Anfragen an multidimensionale Daten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anfragen an multidimensionale Daten"

Transkript

1 Anfragen an multidimensionale Daten Alexander Heidrich - BID Hintergrundbild:

2 Inhaltsübersicht Motivation OLAP-Operationen Umsetzung in Standards SQL MDX Anfragetypen und -verarbeitung Fragen? / Diskussion! Anfragen an multidimensionale Daten 2

3 Motivation Daten sind im Data Warehouse Wie kommt man nun an seine Informationen? Theoretische Grundlagen Welche Erweiterungen der vorhandenen (Datenbank-)mittel gibt es? Wie werden sie benutzt? Bild: Anfragen an multidimensionale Daten 3

4 Inhaltsübersicht Motivation OLAP-Operationen Umsetzung in Standards SQL MDX Anfragetypen und -verarbeitung Fragen? / Diskussion! Anfragen an multidimensionale Daten 4

5 OLAP-Operationen Online Analytic Processing Werkzeuge und Technologien, mit denen ein zugrundeliegendes DW benutzerfreundlich analysiert und abgefragt werden kann eingesetzt zur Unterstützung von Managemententscheidungen (decision support) Anfragen an multidimensionale Daten 5

6 OLAP-Operationen: Ausgangssituation Bild: Bauer, A; Günzel, H.: Data Warehouse Systeme. Architektur, Entwicklung, Anwendung. Heidelberg: dpunkt.verlag Anfragen an multidimensionale Daten 6

7 OLAP-Operationen Roll-Up Wechsel auf eine übergeordnete Betrachtungsebene Drill-Down Wechsel auf eine untergeordnete Betrachtungsbene Bild: Bauer, A; Günzel, H.: Data Warehouse Systeme. Architektur, Entwicklung, Anwendung. Heidelberg: dpunkt.verlag Anfragen an multidimensionale Daten 7

8 OLAP-Operationen Drill-Across Wechseln des betrachteten Fakts unter Beibehaltung der Betrachtungsebene Bild: Bauer, A; Günzel, H.: Data Warehouse Systeme. Architektur, Entwicklung, Anwendung. Heidelberg: dpunkt.verlag Anfragen an multidimensionale Daten 8

9 OLAP-Operationen Slice Zugriff auf Daten einer extrahierten Schicht Bilder: (modifiziert) Anfragen an multidimensionale Daten 9

10 OLAP-Operationen Dice Zugriff auf Teilwürfel Bild: (modifiziert) Anfragen an multidimensionale Daten 10

11 OLAP-Operationen Pivotierung Drehen des Würfels durch Vertauschen der Dimensionen Bild: Bauer, A; Günzel, H.: Data Warehouse Systeme. Architektur, Entwicklung, Anwendung. Heidelberg: dpunkt.verlag Anfragen an multidimensionale Daten 11

12 Inhaltsübersicht Motivation OLAP-Operationen Umsetzung in Standards SQL MDX Anfragetypen und -verarbeitung Fragen? / Diskussion! Anfragen an multidimensionale Daten 12

13 Umsetzung in Standards - SQL SQL-OLAP-Erweiterungen (seit SQL:1999) (erweiterte) Gruppierungsfunktionalität GROUP BY GROUPINGSETS GROUPING() ROLLUP CUBE SQL-OLAP-Funktionen Aggregate, Partitioning, Windows, Ranking IBM und Oracle an Standardisierung beteiligt integriert in DB2 und Oracle (DBMS) Anfragen an multidimensionale Daten 13

14 SQL: Beispieldaten Anfragen an multidimensionale Daten 14

15 SQL: Aggregate Aggregatfunktionen COUNT(), SUM(), MIN(), MAX(), AVG() Funktionen liefern in dieser Anwendung nur einen einzelnen Wert Verwendung von GROUP BY Anfragen an multidimensionale Daten 15

16 SQL: GROUP BY Beispiel Anfragen an multidimensionale Daten 16

17 SQL: GROUPING SETS GROUP BY immer noch umständlich bei der Erzeugung von verschiedenen Gruppierungen (z.b. (Jahr, Land), (Jahr), (Jahr, Land, Verkäufe), etc.) Lösung: GROUPING SETS Gruppierungskombinationen Anfragen an multidimensionale Daten 17

18 SQL: GROUPING SETS Beispiel Anfragen an multidimensionale Daten 18

19 SQL: ROLLUP-Operator Erweiterung der GROUP-BY-Syntax um ROLLUP-Operator erzeugt hierarchisch multidimensionale Gruppierung GROUPING()-Funktion zur Indentifizierung von NULL- Werten Anfragen an multidimensionale Daten 19

20 SQL: CUBE-Operator Vorschlag von Microsoft und IBM Erweiterung der GROUP-BY-Syntax um den CUBE- Operator N-Dimensionale Generalisierung der einfachen Aggregatfunktionen Bild: Gray, J.; Bosworth, A.; Layman, A.; Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. J. Data Mining and Knowledge Discovery Anfragen an multidimensionale Daten 20

21 CUBE entsprechend GROUPING SETS( (),(Jahr),(Land),(Kategorie), (Jahr,Land),(Jahr, Kategorie),(Land,Kategorie), (Jahr,Land, Kategorie)) Anfragen an multidimensionale Daten 21

22 SQL: Cube Bild: (modifiziert) Anfragen an multidimensionale Daten 22

23 SQL: OLAP-Funktionen mit SQL:1999 eingeführt umfassen: Aggregate Partionierung Window (Bildung dynamischer Fenster) Ranking Kernkonstrukt: Over-Klausel Anfragen an multidimensionale Daten 23

24 SQL: Over-Klausel Bild: selbst erstellt Anfragen an multidimensionale Daten 24

25 SQL: Over() Beispiel Over() Aggregation über alle Tupel Aggregatbildung, keine weitere Verdichtung Anfragen an multidimensionale Daten 25

26 SQL: Over() mit Partionierung - Beispiel Partitionierung ähnlich Gruppierung PARTITON BY <attribute list> Anfragen an multidimensionale Daten 26

27 SQL: Over() Bildung dynamischer Fenster OVER(ORDER BY <attribute list> [<window-spec>]) Anfragen an multidimensionale Daten 27

28 SQL: Over() Bildung dynamischer Fenster - Beispiel Anfragen an multidimensionale Daten 28

29 SQL: Ranking Bestimmung der Postion eines Tupels in der Ergebnismenge Duplikate erhalten den gleichen Rang RANK() (mit Lücken) DENSE_RANK() (ohne Lücken) Anfragen an multidimensionale Daten 29

30 SQL: Ranking - Beispiel Anfragen an multidimensionale Daten 30

31 SQL: Umsetzung in DB2 und Oracle Behauptung: DB2 und Oracle hinsichtlich den in SQL:1999 definierten OLAP-Erweiterungen/-funktionen gleich SQL:2003 bringt weitere analytische Funktionen bislang nur von/in Oracle implementiert Anfragen an multidimensionale Daten 31

32 MDX MDX = MultiDimensional expressions orientiert sich stark an SQL-Syntax und MDDM Entwicklung/Vorschlag von Microsoft Anfragen an multidimensionale Daten 32

33 MDX Dimensions (Select) max. 64 on COLUMNS, ROWS, Cube(From) Slicer (Where) Auswahl der darzustellenden Werte Anfragen an multidimensionale Daten 33

34 MDX: Elemente Measures Fakten als Dimension modelliert Dimensions Dimensionen Level: Klassifikationsstufe (Jahr) Member: Klassifikationsknoten (2003) Syntax {} Sets [] Einschluß von Strings Anfragen an multidimensionale Daten 34

35 MDX: Navigationsfunktionen Navigationsfunktionen Members: Knoten einer Klassifikationsstufe Children: Kinderknoten eines Klassifikationsknotens Parent: Elternknoten eines Klassifikationsknotens SELECT {[Kategorie].MEMBERS} Autos, Computer SELECT {[ATHLONXP].PARENT} CPU SELECT {[CPU].CHILDREN} ATHLON64, ATHLONXP, PENTIUM Anfragen an multidimensionale Daten 35

36 Drill-Down MDX: Beispiele Roll-Up Crossjoin Anfragen an multidimensionale Daten 36

37 MDX: Beispiel CROSSJOIN Drill-Down Roll-Up Bild: (modifiziert) Anfragen an multidimensionale Daten 37

38 MDX: weitere Funktionen TOPCOUNT Ergebnisbereich einer Dimension einschränken FILTER Einschränkung über beliebige Bedingungen + viele weitere Funktionen sehr mächtige Sprache mit hoher Komplexität Anfragen an multidimensionale Daten 38

39 Inhaltsübersicht Motivation OLAP-Operationen Umsetzung in Standards SQL MDX Anfragetypen und -verarbeitung Fragen? / Diskussion! Anfragen an multidimensionale Daten 39

40 Anfragetypen Bilder: Anfragen an multidimensionale Daten 40

41 Methoden der Abfrageverarbeitung Star Join Star Schema als Grundlage sehr große Faktentabelle kleine, voneinander unabhängige Dimensionstabellen Verbund zwischen n Dimensionstabellen und der Faktentabelle, Restriktionen über Dimensionstabellen typisches Muster für DW- Anfragen Bild: Anfragen an multidimensionale Daten 41

42 Star Join: Aufbau SELECT-Klausel Kenngrößen Granularitäten FROM-Klausel Fakten- und Dimensionstabellen WHERE-Klausel Verbundbedingungen Restriktionen Anfragen an multidimensionale Daten 42

43 Star Join: Beispiel SELECT Geographie.Region, Zeit.Monat, SUM(Verkaeufe) FROM Verkauf, Zeit, Produkte, Geographie WHERE Verkauf.Produkt_ID = Produkt.ProduktID AND Verkauf.Zeit_ID = Zeit.ZeitID AND Verkauf.Geographie_ID = Geographie.GeographieID AND Produkt.Produktkategorie = 'Waschgeräte' AND Geographie.Land = 'Deutschland' AND Zeit.Jahr = Anfragen an multidimensionale Daten 43

44 Star Join: Beispiel Bild: Bauer, A; Günzel, H.: Data Warehouse Systeme. Architektur, Entwicklung, Anwendung. Heidelberg: dpunkt.verlag Anfragen an multidimensionale Daten 44

45 Inhaltsübersicht Motivation OLAP-Operationen Umsetzung in Standards SQL MDX Anfragetypen und -verarbeitung Fragen? / Diskussion! Anfragen an multidimensionale Daten 45

46 Fragen? Diskussion!

Anfragen an multidimensionale Daten

Anfragen an multidimensionale Daten Anfragen an multidimensionale Daten Seminar: Data Warehousing im Sommersemester 2005 Lehrstuhl für Datenbanken und Informationssysteme Betreuer: David Wiese 20. Juni 2005 Inhaltsverzeichnis 1. Einleitung...

Mehr

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Ausführung von OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Variante 1 - Snowflake Year id year Productgroup id pg_name Month Id Month year_id Day Id day month_id

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Data Cube Katharina Morik, Uwe Ligges Informatik LS 8 22.04.2010 1 von 26 Gliederung 1 Einführung 2 Aggregation in SQL, GROUP BY 3 Probleme mit GROUP BY 4 Der

Mehr

Business Intelligence & Reporting. Michael Cordes Holger Oehring Matthias Rein

Business Intelligence & Reporting. Michael Cordes Holger Oehring Matthias Rein Business Intelligence & Reporting Michael Cordes Holger Oehring Matthias Rein Ziele Einführung Business Intelligence / Front Room Online Analytical Processing (OLAP) Arten des Reporting & Nutzergruppen

Mehr

Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung

Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung Grundbegriffe Dimensionen, Fakten/Kennzahlen Eigenschaften von multidimensionalen Anfragen Relationale Umsetzung von Anfragen

Mehr

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier Realisierung von OLAP Operatoren in einem visuellen Analysetool Vortrag von Alexander Spachmann und Thomas Lindemeier Gliederung Ausgangssituation/Motivation Was ist OLAP? Anwendungen Was sind Operatoren?

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Sprachen für OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung OLAP Operationen MDX: Multidimensional Expressions SQL Erweiterungen

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Sprachen für OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung OLAP Operationen MDX: Multidimensional Expressions SQL Erweiterungen

Mehr

Data Cubes PG Wissensmangement Seminarphase

Data Cubes PG Wissensmangement Seminarphase PG 402 - Wissensmangement Seminarphase 23.10.2001-25.10.2001 Hanna Köpcke Lehrstuhl für Künstliche Intelligenz Universität Dortmund Übersicht 1. Einführung 2. Aggregation in SQL, GROUP BY 3. Probleme mit

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

Analytic Views: Einsatzgebiete im Data Warehouse

Analytic Views: Einsatzgebiete im Data Warehouse Analytic Views: Einsatzgebiete im Data Warehouse Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Einleitung Analytic Views sind eine der wesentlichen Erweiterungen in Oracle 12c Release 2. Durch zusätzliche

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2004 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Anfragen in Operativen Systemen und Data Warehouses

Anfragen in Operativen Systemen und Data Warehouses Data Warehouses Sommersemester 011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Anfragen in Operativen Systemen und Data Warehouses Anfragen Operative

Mehr

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Data Warehousing und Mining 1 Data Warehousing, Gliederung Dimensionen und Measures Schematypen für Data Warehousing GroupBy und Data Cubes

Mehr

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Data Warehousing, Gliederung Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Dimensionen und Measures Schematypen für Data Warehousing GroupBy und Data Cubes Operatoren für den Data Cube

Mehr

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002)

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Betrifft Autör: GROUPING_ID Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem Oracle9i Data Warehousing Guide und den Kursen New Features Oracle9i

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Unterstützung der Unternehmenssteuerung durch Data Warehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen

Unterstützung der Unternehmenssteuerung durch Data Warehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen Rückblick Unterstützung der Unternehmenssteuerung durch Data arehouses mit ganzheitlicher Sicht auf Daten aus operativen Systemen Online Transaction Processing (OLTP) und Online Analytical Processing unterscheiden

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Kapitel 8: Data Warehouse 1

Kapitel 8: Data Warehouse 1 Objektverwaltung höherer Ordnung (OHO) SS 23 Kapitel 8: Data Warehouse Kap. 8 Data Warehouse 8. Was ist ein Data Warehouse, Motivation? 8.2 Data Cube und SQL-Operationen 8.3 Cube-Operationen 8.4 Physischer

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Anfragen gegen das DataWarehouse

Anfragen gegen das DataWarehouse Anfragen gegen das DataWarehouse Sebastian Kuhs Seminar Data Warehousing und analytische Datenbanken Gliederung 1. Benutzergruppen 2. interaktives OLAP 3. MDX 4. XML-Analysis 5.Produkte 1. Benutzergruppen

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

Online Kurse Modulbeschreibungen

Online Kurse Modulbeschreibungen Online Kurse Modulbeschreibungen K0100 SQL Basics M0101 DB Theorie Dieses Modul führt in die Thematik von Datenbanken und deren grundlegenden Begriffen und Konzepten ein. Es werden Fragen beantwortet,

Mehr

Datenbankadministration

Datenbankadministration Datenbankadministration 12. Datenbankobjekte und analytische Funktionen AG DBIS University of Kaiserslautern, Germany Karsten Schmidt kschmidt@informatik.uni-kl.de (Vorlage TU-Dresden) Wintersemester 2008/2009

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche nwendungen SP R/3: Enterprise Resource Modelling (ERP-System) OLTP Data Warehouse Data Mining WN (Internet) LN Kapitel 17 1 Relationales DBMS als Backend-Server (Oracle, Informix, DB2, MS

Mehr

Datenbanksysteme 2009

Datenbanksysteme 2009 Datenbanksysteme 2009 Kapitel 17: Data Warehouse Oliver Vornberger Institut für Informatik Universität Osnabrück 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Aggregatfunktionen in SQL

Aggregatfunktionen in SQL Aggregatfunktionen in SQL Michael Dienert 14. April 2008 1 Definition von Aggregatfunktionen Ihren Namen haben die Aggregatfunktionen vom englischen Verb to aggregate, was auf deutsch anhäufen, vereinigen,

Mehr

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle. Seminar 2 SQL - DML(Data Manipulation Language) und DDL(Data Definition Language) Befehle. DML Befehle Aggregatfunktionen - werden auf eine Menge von Tupeln angewendet - Verdichtung einzelner Tupeln yu

Mehr

SQL Intensivpraktikum SS 2008

SQL Intensivpraktikum SS 2008 SQL Intensivpraktikum SS 2008 Aggregation von Daten Arbeit mit Gruppen SQL1 basierend auf OAI-Kurs Copyright Oracle Corporation, 1998. All rights reserved. Gruppenfunktionen Gruppenfunktionen verarbeiten

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Fortgeschrittene OLAP Analysemodelle

Fortgeschrittene OLAP Analysemodelle Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Datenbankprogrammierung

Datenbankprogrammierung Datenbankprogrammierung Arbeiten mit DB2 Server DB2- Befehlszeilenprozessor ausführen SQL-Skript-Datei bearbeiten Editor SSH Client Linux SSH-Konsole für Befehlszeilenproz. (ssh) X-Weiterleitung für Editor

Mehr

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services 531 27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services Im zweiten Teil dieses Buches haben wir die Eigenschaften der Transact-SQL- Sprache in Bezug auf die Bearbeitung von operativen Daten gezeigt.

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Kapitel 7 Grundlagen von Data

Kapitel 7 Grundlagen von Data LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 7 Grundlagen von Data Warehouses Vorlesung: PD

Mehr

Datenbanken zur Entscheidungsunterstützung - Data Warehousing. Prof. Dr. T. Kudraß 1

Datenbanken zur Entscheidungsunterstützung - Data Warehousing. Prof. Dr. T. Kudraß 1 Datenbanken zur Entscheidungsunterstützung - Data Warehousing Prof. Dr. T. Kudraß 1 Einführung Zunehmender Bedarf nach Analyse aktueller und historischer Daten Identifizierung interessanter Patterns Entscheidungsfindung

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Data Cube Kristian Kersting, (Katharina Morik), Claus Weihs Informatik LS 8 Computergestützte Statistik Technische Universität Dortmund 15.04.2014 1 von 43 Was

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

Developing SQL Data Models MOC 20768

Developing SQL Data Models MOC 20768 Developing SQL Data Models MOC 20768 In diesem Kurs lernen Sie das Implementieren von multidimensionale Datenbanken mithilfe der SQL Server Analysis Services (SSAS) und durch das Erstellen von tabellarische

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1) Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung Rückblick SQL bietet viele Möglichkeiten zur Anfrageformulierung mathematische Funktionen (z.b. ABS(A) und SIGN(A)) Aggregatfunktionen (z.b. MIN(A) und SUM(A)) Boole sche Operatoren (AND, OR, EXCEPT) Verknüpfungen

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Einführung in Data Warehouses

Einführung in Data Warehouses Kapitel l6 Einführung in Data Warehouses Vorlesung: Dr. Matthias Schubert Skript 2009 Matthias Schubert Dieses Skript basiert auf dem Skript zur Vorlesung Datenbanksysteme II von Prof. Dr. Christian Böhm

Mehr

Oracle SQL. Marco Skulschus Marcus Wiederstein

Oracle SQL. Marco Skulschus Marcus Wiederstein www.comelio-medien.com Oracle SQL Marco Skulschus Marcus Wiederstein Oracle SQL Marco Skulschus Marcus Wiederstein Oracle SQL Marco Skulschus Marcus Wiederstein Webseite zum Buch: www.comelio-medien.com/buch-katalog/oracle/oracle_sql

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Themenblock: Data Warehousing (I)

Themenblock: Data Warehousing (I) Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining Agenda Einführung Data Warehouses Online Transactional Processing (OLTP) Datenmanipulation mit SQL Anfragen mit SQL Online

Mehr

SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)

SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans schmidt@cs.ro

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

OLTP: Online Transaction Processing

OLTP: Online Transaction Processing Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing (bisheriger Fokus) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem

Mehr

SQL/OLAP und Multidimensionalität in der Lehre

SQL/OLAP und Multidimensionalität in der Lehre SQL/OLAP und Multidimensionalität in der Lehre Vortrag auf der DOAG 2008 Prof. Dr. Reinhold von Schwerin Hochschule Ulm, Fakultät für Informatik 1. Dezember 2008 Prof. Dr. Reinhold von Schwerin SQL/OLAP

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

SQL als Zugriffssprache

SQL als Zugriffssprache SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Data Warehousing. und Operationen. Dr. Andreas Thor Wintersemester 2009/10. Universität Leipzig Institut für Informatik.

Data Warehousing. und Operationen. Dr. Andreas Thor Wintersemester 2009/10. Universität Leipzig Institut für Informatik. Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung und Operationen Dr. Andreas Thor Wintersemester 2009/10 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de WS09/10, Prof.

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

SQL Fortsetzung: Joins, Subselects, Aggregatfunktionen, Derived Tables, Views

SQL Fortsetzung: Joins, Subselects, Aggregatfunktionen, Derived Tables, Views Teil 3: SQL Fortsetzung: Joins, Subselects, Aggregatfunktionen, Derived Tables, Views Joins Unser bisheriges SQL erlaubt bereits die Spezifikation von INNER-Joins durch Kombination von Produkt und Restriktion.

Mehr

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Data Warehousing, Gliederung Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Dimensionen und Measures Schematypen für Data Warehousing Groupy und Data Cubes Operatoren für den Data Cube

Mehr

5 Data Warehouses und Data Mining

5 Data Warehouses und Data Mining 5 Data Warehouses und Data Mining Mittels OLAP Techniken können große Datenmengen unterschiedlich stark verdichtet und gezielt aufbereitet werden. Mittels Data Mining können große Datenmengen nach bisher

Mehr

Data Warehousing. Beispiel: : Amazon. Aufbau eines DWH OLAP <-> OLTP Datacube. FU-Berlin, DBS I 2006, Hinze / Scholz

Data Warehousing. Beispiel: : Amazon. Aufbau eines DWH OLAP <-> OLTP Datacube. FU-Berlin, DBS I 2006, Hinze / Scholz Data Warehousing Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon 2 1 Datenbank 3 Fragen des Marketingleiters Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

7. XML-Datenbanksysteme und SQL/XML

7. XML-Datenbanksysteme und SQL/XML 7. XML-Datenbanksysteme und SQL/XML Native XML-DBS vs. XML-Erweiterungen von ORDBS Speicherung von XML-Dokumenten Speicherung von XML-Dokumenten als Ganzes Generische Dekomposition von XML-Dokumenten Schemabasierte

Mehr

Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung

Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung Data Warehousing Kapitel 3: Mehrdimensionale Datenmodellierung und Operationen Michael Hartung Sommersemester 2011 Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de SS11, Prof.

Mehr

GROUP BY, HAVING und Sichten

GROUP BY, HAVING und Sichten GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten

Mehr

Teil 7: Data Warehouses und neuere SQL-Konstrukte

Teil 7: Data Warehouses und neuere SQL-Konstrukte 7. Data Warehouses und neuere SQL-Konstrukte 7-1 Teil 7: Data Warehouses und neuere SQL-Konstrukte Literatur: Kemper/Eickler: Datenbanksysteme, 7. Aufl., Kap. 17, Oldenbourg, 2009. Elmasri/Navathe: Fundamentals

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Oracle Analytic SQL. o Anderer Name: Window functions o Ab 8i o Einfache Ansätze für komplexe Problemstellungen. o Anwendung:

Oracle Analytic SQL. o Anderer Name: Window functions o Ab 8i o Einfache Ansätze für komplexe Problemstellungen. o Anwendung: 1 Analytic SQL Oracle Analytic SQL Anderer Name: Windw functins Ab 8i Einfache Ansätze für kmplexe Prblemstellungen Mit Standard-SQL meist nicht der nicht elegant zu lösen Effizientere Abarbeitung als

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert.

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert. Betrifft Autor FIRST, LAST Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem NF9i-Kurs, NF9i-Techno-Circle der Trivadis und Oracle9i Data Warehousing

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 10 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

SQL: Weitere Funktionen

SQL: Weitere Funktionen Vergleich auf Zeichenketten SQL: Weitere Funktionen LIKE ist ein Operator mit dem in Zeichenketten andere Zeichenketten gesucht werden; zwei reservierte Zeichen mit besonderer Bedeutung sind hier % (manchmal

Mehr

Teil 7: Data Warehouses und neuere SQL-Konstrukte

Teil 7: Data Warehouses und neuere SQL-Konstrukte 7. Data Warehouses und neuere SQL-Konstrukte 7-1 Teil 7: Data Warehouses und neuere SQL-Konstrukte Literatur: Kemper/Eickler: Datenbanksysteme, 7. Aufl., Kap. 17, Oldenbourg, 2009. Elmasri/Navathe: Fundamentals

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT SQL SQL SELECT Anweisung Mit der SQL SELECT-Anweisung werden Datenwerte aus einer oder mehreren Tabellen einer Datenbank ausgewählt. Das Ergebnis der Auswahl ist erneut eine Tabelle, die sich dynamisch

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe16 Moritz Kaufmann

Mehr

Fortsetzung: Projektion Selektion. NULL Werte

Fortsetzung: Projektion Selektion. NULL Werte Fortsetzung: Anfragen mit SQL Bisher: Projektion Selektion Duplikatbehandlung NULL Werte Professoren PersNr Name Rang Raum 2125 Sokrates 226 2126 Russel 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

SQL - Datenbankdesign - Aufbau

SQL - Datenbankdesign - Aufbau SQL - Datenbankdesign - Aufbau Kompakt-Intensiv-Training Unsere fünftägige ANSI SQL Schulung vermittelt Ihnen alle nötigen Kenntnisse zur Erstellung von Datenauswertungen und Programmierung wiederkehrender

Mehr

cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012

cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt Ihab Al Kabary, MSc Ilir Fetai, MSc Nenad Stojnić, MSc Ivan Giangreco, BSc cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012 Übung DW-4 Abgabe:

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr