalen des Zählers. Das erse FF soll jeden Tak zählen. Das erreichen Wir, indem Wir den Enable-Eingang konsan auf 1 legen. Das zweie FF soll zählen, wenn das erse den Zusand 1 ha. Das erreichen wir, indem wir den Enable-Eingang mi dem Ausgang des ersen FFs verbinden. Das drie FF soll nur dann zählen, wenn die ersen beiden 1 anzeigen. Wie kann man das erreichen? Ergänzen Sie obige Schalung zu einem voll funkionsfähigen synchronen Zähler. 4-3

4 Theorie 430 Definiion und Realisierung eines endlichen Auomaen Ein absraker Auoma is definier als Tupel der folgenden Form: (E, A, Z, δ, ) Wiederholen sie anhand ihrer Unerlagen zu der Vorlesung Rechnersrukuren das Kapiel Auomaen. Erklären sie mi eigenen Woren die oben angegebenen fünf Komponenen und ihr Zusammenspiel. Machen sie sich den Unerschied zwischen einem Mealy und einem Moore Auomaen klar. Vollziehen sie insbesondere anhand der Übungen zu RS den Schalwerkenwurf vom Auomaenmodell bis zur Gaerschalung nach. Die nachfolgende Schalung sell eine Realisiserung eines Auomaen auf Gaerebene dar. Machen sie sich die Schalung versändlich und beanworen sie dabei die folgenden Fragen: 1. Wie wurden die einzelnen Komponenen des Auomaen realisier? 2. Wie gross sind die Kardinaliäen der Mengen des Auomaen maximal? E A Z 3. Um welchen Auomaenyp handel es sich? Woran erkenn man das? Mealy Moore 4. Wie is das dynamische Verhalen (die Arbeisweise) eines Mealy-Auomaen? Wie wurde dies in der Schalung umgesez? Welche Laufzeien und Verzögerungen sind zu beachen? 4-4

5 Realisierung eines Auomaen auf Gaerebene: 4-5

6 Versuch 435 Enwurf eines synchronen Vorwärs-Rückwärszählers In diesem Versuch sollen Sie enen Vorwärs Rückwärszähler enwerfen, der nach dem folgendem Prinzip arbeie. Spezifikaion: Der Zähler soll drei Eingänge und zwei Ausgänge haben: - einen Takeingang mi dem Namen Clock, - einen Seuereingang mi dem Namen Coun, - einen Seuereingang mi dem Namen Down, - zwei Ausgänge mi den Namen z 0 und z 1. Die Schalung soll jeden am Takeingang eingegebenen Impuls modulo 4 zählen und den Zählersand als Binärzahl an den Ausgängen z 1 und z 0 ausgeben. Im Grundzusand, d.h. beim Einschalen des Takes soll die Schalung sich im Zählersand z 1 z 0 = 00 befinden. - Wenn am Seuereingang Coun = 0 eingegeben wird, soll die Schalung nich zählen. - Wenn am Seuereingang Coun = 1 eingegeben wird, soll die Schalung zählen. - Wenn am Seuereingang Down = 0 eingegeben wird, soll die Schalung vorwärs zählen: [z 1, z 0 ] = [0, 0], [0, 1], [1, 0], [1, 1], [0, 0], [0, 1],... - Wenn am Seuereingang Down = 1 eingegeben wird, soll die Schalung rückwärs zählen: [z 1, z 0 ] = [0, 0], [1, 1], [1, 0], [0, 1], [0, 0], [1, 1],... Die Schalung soll mi zwei Exemplaren eines EWB inernen Flipflops realisier werden. Die mieinander verbundenen Takeingänge der beiden Flipflops bilden den Takeingang der gesamen Schalung: Das verwendee EWB inerne JK Flipflop ha die folgende Zusandsübergangsabelle: Q1() Q1( + 1) J K X 1 X X 1 X 0 Die Versuchsbeschreibung wird auf den nächsen beiden Seien forgesez. 4-6

7 Die zu enwerfende Schalung soll folgende Form haben: Coun Down kombinaorische Schalung z 0 z 1 Q1 0 = z 0 () Q1 1 = z 1 () J 0 = z 0 ( + 1) K 0 J 1 = z 1 ( + 1) K 1 Tak Die Zusände des zu enwerfenden Auomaen sind idenisch mi den Ausgangszusänden, d.h. die Ausgabefunkion is die idenische Abbildung. [0,0], [0,1], [1,0], und [1,1] sind die vier möglichen Zählerzusände des Auomaen. Es gil: [0,0] = S 0 [0,1] = S 1 [1,0] = S 2 [1,1] = S 3 Auomaenheoreischer Enwurf des Zählers Ergänzen sie den Auomaengraphen: S 0 [Coun, Down] / [z 1, z 0 ] 0 X / 0 0 S 3 S 1 S 2 Man kann in diesem Fall die Zusandsübergangsabelle des gesamen zu enwerfenden Auomaen sofor hinschreiben (vervollsändigen sie die Tabelle.): 4-7

8 Coun Down Zusände S() S(+1) S 0 S 0 S 1 S 1 S 2 S 2 S 3 S 3 Codier Q1 1 (+1) J 1 K 1 Q1 0 (+1) J 0 K Enwerfen und minimieren Sie nun die Anseuerungen der Flipflops mi Hilfe von KV Diagrammen. d d J1 c c K1 Q1 0 () Q1 1 () Q1 0 () Q1 1 () J0 K0 Bauen Sie dann ihren Schalungsenwurf in der Daei v435 auf. Ergänzen Sie ihre Schalung durch eine Clear Schalung, die es ermöglich, den Grudzusand Q1 0 = 0; Q1 1 = 0 mi einem Tasenschaler einzusellen, und zwar ohne Takflanke. Hinweis: Die R- und S-Eingänge des Flipflops haben höhere Prioriä gegenüber den J- und K-Eingängen und sind nich akgeseuer. 4-8

9 Versuch 445 Asynchroner Zähler modulo n Um das Prinzip des binär zählenden, aus T Flipflops aufgebauen asynchronen Ripple Couners zu versehen, bedarf es nich der Auomaenheorie. Wenn ein nach diesem Prinzip aus m T Flipflops aufgebauer Zähler mi dem Zählersand Null (00...0) beginn, spring er nach 2 m Zählschrien wieder auf Null, d.h. er wird nach 2 m Zählschrien zyklisch, er zähl modulo 2 m. Der grösse Zählersand beräg 2 m -1. Man kann ohne auomaenheoreischen Enwurf auch einen asynchronen Ripple Couner enwickeln, der modulo n zähl, wobei n 2 m is. Sie finden in der Daei v445 eine Gaerschalung (d.h. eine kombinaorische Schalung), die einen aus vier T Flipflops aufgebauen asynchronen Ripple Couner modulo 12 zählen läss. Die Gaerschalung soll eine Clear Schalung sein, die den Zähler beim Zählersand 12 auf Q1 0 = Q1 1 = Q1 2 = Q1 3 = 0 sez. Die Schalung soll inuiiv, d.h. ohne algorihmisches Enwurfsverfahren gefunden werden. Gehen Sie davon aus, dass nach dem Einschalen für alle Flipflops Q=0 gil. Gaer? Tak Clear - Leiung Ergänzen Sie den Zähler um die von Ihnen enworfene Gaerschalung. Erklären Sie das Verhalen an der krisichen Selle, also kurz vor und beim Zurücksezen. Def. Eine generische modulo-n Schalung is ein Bauplanschema mi einem Parameer n, der angib, bei welchem Zählerzusand die Schalung wieder auf 0 gesez werden soll. Wie sieh eine generische modulo-n Schalung aus mi b k-1 b 0 mi b i {0,1}sei die Beragszahldarsellung von n? Dasselbe Verfahren kann man bei synchronen Zählern modulo n anwenden. 4-9

Kapitel 4. Versuch 415 T-Flipflop

Kapitel 4. Versuch 415 T-Flipflop Kapitel 4 Versuch 415 T-Flipflop Flipflops, die mit jeder steigenden oder mit jeder fallenden Taktflanke in den entgegengesetzten Zustand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können

Mehr

Trigger- Trigger- Trigger- Triggerereignis ereignis ereignis ereignis

Trigger- Trigger- Trigger- Triggerereignis ereignis ereignis ereignis 5.2.3. Enwurf synchroner Auomaen 5.2.3.1. Grundlagen Mi der Einführung eines (periodischen) Taksignals kann die oben angeführe Auomaendefiniion ewas modifizier werden. Wir berachen hier Auomaen aus mi

Mehr

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form.

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form. Sequenielle Schalungen 9 Charakerisische Gleichungen Eine charakerisische Gleichung beschreib die Arbeisweise eines Flipflops in schalalgebraischer Form. n is ein Zeipunk vor einem beracheen Tak. is ein

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

11 Sequentielle Schaltungen

11 Sequentielle Schaltungen 11 Sequenielle Schalungen E 1 E 2 Kombinaorische Schalung A 2 A=f(E) E n A 1 A m E 1 A 1 E 2 Sequenielle A 2 Schalung E n A=f(E, Z) Z'=g(E, Z) A m Abbildung 1: Kombinaorische / Sequenielle Schalung Z'

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 4. Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen 4.2 egiser 22 Technische Informaik 2 Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen Bei chalnezen exisier kein

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

D Sequentielle Logik D.1 D.2. 1 Einordnung. Problemorientierte Sprache. Assemblersprache. Betriebssystem. ISA (Instruction Set Architecture)

D Sequentielle Logik D.1 D.2. 1 Einordnung. Problemorientierte Sprache. Assemblersprache. Betriebssystem. ISA (Instruction Set Architecture) equenielle Logik. Einordnung Ebene 6 Ebene 5 Ebene 4 Problemorieniere prache Assemblersprache Beriebssysem Ebene 3 IA (Insrucion e Archiecure) Ebene 2 Ebene Ebene Mikroarchiekur igiale Logik Physik.2 2

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d)

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d) Digialechnik 2 Grundschalungen der Digialechnik BFH-I-Biel/Bienne (Version v.d) oland Schäfer Inhalsverzeichnis Kombinaorische Schalungen. Muliplexer/Demuliplexer................... Muliplexer (Muliplexers).............

Mehr

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 11 AM

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery.  WOCHE 11 AM DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 11 AM 15.01.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 11 am 28.01.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

5. sequentielle Schaltungen

5. sequentielle Schaltungen Humbold-Universiä zu Berlin, r. Winkler igiale Syseme (Grundlagen 3) 10.05.2010 5. sequenielle Schalungen sequenielle Schalungen: digiale Schalung mi inneren Rückführungen sie haben eine zeisequenielle

Mehr

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5.

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5. Kapiel 7: Schalakoren 7. Schalakoren fach Schalakor EB/23/ mi Nebenselleneingang Ar.- Nr. 657 9 4. Einsellungen in der Tool-Sofware (ETS) Auswahl in der Produkdaenbank Herseller: Meren Produkfamilie: 4.

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

DIGITALTECHNIK 07 FLIP-FLOP S

DIGITALTECHNIK 07 FLIP-FLOP S Seie 1 von 32 DIGITALTECHNIK 07 FLIP-FLOP S Inhal Seie 2 von 32 1 FLIP FLOP / KIPPSCHALTUNGEN... 3 1.1 ZUSAMMENFASSUNG: FLIPFLOP-KLASSIFIZIERUNG... 4 1.2 VEREINBARUNGEN... 4 1.3 STATISCHE / DYNAMISCHE

Mehr

5. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 2

5. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 2 Sommersemester 2 Übung und Seminar zur Vorlesung Grundlagen der Technischen Informatik 2 5. Aufgabenkomplex 9.6.29 Johannisgasse 26 43 Leipzig Telefon: +49 (34) 97-3223 Telefax: +49 (34) 97-32252 . Aufgabe.

Mehr

Klausur. Grundlagen der Elektrotechnik II WS 06/ Februar Name Matrikelnummer Studiengang

Klausur. Grundlagen der Elektrotechnik II WS 06/ Februar Name Matrikelnummer Studiengang . Klausur Grundlagen der Elekroechnik II W 06/07. Februar 007 Nae Marikelnuer udiengang Aufgabe Thea Max. Punke Erreiche Punke Transisor 9 auschen 4 OPV 8 4 igial 9 ue 0 Hinweise: Es sind keinerlei Unerlagen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

BIOLOGIE. K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand

BIOLOGIE.  K + Na + Cl - A - Thema: Ruhepotential 1. außen. innen. 0 mvolt. Fiktiver Ausgangszustand Ruhepoenial 1 A - 0,001 µm 2 0,001 µm 3 0,001 µm 3 0 mvol Fikiver Ausgangszusand 1. Um die Ionenwanderungen an einer Nervenzellmembran anschaulicher verfolgen zu können, sellen wir uns einen winzigen Ausschni

Mehr

Ansteuerung. Prioritäten

Ansteuerung. Prioritäten KNX Schalakor Basic REG-K/8x/6 A mi Handbeäigung Ar.-Nr. MEG67-8 Applikaion Schalen Basic 472/. Applikaion Schalen Basic 472/. Meren 292/ Applikaion Schalen Basic 472/. Funkionsübersich Mi dieser Applikaion

Mehr

Kapitel 6 Schaltwerke

Kapitel 6 Schaltwerke Kapiel 6 Schalweke Pof. D. Dik W. Hoffmann Hochchule Kaluhe w Univeiy of Applie Science w Fakulä fü Infomaik Da D-Flipflop D // - Bei eine poiiven Takflanke () wi a Signal in en inenen Zuanpeiche () übenommen

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 5. Vorlesung Klaus Kasper Inhalt Zyklische Folgeschaltung Asynchroner Zähler Synchroner Zähler Schaltungsanalyse Register Digitaltechnik 2 2 JKFlipFlop I Digitaltechnik 2 3 JKFlipFlop

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Quality Assurance in Software Development

Quality Assurance in Software Development Insiue for Sofware Technology Qualiy Assurance in Sofware Developmen Qualiässicherung in der Sofwareenwicklung A.o.Univ.-Prof. Dipl.-Ing. Dr. Bernhard Aichernig Insiue for Sofware Technology Graz Universiy

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08 Phillips Kurve (Blanchard Ch.8) 310 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben

Grundlagen der Digitaltechnik GD. Aufgaben DIGITALTECHNIK GD KLAUSUR VOM 21. 3. 2012 AUFGABEN SEITE 1 VON 4 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 21. 3. 2012 Aufgaben 1. Wandeln

Mehr

½ Achtung: 2. Montage. 1. Funktion

½ Achtung: 2. Montage. 1. Funktion W Bus ON Prog. Kapiel 7 Schalakoren 7.5 Schalakor 8-fach Schalakor REG-K/8x23/6 mi Handbeäigung Ar.-Nr. 647893 REG-K/8x23/6 mi HandbeäigungKapiel 7SchalakorenAr.-Nr.647893Sand /37.5Schalakor 8-fach Schalakor

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

DIGITALTECHNIK 08 FREQUENZ-ZÄHLER

DIGITALTECHNIK 08 FREQUENZ-ZÄHLER Seite 1 von 15 DIGITALTECHNIK 08 FREQUENZ-ZÄHLER Inhalt Seite 2 von 15 1 FREQUENZ-ZÄHLER... 3 1.1 ÜBERSICHT... 3 1.2 EINLEITUNG... 4 2 ASYNCHRONZÄHLER... 5 2.1 VORWÄRTSZÄHLER... 5 2.2 RÜCKWÄRTSZÄHLER...

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

METASTABILITÄT VON TAKTFLANKENGESTEUERTEN FLIP-FLOPS AN DER PERIPHERIE VON SYNCHRONEN SCHALTWERKEN

METASTABILITÄT VON TAKTFLANKENGESTEUERTEN FLIP-FLOPS AN DER PERIPHERIE VON SYNCHRONEN SCHALTWERKEN TAGUNGSBAN -203- MIKROELEKTRONIK 997 METASTABILITÄT VON TAKTFLANKENGESTEUERTEN FLIP-FLOPS AN ER PERIPHERIE VON SYNCHRONEN SCHALTWERKEN P. Balog HTL und FhE am Technologischen Gewerbemuseum, Wien ZUSAMMENFASSUNG:

Mehr

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05:

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05: Prof. Dr. ajana Lange Lehrgebie: egelungsechnik Laborübung 4/5: hema: Sreckenidenifikaion. Ermilung on egelkennweren aus dem offenen egelkreis. Übungsziele: Veriefung ausgewähler Mehoden der Sreckenidenifikaion

Mehr

Zahlungsverkehr und Kontoinformationen

Zahlungsverkehr und Kontoinformationen Zahlungsverkehr und Konoinformaionen Mulibankfähiger Zahlungsverkehr für mehr Flexibilä und Mobiliä Das Zahlungsverkehrsmodul biee Ihnen für Ihre Zahlungsverkehrs- und Konenseuerung eine Vielzahl mulibankenfähiger

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Raumzeigermodulation. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München

Raumzeigermodulation. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 80333 München Email: ea@ei.um.de Inerne: hp://www.ea.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.: +49

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Übungen zu Informatik Technische Grundlagen der Informatik - Übung 9 Ausgabedatum: 2. November 22 Besprechung: Übungsstunden in der Woche ab dem 9. November 22 ) Schaltungen und Schaltnetze Communication

Mehr

In diesem Abschnitt werden wir einige Schaltwerke kennenlernen, die als Basisbauteile überall im Aufbau digitaler Schaltungen verwendet werden.

In diesem Abschnitt werden wir einige Schaltwerke kennenlernen, die als Basisbauteile überall im Aufbau digitaler Schaltungen verwendet werden. Spezielle Schaltwerke In diesem Abschnitt werden wir einige Schaltwerke kennenlernen, die als Basisbauteile überall im Aufbau digitaler Schaltungen verwendet werden. Das Register Das Register oder der

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

Musterlösungen. zu den Übungsaufgaben vom

Musterlösungen. zu den Übungsaufgaben vom GRUNDLAGEN DER DIGITALTECHNIK GD MUSTERLÖSUNGEN ZUM MERKBLATT VOM 2. 2. 07 1 Musterlösungen zu den Übungsaufgaben vom 2. 2. 07 1. Geben Sie an (Skizze, ggf. Funktionserläuterung), wie ein D-Flipflop auf

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

¼ GEFAHR ¼ WARNUNG ½ VORSICHT. KNX Logikmodul Basic REG-K. Modul kennen lernen. Anschlüsse, Anzeigen und Bedienelemente. Inhaltsverzeichnis

¼ GEFAHR ¼ WARNUNG ½ VORSICHT. KNX Logikmodul Basic REG-K. Modul kennen lernen. Anschlüsse, Anzeigen und Bedienelemente. Inhaltsverzeichnis KNX Logikmodul Basic REG-K Produkbeschreibung 3 2 2 Ar.-Nr. 6769 Inhalsverzeichnis Zu Ihrer Sicherhei... Modul kennen lernen... Anschlüsse, Anzeigen und Bedienelemene... Modul monieren... Modul in Berieb

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Füllstandsregelung. Technische Informatik - Digitaltechnik II

Füllstandsregelung. Technische Informatik - Digitaltechnik II Füllstandsregelung Kursleiter : W. Zimmer 1/18 Zwei Feuchtigkeitsfühler (trocken F=0; feucht F=1) sollen zusammen mit einer geeigneten Elektronik dafür sorgen, dass das Wasser im Vorratsbehälter niemals

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Übung 5: BB-Datenübertragung

Übung 5: BB-Datenübertragung ZHW, NM, 5/6, Rur Übung 5: BB-Daenüberragung Aufgabe Nichlineare Ampliudenquanisierung. Das Signal s() = S p?sin(pf ) wird über einen Kanal überragen, der das Signal mi dem Fakor a dämpf. Der Parameer

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

Ein ROM soll aus mehreren ROMs (vgl. Abbildung rechts: Enable-Leitung EN, Adressleitungen ADDR, Datenleitungen DATA) aufgebaut werden.

Ein ROM soll aus mehreren ROMs (vgl. Abbildung rechts: Enable-Leitung EN, Adressleitungen ADDR, Datenleitungen DATA) aufgebaut werden. VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 183.579, 2015W Übungsgruppen: Mo., 23.11. Mi., 25.11.2015 Aufgabe 1: ROM-Erweiterung Ein 256 64 ROM soll aus mehreren 128 16 ROMs (vgl. Abbildung

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 19. 3. 2014 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 9 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 19. 3.

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

1 Leitungen, Anlagen, Schutzmaßnahmen 1.1.1 Installationszonen

1 Leitungen, Anlagen, Schutzmaßnahmen 1.1.1 Installationszonen Leiungen, Anlagen, Schuzmaßnahmen.. Insallaionszonen WährendnichsichbareLeiungeninDeckenaufdemkürzesenWeggeführwerdendürfen,müssenLeiungen in Wänden senkrechoderwaagerechverleg werden, bzw.parallelzuden

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Versuch: Phosphoreszenz

Versuch: Phosphoreszenz Versuch O8 PHOSPHORESZENZ Seie 1 von 6 Versuch: Phosphoreszenz Anleiung für folgende Sudiengänge: Biowissenschafen, Pharmazie Raum: Physik.24 Goehe-Universiä Frankfur am Main Fachbereich Physik Physikalisches

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 16. 7. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 FH Dortmund FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 16. 7. 2015 Aufgaben und

Mehr

Regelungstechnik für den Praktiker. Manfred Schleicher

Regelungstechnik für den Praktiker. Manfred Schleicher Regelungsechnik für den Prakiker Manfred Schleicher Vorwor und Hinweise zum Inhal dieser Broschüre Bezüglich der Regelungsechnik is eine Vielzahl von Büchern und Abhandlungen erhällich, welche häufig

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

1 Grundwissen Elektrik

1 Grundwissen Elektrik 1 Grundwissen Elekrik 1.1 Elekrisches Feld Elekrische Felder exisieren in der Umgebung von Ladungen. Die Feldrichung is dabei die Richung der Kraf auf eine posiive Probeladung. Die Feldlinien verlaufen

Mehr

Skriptum Schaltwerke und Rechnerorganisation WS 2002/03. Benedikt Meurer bmeurer@unix-ag.org

Skriptum Schaltwerke und Rechnerorganisation WS 2002/03. Benedikt Meurer bmeurer@unix-ag.org Skripum Schalwerke und Rechnerorganisaion WS 22/3 Benedik Meurer bmeurer@unix-ag.org 29. Januar 23 Inhalsvereichnis Einleiung 3. Schichenmodell............................ 3.2 Programmhierarchie.........................

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr