Lineare Algebra II 11. Übungsblatt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra II 11. Übungsblatt"

Transkript

1 Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des Skripts!)) Jede Bilinearform auf einem endlichdimensionalen Raum besitzt eine Strukturmatrix Die Strukturmatrix einer Bilinearform bezüglich einer Basis ist eindeutig bestimmt Die Strukturmatrix einer Bilinearform bestimmt diese eindeutig Zu jeder quadratischen Form Q gibt es eine Bilinearform F mit Q(x + y) = (F(x, y) + Q(x)) + (F(x, y) + Q(y)) Das Standardskalarprodukt in n ist keine Bilinearform, das Standardskalarprodukt in n dagegen schon Die Strukturmatrix des euklidischen Standardskalarprodukts bezüglich der Standardbasis ist die Einheitsmatrix Es gibt quadratische Formen Q mit Q(x) < für alle x Die Nullabbildung (v, w) ist eine Bilinearform Die Nullabbildung x ist eine quadratische Form Sind F und G linear, dann ist durch φ(x, y) := F(x)G(y) eine Bilinearform gegeben Bilinearformen sind symmetrisch Aufgabe G (Beispiele für Bilinearformen) (a) Sei V endlichdimensional und φ : V V eine Bilinearform Zeigen oder widerlegen Sie: es ist φ genau dann symmetrisch, wenn es eine Basis (v,, v n ) von V gibt, so dass φ(v i, v j ) = φ(v j, v i ) für alle i, j n gilt (b) Sei V der Vektorraum der reellen Polynome vom Grad Zeigen Sie, dass die Abbildung φ : V V, φ(f, g) := f (x)g(x) dx eine symmetrische Bilinearform ist und bestimmen Sie die Strukturmatrix von φ bezüglich einer geeigneten Basis (c) Sei V der Vektorraum der reellen -Matrizen Betrachten Sie die Abbildung φ : V V, φ(a, B) := tr(ab) Zeigen Sie, dass φ eine symmetrische Bilinearform ist und bestimmen Sie die Strukturmatrix von φ bezüglich einer geeigneten Basis (d) Welche der in dieser Aufgabe untersuchten Bilinearformen sind Skalarprodukte?

2 (a) Aus der Symmetrie auf V folgt trivialerweise die Symmetrie auf jeder Basis von V Für die andere Implikation sei (v,, v n ) eine Basis, auf der φ symmetrisch ist, und seien x, y V Dann gilt x = n i= ξ iv i und y = n i= η iv i mit ξ i, η i für alle i n Wir folgern φ(x, y) = ξ i η j φ(v i, v j ) = i,j= ξ i η j φ(v j, v i ) = φ(y, x) (b) Symmetrie und Bilinearität sind klar Wir wählen als Basis B := (, x, x ) Durch die Berechnung diverser Integrale erhält man [φ] B = (c) φ(a, B) = tr(ab) = tr(ba) = φ(b, A) φ(a + βb, C) = tr((a + βb)c) = tr(ac + βbc) = tr(ac) + tr(βbc) = tr(ac) + β tr(bc) = φ(a, C) + βφ(b, C) i,j= Wir wählen als Basis B :=,,, und berechnen die auftretenden Matrixprodukte Als Strukturmatrix erhalten wir [φ] B = (d) Die Bilinearform aus (b) ist offensichtlich positiv definit, denn aus f folgt f und damit auch φ(f, f ) > Die Strukturmatrix von (c) ist orthogonal und damit diagonalisierbar Die Determinante ist aber offensichtlich, so dass nicht alle Eigenwerte positiv sein können Eigenvektoren v zum Eigenwert erfüllen dann so dass diese Bilinearform nicht positiv definit sein kann φ(v, v ) = v T ( v ) = v T v = v <, Aufgabe G (Quadratische Formen) Wir betrachten den reellen Vektorraum V der symmetrischen reellen -Matrizen (a) Geben Sie ein Beispiel einer Abbildung f : an, die f (λx) = λ f (x) erfüllt, aber keine quadratische Form ist (b) Zeigen Sie, dass det: V eine quadratische Form ist (c) Bestimmen Sie die Strukturmatrix der mit det assoziierten Bilinearform bezüglich der Basis B = B =, B =, B = (d) Transformieren Sie die Strukturmatrix von det in eine Basis, bezüglich der sie Diagonalgestalt hat (a) Setzen wir etwa f :, (x, x ) x 4 + x 4, dann gilt f (λx, λ y) = λ f (x, y) Offensichtlich ist aber die Abbildung (x, y) nicht bilinear, also f keine quadratische Form (x + y ) 4 + (x + y ) 4 x 4 + x 4 y 4 + y4

3 a (b) Wegen der Multilinearitätseigenschaft der Determinante ist det(λa) = λ det A Für A = c ist die Abbildung b e und B = d g f h F(A, B) := (det(a + B) det A det B) = (ad + ah + de + eh bc c f bg f g (ad bc) (eh g f )) = (ah + de (c f + bg)) offensichtlich bilinear (rechnen Sie es nach, wenn es Ihnen nicht klar ist!) Daraus folgt, dass det eine quadratische Form ist (c) Es ist F(B, B ) =, F(B, B ) = F(B, B ) =, F(B, B ) = F(B, B ) =, F(B, B ) =, F(B, B ) = F(B, B ) =, F(B, B ) = Die Strukturmatrix lautet daher M = (d) Die Eigenwerte lauten, und Die zugehörigen Eigenräume werden aufgespannt durch Die gewünschte Diagonalgestalt lautet daher v =, v =, v = = = Aufgabe G4 (Hauptsatz über reelle orthogonale Matrizen) Sei A := b 4 c a d mit a > und b, c, d (a) Wählen Sie die Parameter a, b, c, d so, dass A eine orthogonale Matrix wird (b) Ist A über,, diagonalisierbar? (c) Finden Sie eine orthogonale Matrix Q, so dass cos t sin t Q T AQ = sin t cos t λ mit t [, π) und λ {, } gilt

4 (a) Da die Spalten Einheitslänge haben müssen, folgt a = Da sie aufeinander senkrecht stehen müssen, folgt c = Für die anderen Variablen folgt b + d = und 4b = d Wir setzen b = d ein und erhalten 4 6 d = Aus d folgt damit d = 4 und somit b = Die Matrix lautet daher A = 4 4 (b) Wir berechnen die komplexen Eigenwerte und ein Orthonormalsystem aus Eigenvektoren von A Wir erhalten dafür v = i zum EW + 4i, v = i zum EW 4i, v = zum EW Insbesondere sehen wir, dass A nur über diagonalisierbar ist (c) Wir setzen w := i (v v ) =, w := (v + v ) =, w := v = sowie und erhalten Q := Q T AQ = 4 = Setzen wir also t := arccos, dann folgt offensichtlich cos t = Andererseits folgt auch sin t = cos t = 9 = 6 = sin t 4, 4 Es erfüllt also t die geforderte Bedingung Für λ können wir offensichtlich wählen Hausübung Aufgabe H (Ausgeartete Bilinearformen) (a) Die Bilinearform F : sei gegeben durch (x, y) x T Ay mit der Matrix A = Gibt es einen Unterraum {} U, so dass für jedes x U die Abbildung identisch Null ist, dh f x (y) = für alle y erfüllt? (b) Sei jetzt G :, (x, y) x T B y mit f x :, f x (y) := F(x, y) B = Gibt es einen Unterraum U wie in (a), dh so, dass g x (y) := G(x, y) für alle x U? Dann nennt man die Bilinearform ausgeartet 4

5 (c) Sei Q die G entsprechende quadratische Form Q(x) := G(x, x) Für welche Unterräume {} U von ist die auf U eingeschränkte Abbildung Q U : U identisch Null, dh Q(u) = für alle u U? (a) Es ist f x (y) = Ay, x = y, A T x = y, Ax = für alle y Dies ist genau dann der Fall, wenn Ax = gilt, wenn also x ein Eigenvektor von A zum Eigenwert Null ist Offensichtlich ist det A =, denn die Summe der ersten beiden Spalten ergibt die dritte Spalte Der gesuchte Raum U ist also einfach der Eigenraum von A zum Eigenwert und wird zum Beispiel von (,, ) T erzeugt (b) Die G entsprechende Matrix B ist invertierbar, die Bilinearform also nicht entartet Es gibt keinen Unterraum mit der Eigenschaft aus (a) (c) Zunächst tranformieren wir B auf Diagonalgestalt Die Eigenwerte von B sind und, die entsprechenden Eigenvektoren lauten v = und v = Die Matrix der Bilinearform in der Eigenvektorbasis ist daher B = = Damit erhalten wir Q(x, x) = x U ± := span ± (v,v ) Führen wir jetzt noch einen Basiswechsel in die Standardbasis durch, erhalten wir U + = span + = span + + für die positive Wurzel und U = span = span für die negative Wurzel Dies sind die beiden in der Aufgabe gesuchten Möglichkeiten Aufgabe H (Affine Normalform von Quadriken, Teil I) Wir betrachten Gleichungen der Form Q(x,, x n ) = a ii x i + a i j x i x j + b i x i + c =, i= i<j i= (Quad) wobei a i j = a ji für alle i, j n gelte Die Lösungsmenge bezeichnen wir als Quadrik Wir nehmen an, dass nicht alle Koeffizienten verschwinden Beachten Sie, dass sich diese Definition von quadratischen Hyperflächen unterscheiden, wie sie in der Vorlesung definiert wurden (a) Schreiben Sie die Gleichung Q(x) = für einen Vektor x = (x,, x n ) T ohne Summenzeichen, indem Sie Matrizen und Vektoren benutzen (b) Überlegen Sie sich, dass die Lösungsmenge für b = (b,, b n ) = und c = eine quadratische Hyperfläche beschreibt, wie sie in der Vorlesung eingeführt wurde (c) Sei φ : n n eine affine Transformation Zeigen Sie, dass wieder eine Quadrik ist {x n : Q(φ(x)) = }

6 (d) Wir betrachten die folgende Quadrik: Q := (x, y, z) T : x x + x x x x = Bestimmen Sie die Hauptachsen von Q und führen Sie eine Hauptachsentransformation durch Geben Sie die Transformationsmatrix Q an Um welches geometrische Objekt handelt es sich bei Q? a a n (a) Wir definieren A = und b = (b,, b n ) sowie x = (x,, x n ) Dann gilt a n a nn (b) In diesem Fall ist was der Definition der Vorlesung entspricht Q(x,, x n ) = Q(x) = x T Ax + b T x + c = Q(x) = x T Ax =, (c) Da φ affin ist, gibt es eine Matrix M und einen Vektor t mit φ(x) = M x + t Dann folgt Q(φ(x)) = (M x + t) T A(M x + t) + b T (M x + t) + c = x T (M T AM)x + x T M T At + (b T M + t T AM)x + b T t + t T At + c = x T (M T AM)x + (t T AM + b T M)x + b T t + t T At + c = x T (M T AM)x + (M T (At + b)) T x + b T t + t T At + c Setzen wir also à := M T AM, b := M T (At + b) und c := b T t + t T At + c, dann gilt so dass wir wieder eine Quadrik erhalten Q(φ(x)) = x T Ãx + b T x + c, (d) In Matrixform ist Q durch die Lösungsmenge der Gleichung x T x = } {{ } =:A gegeben Wir führen eine Hauptachsentransformation durch Die Eigenwerte von A sind und Ein Hauptachsensystem erhalten wir, indem wir ein Orthonormalsystem aus Eigenvektoren bestimmen Als Eigenvektoren berechnen wir v = und v = zum EW, v = zum EW Das Gram-Schmidt-Verfahren liefert und ein Hauptachsensystem: b =, b =, b = 6 Transformieren wir A nun mit der Matrix dann gilt Die Quadrik lautet also Q := 6 6 6, Q T AQ = x y + z = x + y z = für alle x b, y b, zb Insbesondere sehen wir, dass es sich bei Q um ein einschaliges Hyperboloid handelt 6

7 Aufgabe H (Affine Normalform von Quadriken, Teil II) Wir betrachten wieder Quadriken, also Gleichungen der Form (Quad) Wir spezialisieren uns in dieser Aufgabe auf Dimension n = und klassifizieren alle möglichen Lösungen (a) Benutzen Sie die Hauptachsentransformation, um (Quad) in eine äquivalente Gleichung der Form zu transformieren Q (y, y ) = λ y + λ y + αy + β y + f = (b) Führen Sie einen weiteren Koordinatenwechsel durch, um eine äquivalente Gleichung zu erhalten, die einem der folgenden Typen entspricht: Dabei ist λ und µ λ z + λ z + r = (Typ I) λ z + µ z = (Typ II) µ z + µ z = (Typ III) (c) Betrachten Sie nun die Lösungsmengen dieser Gleichungen Welche geometrischen Objekte treten auf? Tipp: Unterscheiden Sie nach den Vorzeichen der Koeffizienten Es gibt insgesamt Fälle zu betrachten, davon entfallen 8 auf Typ I (a) Die Hauptachsentransformation besagt, dass es eine orthogonale Matrix Q gibt, so dass Q T λ AQ = λ gilt Wir setzen y := Q T x und erhalten damit Q(x, x ) = y T λ λ was eine Gleichung der geforderten Form ist y + (Q T b) T y + c =, (b) Nehmen wir zunächst an, beide Eigenwerte seien von Null verschieden Wir führen eine quadratische Ergänzung durch: λ y + λ y + α y + β y + f = λ y + α y + λ y λ + β + f = λ λ y + α + λ y + β + f α λ λ 4 λ + β λ = }{{} =:r Zuletzt führen wir die affine Transformation z = y + α, z = y + β λ λ durch und erhalten eine Gleichung vom Typ I Verschwindet einer der beiden Eigenwerte, sagen wir λ =, führen wir die quadratische Ergänzung nur mit y durch und erhalten eine Gleichung der Form λ y + β y + f = Ist nun β =, sind wir wieder bei einer Gleichung vom Typ I Ansonsten setzen wir nun z = y und z = y + f β (wieder eine affine Transformation!) und erhalten λ z + βz =, also eine Gleichung vom Typ II Der letzte Fall ist, dass beide Eigenwerte verschwinden Wir sind also bei einer Gleichung der Form α y + β y + f = Da nicht alle Koeffizienten verschwinden, gilt α oder β Wir nehmen ohne Einschränkung β an, transformieren wie oben durch z = y und z = y + f und erhalten β also eine Gleichung vom Typ III αz + βz =, 7

8 (c) Typ I: Die acht auftretenden Fälle sind wie folgt: sgn λ sgn λ sgn r Gleichung Lösungsmenge a z + b z = leere Menge + + a z + b z = Ellipse + + a z + b z = ein Punkt + a z b z = Hyperbel + a z = b z zwei sich schneidende Geraden + a z = leere Menge + a z = zwei parallele Geraden + a z = eine Gerade Typ II: Da µ und λ gilt, erhalten wir als Lösungsmenge eine Parabel Typ III: Wir stellen um und erhalten z = µ µ z, also eine Gerade 8

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe

Klausur zu. Lineare Algebra II. Viel Erfolg! Fachbereich Mathematik WS 2012/13 Dr. habil. Matthias Schneider. Bonus Note. Aufgabe Klausur zu Lineare Algebra II Fachbereich Mathematik WS 0/3 Dr. habil. Matthias Schneider Aufgabe 3 4 5 6 7 Bonus Note Punktzahl 4 3 3 3 3 0 erreichte Punktzahl Es sind keine Hilfsmittel zugelassen. Die

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

6. Übungsblatt zur Mathematik II für Inf, WInf

6. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 5. 9. Mai 6. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G (Standardskalarprodukt Sei v, e R und es

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Probeklausur Lineare Algebra für Physiker

Probeklausur Lineare Algebra für Physiker Fachbereich Mathematik Prof. Dr. K. Grosse-Brauckmann D. Frisch Probeklausur Lineare Algebra für Physiker SS 8 26./27.6.27 Name:..................................... Vorname:.................................

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Modulteilprüfung Geometrie (BaM-GS, L3M-RF)

Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Prof. Dr. Martin Möller SoSe 2011 // 05. Juli 2011 Kontrollieren Sie, ob Sie alle Blätter (12 einschließlich zweier Deckblätter) erhalten haben, und geben Sie

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Lineare Algebra II 12. Übungsblatt

Lineare Algebra II 12. Übungsblatt Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Abschnitt 1. Jordan Normalform

Abschnitt 1. Jordan Normalform Abschnitt Jordan Normalform Beispiel & Eigenschaften λ λ λ λ 2 λ 2 λ 2 λ 3 Voraussetzung: χ zerfällt Dann: ex. Basis, s.d. Darstellungsmatrix Jordan-Form hat Minimalpolynom µ hat Faktor zu jedem EW in

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 12 Hausaufgaben Aufgabe 12.1 Sei f : R 3 R 3 gegeben durch f(x) :=

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr