Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k"

Transkript

1 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 2 Aufge 1. Endliche Automten (1 Punkte) / 1 Gegeen seien die folgenden Sprchen L und ihr Komplement L: k L = w {, } w = n ( m i ) = n m1 m k mit k ; m i, n 1, i=1 L = {, } \L, d.h. die Menge ller Wörter, die nicht in L enthlten sind. Es gilt eispielsweise:,,,, L λ,,,, L. () Geen Sie einen deterministischen endlichen Automten A n mit L(A) = L. Geen Sie A vollständig n. / 6 Am einfchsten stellt mn zuerst den Automten für die Sprche L dr, und invertiert nschließend die Endzustände. δ des Automten zur Sprche L (drei Alterntiven Reduktion wr nicht erforderlich): s s 1 s 2 s 3 s s 1 s 2 s 4 s 4,, s s 1 s 4,

2 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 3 Der invertierte Automt lutet: A = {E, S, δ, s, F} = {{, }, {s, s 1, s 2, s 3, s 4 }, δ, s, {s, s 2, s 4 }} mit δ (drei Alterntiven s. o.): s s 1 s 2 s 3 s s 1 s 2 s 4 s 4,, s s 1 s 4, () Geen Sie einen regulären Ausdruck α n mit L(α) = L. / 4 α = + ( + ) + ( ) (( + ) + ) oder α = + ( + ) + (( + ) + ( )) oder α = ( ) (( + ) + )

3 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 4 Aufge 2. Pumping-Lemm, Chomsky-Hierrchie (12 Punkte) / 12 Gegeen sei die Sprche L = {w {, 1} v {, 1} : w = vv}. Wörter us L estehen lso us der Hintereinnderschreiung zweier identischer Aschnitte. Es gilt eispielsweise: λ,, 11, 11, 1111 L; 1, 11, 1111, 1111 L. () Zeigen Sie mit dem Pumping-Lemm (PPL) für Typ-3-Sprchen, dss L nicht vom Chomsky-Typ 3 ist. / 5 Angenommen, es gäe einen endlichen Automten A mit n Zuständen, sodss L(A) = L. Dnn git es nch PPL für ds Wort w = n 1 n 1 L (mit w n) eine Zerlegung w = xyz, mit: (1) xy n, (2) y > und (3) i N : xy i z L. Wegen (1) und (2) gilt y = j mit < j n und y enthält nur en us dem ersten Teil des Wortes. Wir etrchten ds Wort xy z = n j 1 n 1 L. Ds Wort knn nicht in der Sprche liegen, weil n j n, und dmit hen wir gezeigt, dss die o.. Zerlegung entgegen der Annhme nicht existiert. Wir müssen lso die ursprüngliche Annhme ufgeen, dss L = L(A) für einen endlichen Automten A. () Argumentieren Sie in eigenen Worten unter Zuhilfenhme des PPLs für Typ-2-Sprchen, wrum die Sprche L uch nicht vom Chomsky-Typ 2 sein knn. Hinweis: Sie müssen ds PPL nicht forml nwenden, es reicht die Beweisidee. Geen Sie er insesondere ein Pumpwort w L in Ahängigkeit der PPL-Vrilen n n und eschreien Sie kurz, wie mn pumpen könnte, um us der Sprche zu fllen.

4 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 5 w = n }{{} A 1 n }{{} B n }{{} C 1 n }{{} D = uvwxy Wegen der PPL-Regel vwx n knn vwx nicht mehr ls zwei der vier Aschnitte A, B, C, D enthlten. Beim Pumpen mit i = löscht mn lso nur us mximl zwei Aschnitten Zeichen, während us den nderen nichts gelöscht wird. Dmit gilt uv i wx i y L. Wir müssen lso die Annhme ufgeen, dss L = L(G) für eine kontextfreie Grmmtik G. (Eine detillierte Fllunterscheidung ist lut Aufgenstellung nicht notwendig.) (c) Wie könnte mn eweisen, dss L vom Chomsky-Typ 1 ist? Geen Sie zwei der prinzipiellen Alterntiven n, ohne den Beweis zu konkretisieren. Ange einer Grmmtik oder Ange einer monotonen Grmmtik oder Ange einer liner eschränkten Turingmschine. (d) Kreuzen Sie n, mit welchen der folgenden Automtentypen zw. Grmmtiktypen mn nch den Ergenissen us (), () und (c) die Sprche L prinzipiell erkennen zw. erzeugen könnte? Endlicher Automt Deterministischer oder nichtdeterministischer Kellerutomt Liner eschränkte Turingmschine Turingmschine Rechtslinere Grmmtik Kontextfreie Grmmtik Kontextsensitive oder monotone Grmmtik Allgemeine Grmmtik / 3 Hinweis: Sie erhlten 1 /4 Punkte für jede richtige Antwort ( Kreuz zw. kein Kreuz ) und 1 /4 für jede flsche. Sie können nicht weniger ls Punkte erhlten.

5 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 6 Aufge 3. Kellerutomten (9 Punkte) / 9 Gegeen sei für E = {, 1} folgende Sprche L: L = {w E w = n 1 2n+2 mit n }. Es gilt eispielsweise: 11, 1111, , L; λ,, 11, 111, 11, L. () Geen Sie für L ls Akzeptor einen deterministischen Kellerutomten KA = (E, S, K, δ, s, k, F) n. Geen Sie KA vollständig n. D die Sprche kontextfrei ist, muss hier ein Kellerutomt ngegeen werden: KA = ({, 1}, {s, s 1, s 2, s e }, {k,, 1, }, δ, s, k, {s e }) / 7 δ : δ(s,, k ) = (s, k ) δ(s,, ) = (s, ) δ(s, 1, k ) = (s 2, k ) δ(s, 1, ) = (s 1, ) δ(s 1, 1, ) = (s 1, λ) δ(s 1, 1, ) = (s 1, ) δ(s 1, 1, k ) = (s 2, k ) δ(s 2, 1, k ) = (s e, k ) () Geen Sie für den von Ihnen entworfenen Akzeptor die Erkennung des Testwortes n. Erkennung des Testwortes : (s, , k ) (s, , k ) (s, , k ) (s 1, 11111, k ) (s 1, 1111, k ) (s 1, 111, k ) (s 1, 11, k ) (s 2, 1, k ) (s e, λ, k )

6 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 7 Aufge 4. Grmmtiken (7 Punkte) / 7 Gegeen sei die Sprche Es gilt: L = {w {} w = 2 n, n }.,,,,... L; λ,,,,,... L. Geen Sie eine kontextsensitive, monotone oder llgemeine Grmmtik G = (N, T, P, S ) n mit L(G) = L. Geen Sie die Grmmtik vollständig n. Hinweise: Erzeugen Sie zunächst einen Pltzhlter A (Non-Terminl) für ein einzelnes und mrkieren Sie Anfng und Ende des Wortes jeweils mit einem weiteren Non-Terminl. Relisieren Sie eine Verdopplung, indem Sie ein Non-Terminl von hinten nch vorne wndern lssen und ei jedem Pssieren eines A dieses durch zwei A ersetzen. G = ({S, A, B, H, V}, {}, P, S ) monotone Grmmtik: P = {S VH, H BAH, AB BAA, VB VA, V, A, H } llgemeine Grmmtik: P = {S VAH, AH ABH, AB BAA, VB λ, H λ, A }

7 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 8 Aufge 5. Komplexitäts- und Berechenrkeitstheorie (7 Punkte) / 7 Gegeen seien die us der Vorlesung eknnten Komplexitätsklssen P, NP, NP-schwer und NP-vollständig. () Geen Sie für jede der ngegeenen Komplexitätsklssen eine Definition n. / 4 P: Menge ller Proleme, die in deterministisch polynomieller Zeit lösr sind. NP: Menge ller Proleme, die in nichtdeterministisch polynomieller Zeit lösr sind. NP-schwer: Menge ller Proleme Q für die für lle Proleme Q Q pol Q. NP-vollständig: Teilmenge von NP-schwer, die in NP liegt. () Gegeen sei ds folgende Optimierungsprolem uf Pltinen: NP gilt: Für eine Pltine mit n Trnsistoren, die uf ihrer Oerfläche ngercht sind, sollen lle Trnsistoren durch eine Leitung, die eenflls uf der Oerfläche der Pltine ngercht wird, miteinnder verunden werden, woei jeder Trnsistor genu einml von der Leitung durchkreuzt werden soll. Gesucht ist ein Leitungsverluf, ei dem die Länge der Leitung miniml ist. (Gehen Sie dvon us, dss es für Kreuzungspunkte der Leitung ereits eine Lösung git; ihre Anzhl muss lso nicht optimiert werden.) Welche Komplexität wird Ihr Algorithmus in Ahängigkeit von n vermutlich mindestens hen? Wovon hängt ds? Begründen Sie kurz. / 3 Der Algorithmus ist im Wesentlichen TSP, lso NP-vollständig. Vermutlich enötigt der Algorithmus mindestens exponentiellen Zeitufwnd, lso Ω(k n ) für eine Konstnte k. Wenn llerdings P = NP gelten sollte, ist der Zeitufwnd polynomiell, lso O(n k ) für eine Konstnte k. Ds liegt drn, dss im Fll P = NP lle NP-vollständigen Proleme in P liegen.

8 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 9 Aufge 6. BDDs und Schltnetze (1 Punkte) / 1 Gegeen sei die folgende Whrheitstelle, die eine Funktion f : B 3 B üer den Booleschen Vrilen,, c definiert: c f (,, c) () Geen Sie ein Binry Decision Digrm (BDD) für die Funktion f n. Gehen Sie von der folgenden Vrilenreihenfolge us: c. / c c c c

9 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 1 c / c c c / c 1 1 () Geen Sie ein Schltnetz n, ds usschließlich us den Busteinen NAND und NOR esteht und die Funktion f erechnet. / 5 NAND / NOR NAND c NAND NAND f

10 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 11 Aufge 7. Kodierung (11 Punkte) / 11 () Knn folgende Kodierung estehend us den Codewörtern,, c, d durch den Huffmn- Algorithmus entstnden sein? Begründen Sie kurz. 1 1 c d 11 Diese Kodierung knn nicht durch den Huffmn-Algorithmus entstnden sein, d die Kodierung die Fno-Bedingung nicht erfüllt. Die Kodierungen, die von dem Huffmn- Algorithmus erzeugt werden, erfüllen er die Fno-Bedingung. () Für eine Kodierung stehen is zu 4 Bits zur Verfügung. Wie viele Coderwörter können dmit mximl kodiert werden? Wie viele Codewörter können dmit mximl kodiert werden, wenn die Fno-Bedingung eingehlten werden soll? Anzhl der Codewörter ohne Fno-Bedingung: n = = = 3 Anzhl der Codewörter mit Fno Bedingung: n = 2 4 = 16 (c) Gegeen sei folgende Kodierung von e, f, g, h: / 7 e f 111 g 111 h 1111 (1) Wie viele gleichzeitige Bitfehler können eim Empfng eines verfälschten Codewortes im schlechtesten Fll mximl erknnt werden?

11 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 12 Hierzu muss die Fehlererkennung erechnet werden: Hmmingzhl h c = 3 Fehlererkennrkeit k = h c 1 = 3 1 = 2 (2) Wie viele gleichzeitige Bitfehler können eim Empfng eines verfälschten Codewortes im schlechtesten Fll mximl korrigiert werden? Hierzu muss die Fehlerkorrigierrkeit erechnet werden: Hmmingzhl h c = 3 Fehlerkorrigierrkeit k = (h c 1)/2 = (3 1)/2 = 1 (3) Welches Codewort / welche Codewörter sollten mit größter Whrscheinlichkeit üermitteln werden, wenn Sie die Wörter 1111 und 111 empfngen? i ( f ), d hierzu nur eine h c = 1 ii ( f oder g) oder 111, d hierzu eide eine h c = 2 ls minimlen Wert esitzen (4) Mchen Sie den Code für e, f, g, h sicherer, indem Sie ein weiteres Bit nhängen. Geen Sie dieses weitere Bit in der folgenden Telle n und egründen Sie, wie der Code ddurch sicherer wird. gerde ungerde e 1 f g h Durch ds Anhängen des Prüfits (Prity-Bit) wird die Anzhl der 1 uf gerde / ungerde gesetzt. Ddurch wird die Hmmingzhl h c um 1 erhöht ws wiederum die Fehlererkennrkeit erhöht.

12 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 13 Aufge 8. Von Neumnn-Rechner (7 Punkte) / 7 () In einem von Neumnn-Rechner erfolgt die Üertrgung von Informtionen üer verschiedene Busse. Benennen Sie in der folgenden Aildung die verschiedenen Busse sowie die jeweiligen Funktionseinheiten des von Neumnn-Rechners. / 3 Dtenus Rechenwerk Steuerwerk Speicher E/A-Gerät Steuerus Adressus () Ein Bus soll 4 MB n Dten üertrgen. Der Bus ht eine Breite von 32 Bit und eine Tktfrequenz von 1 MHz. Wie lnge duert die Üertrgung der Dten? Bndreite = 32it 1MHz = 4Byte 1../sec = 4MB/sec Üertrgungsduer = 4MB/4MB/sec = 1sec (c) Erklären Sie in kurzen Worten den Begriff Disy Chin. Disy-Chin ist eime dezentrle Steuerung der Buszuteilung. Die Sendewünsche werden üer eine gemeinsme Meldeleitung verreitet, woei der erste sendewillige Teilnehmer ds Verfügrkeitssignl erhält.

13 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 14 Aufge 9. Assemler (1 Punkte) / 1 Die Befehle der in der Vorlesung vorgestellten Assemler-Sprche sind folgendermßen ufgeut, woei Q für Quelle steht und Z für Ziel: OpCode Q1, (Q2,) Z Für unmittelre Adressierung wird ds Präfix # verwendet. Ein edingter Sprungefehl ist JNZ (JumpNotZero), der den Befehlszähler genu dnn zu Lel L springen lässt, flls Q. Die Nottion des Sprungefehls ist: JNZ Q L Gegeen sei ds folgende Assemlerprogrmm. 1. STORE R1, R2 2. STORE R1, R3 3. L1: MULTIPLY R1, R2, R1 [3. L1: STORE R1 R2 - für Teil (c)] 4. ADD R2, R1, R1 5. SUBTRACT R3, #1, R3 6. JNZ R3, L1 () Am Anfng der Rechnung stehe im Register R1 der Wert R1 A = n N +. Wie hängt der Endwert R1 E f (n) des Registers R1 m Ende der Rechnung von n, welche Funktion f (n) erechnet ds Progrmm lso? Es wird für n > die Funktion erechnet. f (n) = ((((...) n) + n) n + n) n + n = } {{ } n ml n+1 n i i=1 / 6 () Ws geschieht, wenn zu Beginn der Wert R1 A = n = in R1 steht? für n = wird die Funktion nicht korrekt erechnet, es kommt nämlich zu einer Endlosschleife, d R3 in Zeile 6 nie ist. / 1 (c) Welche Funktion f (n) wird erechnet, wenn mn den Befehl MULTIPLY R1, R2, R1 in Zeile 3 durch STORE R1, R2 ersetzt (es gelte wieder n N + )? / 3 f (n) = 2 n n

14 Grundlgen der Informtik II Prüfung SS Aufg./15 pges 15 Aufge 1. Dteiorgnistion (7 Punkte) / 7 Eine Möglichkeit der Orgnistion von Dteien ist die sogennnte Hsh-Orgnistion. Im folgenden seinen zwei verschiedene Hsh-Funktionen h : N N mit dem Primärschlüssel s gegeen: h 1 (s) = s mod 13 h 2 (s) = s mod 8 () Welche Hsh-Funktion würden Sie evorzugen? Begründen Sie kurz. Whl der Hsh-Funktion h 1 (s), d der Divisor eine Primzhl ist und diese für eine gleichmäßige Verteilung der Werte sorgt. () Legen Sie im folgenden die Hshfunktion h 2 (s) zugrunde. Speichern Sie folgende Werte in der nchstehenden Dtennk. Verwenden Sie hierei zur Kollisionsehndlung lineres Austesten uf Stzeene. / 5 1, 3, 25, 68, 49, 11, 34 reltive Stznummer Stz mit Schlüssel 1 25 (49 wird in 3 gespeichert) 2 1 (34 wird in 7 gespeichert) 3 49 (11 wird in 5 gespeichert)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewandte Informatik und Formale Beschreibungsverfahren 23.07.2012 Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Name: Vorname: Matr.-Nr.: Semester: (SS 2012)

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Zusammenhänge zwischen Sprachen und Automaten:

Zusammenhänge zwischen Sprachen und Automaten: Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Üung Simon Wcker Krlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundegriffe der Informtik Krlsruher Institut für Technologie 1 / 9 Regex-Bäume Anzhl A = {,

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen PD. Dr. Prdyumn Shukl Mrlon Brun Micel Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Luks König Institut für ngewndte Informtik und Formle Beschreibungsverfhren Grundlgen der Informtik II Übungsbltt: 2, WS

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009 Institut für Kryptogrphie und Sicherheit Dr. Jörn Müller-Qude Musterlösung zur Huptklusur Informtik III Wintersemester 2008/2009 Nme: Mtrikelnummer: Seite 1 Aufge 1 (5 + 5 = 10 Punkte) () Gegeen sei der

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier Weihnchtsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Automaten und formale Sprachen Bemerkungen zu den Folien

Automaten und formale Sprachen Bemerkungen zu den Folien Inhltsverzeichnis Automten und formle Sprchen Bemerkungen zu den Folien 1 Wiederholung Mengentheorie 3 Beispiele für die Potenzmenge (Folie 28)........................... 3 Beispiele für ds Kreuzprodukt

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache!

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache! 1 2 Reguläre Audrücke und reguläre Sprchen Grundlgen der Theoretichen Inormtik Till Mokowki Fkultät ür Inormtik Otto-von-Guericke Univerität Mgdeurg Winteremeter 2014/15 Stz: [Kleene] Die Kle der durch

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

1. Formale Sprachen Formale Sprachen

1. Formale Sprachen Formale Sprachen 1. Formle Sprchen Formle Sprchen 1. Formle Sprchen 1.1. Ws ist eine formle Sprche? Wenn mn einen Gednken in einer ntürlichen Sprche usdrücken will, kommt es im wesentlichen uf 2 Aspekte n: 1. Der korrekte

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 011/1 Inhlt der Vorlesung Themen dieser VL: Welche Rechenmodelle sind däqut? Welche Proleme

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Automaten und Formale Sprachen 7. Vorlesung

Automaten und Formale Sprachen 7. Vorlesung Automten und Formle Sprchen 7. Vorlesung Mrtin Dietzfelinger Bis nächste Woche: Folien studieren. Detils, Beispiele im Skript, Seiten 70 99. Definitionen lernen, Beispiele nsehen, Frgen vorereiten. Üungsufgen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kpitel 4 Minimierung Prof. Dr. Dirk W. Hoffmnn Hochschule Krlsruhe w University of Applied Sciences w Fkultät für Informtik Minimierung Motivtion Jede Boolesche Funktion lässt sich uf verschiedene Weise

Mehr

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c))

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c)) Boolsche Alger In dieser Aufge soll noch einml der Umgng mit der Boolschen Alger geuet werden. Zur Erinnerung deshl hier zunechst noch einml die grundlegenden Regeln (Nummerierung entsprechenend den GTI-Folien):

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik VU Technische Grundlgen der Informtik Üung 3: Schltnetze 83.579, 205W Üungsgruppen: Mo., 6.. Mi., 8..205 Allgemeiner Hinweis: Die Üungsgruppennmeldung in TISS läuft von Montg, 09.., 20:00 Uhr is Sonntg,

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr