5.2 Endliche Automaten

Größe: px
Ab Seite anzeigen:

Download "5.2 Endliche Automaten"

Transkript

1 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch Merken im Zustand realisiert werden. Daher brauchen endliche Automaten nicht zu schreiben. Außerdem bewegt sich bei endlichen Automaten der Lesekopf immer genau eine Position nach rechts. Damit muss die Übergangsfunktion bei einem endlichen Automaten nur den neuen Zustand spezifizieren, in die der Automat gehen soll. Dies führt zu der folgenden Definition. Definition Ein (deterministischer) endlicher Automat (DFA) A ist beschrieben durch ein 5-Tupel (Q, Σ, δ, q 0, F ), wobei Q eine endliche Menge von Zuständen ist, Σ ein endliches Alphabet ist, δ : Q Σ Q die Übergangsfunktion ist, q 0 der Startzustand ist, F Q die Menge von akzeptierenden Zuständen ist. DFA steht für deterministic finite automaton. Ein DFA hält nur, wenn er das Ende einer Eingabe w Σ erreicht hat. Auch wenn ein DFA einen akzeptierenden Zustand erreicht hat, wird die Berechnung weitergehen, außer das Ende der Eingabe ist erreicht. In der Praxis wird man das Ende der Eingabe durch ein spezielles Symbol Σ kennzeichnen. Wir verzichten darauf, um die Notation so einfach wie möglich zu halten. Die Schritte eines DFA bei Eingabe w Σ können ähnlich erklärt werden wie bei einer Turingmaschine. Wir könnten also definieren, was eine Konfiguration und eine Nachfolgekonfiguration ist. Da aber der Lesekopf eines DFA immer eine Position nach rechts wandert und ein DFA nicht schreiben kann, können wir für endliche Automaten eine einfachere Notation verwenden. Hierzu werden wir die Funktion δ fortsetzen auf Q Σ. Dieses geschieht folgendermaßen. Definition Für q Q, w = w 1 w n Σ gilt δ(q, w) = q, falls es q 1,..., q n Q gibt mit q n = q δ(q, w 1 ) = q 1 δ(q i, w i+1 ) = q i+1, i = 1,..., n 1. Alternativ können wir diese Erweiterung von δ auch ausdrücken durch δ(q, w 1 w n ) = δ(δ(q, w 1 w n 1 ), w n ), für alle q Q, w i Σ. Weiter definieren wir δ(q 0, ɛ) = q 0. Damit können wir elegant die Akzeptanz eines Worts durch einen DFA definieren. Definition Ein endlicher Automat A = (Q, Σ, δ, q 0, F ) akzeptiert w Σ, falls δ(q 0, w) F. D.h., der Automat akzeptiert w Σ, wenn er, gestartet im Zustand q 0, sich in einem Zustand aus F befindet, nachdem er alle Eingabesymbolen gelesen hat.

2 115 Die Zustände in Q\F sind, ohne dass wir dieses ausdrücklich so sagen, ablehnende Zustände. Schließlich erhalten wir die folgende Definition. Definition L(A) = {w Σ δ(q 0, w) F } = {w Σ A akzeptiert w} heißt die von A akzeptierte Sprache. Anders als bei Turingmaschine lassen wir bei endlichen Automaten mehrere akzeptierende Zustände zu. Dieses geschieht aus Bequemlichkeit. Man kann zeigen, dass jede Sprache, die von einem endlichen Automaten mit mehreren akzeptierenden Zuständen akzeptiert wird, auch von einen endlichen Automaten mit nur einem akzeptieren Zustand akzeptiert wird. Man sollte sich an dieser Stelle auch noch einmal klar machen, dass es zwischen dem akzeptierenden Zustand q accept einer DTM und den akzeptierenden Zuständen eines DFA einen wesentlichen Unterschied gibt. Die Berechnung eines DFAs endet nicht unweigerlich, wenn sich der DFA in einem akzeptierenden Zustand befindet. Die Berechnung eines DFAs endet immer erst, wenn die gesamte Eingabe gelesen wurde. Beispiel 1: Sei A 1 der endliche Automat mit Die Übergangsfunktion δ ist gegeben durch Q = {q 0, q 1 }, Σ = {0, 1}, F = {q 1 }. δ 0 1 q 0 q 0 q 1 q 1 q 0 q 1 Ist das letzte gelesene Eingabesymbol eine 0 so befindet A 1 sich im Zustand q 0. Ist das letzte gelesene Eingabesymbol eine 1, so befindet sich A 1 im Zustand q 1. Da F = {q 1 } gilt daher L(A 1 ) = {w {0, 1} w endet mit einer 1}. L(A 1 ) ist also die von der Grammatik G 4 (Seite 113) erzeugte Sprache. Die Folge von Zuständen, die A 1 bei Eingabe w = w 1 w n durchläuft, ist q 0, q w1, q w2,..., q wn. Wir sehen wieder, dass A 1 das Wort w akzeptiert, wenn q wn = q 1 w n = 1. Auf dem Wort 001 können wir das Verhalten von A 1 auch beschreiben durch δ(q 0, 001) = δ(δ(q 0, 00), 1) = δ(δ(δ(q 0, 0), 0), 1) = δ(δ(q 0, 0), 1) = δ(q 0, 1) = q 1 F. Die Übergangsfunktion δ kann bei endlichen Automaten auch durch einen gerichteten Graphen beschrieben werden. Dieser hat für jeden Zustand q Q einen Knoten gelabelt mit q. Aus jedem Knoten führen Σ viele gerichtete Kanten, die mit den Symbolen aus Σ gelabelt sind. Führt eine mit a gelabelte Kante vom Knoten gelabelt mit q zum Knoten gelabelt mit q, so bedeutet

3 116 Abbildung 5.3: Graphische Darstellung der Übergangsfunktion δ von A 1. dies δ(q, a) = q. Die akzeptierenden Zustände eines DFA werden durch einen Doppelkreis gekennzeichnet. Und der Startzustand kann an einer Kante ohne Anfangsknoten erkannt werden. Für den Automaten A 1 haben wir diesen Graphen in Abbildung 5.3 dargestellt. Beispiel 2: Sei A 2 der endliche Automat mit Die Übergangsfunktion δ ist gegeben durch Q = {q 0, q 1, q 2 }, Σ = {0, 1, 2, z}, F = {q 0 }. δ z q 0 q 0 q 1 q 2 q 0 q 1 q 1 q 2 q 0 q 0 q 2 q 2 q 0 q 1 q 0 Graphisch kann dieses dargestellt werden wie in Abbildung 5.4. Abbildung 5.4: Graphische Darstellung der Übergangsfunktion δ von A 2. Hier haben wir noch eine kleine Vereinfachung vorgenommen. Gilt δ(q, a 1 ) = δ(q, a 2 ) = = δ(q, a m ) = q für a j Σ, so gibt es nur eine gerichtete Kante von q nach q. Diese Kante ist dann mit a 1,..., a m gelabelt.

4 117 Ein Wort w in {0, 1, 2, z} wird von A 2 genau dann akzeptiert, wenn die Summe der Zahlen nach dem letzten auftauchenden z in w genau 0 modulo 3 ist. Bei Eingabe w = 1z12 erhalten wir δ(q 0, 1z12) = δ(δ(q 0, 1z1), 2) = δ(δ(δ(q 0, 1z), 1), 2) = δ(δ(δ(δ(q 0, 1), z), 1), 2) = δ(δ(δ(q 1, z), 1), 2) = δ(δ(q 0, 1), 2) = δ(q 1, 2) = q 0 F Die Folge der Zustände, die bei Eingabe 1z12 durchlaufen wird, ist q 0, q 1, q 0, q 1, q 0. Beispiel 3: Sei A 3 der endliche Automat mit Q = {s, q 1, q 2, r 1, r 2 }, Σ = {a, b}, F = {q 1, r 1 }, Startzustand = s. Die Übergangsfunktion δ ist gegeben durch δ a b s q 1 r 1 q 1 q 1 q 2 q 2 q 1 q 2 r 1 r 2 r 1 r 2 r 2 r 1 Die graphische Darstellung von δ ist in Abbildung 5.5 angegeben. Abbildung 5.5: Graphische Darstellung der Übergangsfunktion δ von A 3. Man überzeugt sich leicht, dass die von A 3 akzeptierte Sprache, alle Worte aus {a, b} + umfasst, bei denen das erste und das letzte Symbol übereinstimmen L(A 3 ) = {w {a, b} w = w 1 w n mit w 1 = w n }. An diesem Beispiel sieht man gut, wie ein endlicher Automat arbeitet und warum mehrere akzeptierende Zustände nützlich sind. Ist das erste gelesene Symbol ein a, so geht A 3 in die q-zustände (merkt sich so das erste gelesene Zeichen). Dann muss nur noch getestet werden, ob das letzte Zeichen der Eingabe ebenfalls a ist. Dieses geschieht mit einer Kopie des Automaten A 1. Analog geht der Automat in die r-zustände, wenn das erste gelesene Zeichen ein b ist.

5 118 Wir wollen zeigen, dass eine Sprache genau dann regulär ist, also von einer regulären Grammatik erzeugt wird, wenn sie von einem endlichen Automaten akzeptiert wird. Hierzu müssen zwei Richtungen gezeigt werden. 1. Wird L von einem endlichen Automaten akzeptiert, so gibt es eine reguläre Grammatik, die L erzeugt. 2. Gibt es eine reguläre Grammatik, die L erzeugt, so gibt es einen endlichen Automaten, der L akzeptiert. Die erste Richtung ist recht einfach. Satz Die Sprache L werde von einem endlichen Automaten A akzeptiert. Dann gibt es eine reguläre Grammatik G, die L erzeugt. Beweis: Sei L Σ und A gegeben durch das 5-Tupel (Q, Σ, δ, q 0, F ). Die Grammatik G = (V, Σ, P, S) wird folgendermaßen definiert. Die Menge der Terminale Σ von G ist das Eingabealphabet Σ von A. Die Menge der Variablen von G ist die Menge der Zustände von A, d.h., V = Q. Das Startsymbol S von G ist der Startzustand q 0 von A, d.h., S = q 0. Die Menge der Produktionen P besteht aus folgenden Produktionen. Falls δ(q, a) = q, so enthält P die Produktion q aq. Außerdem enthält P für alle q F, die Produktion q ɛ. Der Zusammenhang zwischen δ und P ist also: Wann immer A bei Lesen von a aus dem Zustand q in den Zustand q geht, so kann aus der Variablen q das Symbol a gefolgt von der Variablen q abgeleitet werden. Zusätzlich kann a alleine abgeleitet werden, falls q F. Nun gilt: w = w 1 w n L(A) es gibt Zustände q 1,..., q n Q mit δ(q i, w i+1 ) = q i+1, i = 0,..., n 1, q n F es gibt Variablen v 1,..., v n V mit S w 1 v 1 w 1 w 2 w n 1 v n 1 w 1 w 2 w n w 1 w n L(G). Wendet man auf den Automaten A 1 aus Beispiel 1 (Seite 115) die Methode des Beweises zur Umwandlung eines Automaten in eine Grammatik an, so erhält man genau die Grammatik G 4 (Seite 113). Nun wollen wir die Umkehrung dieses Satzes zeigen. Wir wollen zu jeder regulären Sprachen einen DFA konstruieren, der diese Sprache akzeptiert. Warum können wir hierzu die Konstruktion aus dem Beweis von Satz nicht einfach umdrehen? Gegeben eine reguläre Grammatik G = (V, Σ, P, S), warum konstruieren wir nicht einen DFA, dessen Zustände die Variablen V von G sind, und setzen dann für jede Produktion u av, u, v V, a Σ einfach δ(u, a) = v?

6 119 Dieses ist nicht möglich, denn zu jeder Variable u V und jedem Terminal a Σ kann eine Grammatik mehrere Produktionen der Form u av 1,..., u av k, u a enthalten. Die gerade skizzierte Idee würde daher keine Übergangsfunktion δ und damit keinen DFA liefern. Betrachten wir als Beispiel die Grammatik G 4. Diese besitzt für die Variable S die Produktionen S 0S S 1A S 1 Nun können wir nicht einfach δ(s, 1) = A setzen, denn dann wird die Regel S 1 nicht korrekt in einen Übergang eines endlichen Automaten übersetzt. Ein wesentlicher Unterschied zwischen Grammatiken und DFAs besteht darin, dass Grammatiken Wahlmöglichkeiten haben und diese auch haben müssen. D.h. für eine Variable gibt es in der Regel mehrere Produktionen. Dagegen ist das Verhalten eines DFA durch Zustand und gelesenes Symbol eindeutig bestimmt. Grammatiken sind nichtdeterministisch, DFAs hingegen sind deterministisch. Um nun zu zeigen, dass reguläre Sprachen durch DFAs akzeptiert werden können, gehen wir in zwei Schritten vor. Zunächst erweitern wir unser Modell von endlichen Automaten zu sogenannten nichtdeterministischen endlichen Automaten (NFA). Dann können wir die obige Idee zur Umwandlung einer Grammatik in einen Automaten wirklich benutzen. Wir erhalten dann allerdings einen NFA, keinen DFA. Schließlich zeigen wir, dass jede Sprache, die von einem NFA akzeptiert wird, auch von einem geeignet definierten DFA akzeptiert wird.

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken 1 / 15 Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken Prof. Dr. Hans Kleine Büning FG Wissensbasierte Systeme WS 08/09 2 / 15 Deterministischer endlicher Automat (DEA) Definition 1:

Mehr

5.7 Kontextfreie Grammatiken und Kellerautomaten

5.7 Kontextfreie Grammatiken und Kellerautomaten 130 5.7 Kontextfreie Grammatiken und Kellerautomaten Im letzten Abschnitt haben wir gesehen, dass wir reguläre Sprachen auch mit Hilfe von endlichen Automaten charakterisieren können. Jetzt wollen wir

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

2.6 Verdeutlichung verwendeter Begriffe

2.6 Verdeutlichung verwendeter Begriffe 2.6 Verdeutlichung verwendeter Begriffe endlich/finit: die Mengen der Zustände und der Ein- bzw. Ausgabezeichen sind endlich synchron: die Ausgabezeichen erscheinen synchron mit dem Einlauf der Eingabezeichen

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Grundbegriffe der Informatik Tutorium 33

Grundbegriffe der Informatik Tutorium 33 Tutorium 33 02.02.2017 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Gliederung 1 2 3 Ein ist ein Tupel A = (Z, z 0, X, f, Y, h)

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Pumping Lemma Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 3. Endliche Automaten endliche Zustandsübergangssysteme Theoretische Informatik Mitschrift Beispiel: 2-Bit-Ringzähler: ={Inc} L R ={IncInc Inc,Inc 7, Inc 11,...} n ' mod ' 4=3 ={Inc n k 0.n=4 k3 } 2-Bit-Ringzähler

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik Vorlesung am 2. November 27 2..27 Dorothea Wagner - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Vorlesung am 2. November 27 Helmholtz-Gemeinschaft

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

Es gibt drei unterschiedliche Automaten:

Es gibt drei unterschiedliche Automaten: Automatentheorie Es gibt drei unterschiedliche Automaten: 1. Deterministische Endliche Automaten (DEA) 2. Nichtdeterministische Endliche Automaten (NEA) 3. Endliche Automaten mit Epsilon-Übergängen (ε-

Mehr

2.3 Abschlusseigenschaften

2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften In diesem Abschnitt wollen wir uns mit Abschlusseigenschaften der regulären Sprachen, d.h. mit der Frage, ob, gegeben eine Operation und zwei reguläre

Mehr

4.2.4 Reguläre Grammatiken

4.2.4 Reguläre Grammatiken 4.2.4 Reguläre Grammatiken Eine reguläre Grammatik ist eine kontextfreie Grammatik, deren Produktionsregeln weiter eingeschränkt sind Linksreguläre Grammatik: A w P gilt: w = ε oder w = Ba mit a T und

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

THIA - Übungsblatt 2.

THIA - Übungsblatt 2. THIA - Übungsblatt 2. Aufgabe 12 (Eine einfache Sprache). Endliche Ziffernfolgen, die mit einer 0 beginnen, auf die mindestens eine weitere Ziffer folgt, wobei nur die Ziffern 0,..., 7 vorkommen, sollen

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Lexikalische Analyse, Tokenizer, Scanner

Lexikalische Analyse, Tokenizer, Scanner Lexikalische Analyse, Tokenizer, Scanner Frühe Phase des Übersetzers Aufgabenteilung: Scanner (lokale) Zeichen (Symbol-)Analyse Parser Syntax-Analyse Aufgabe des Scanners: Erkennung von: Zahlen, Bezeichner,

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden:

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: Sprachen und Automaten 1 Deterministische endliche Automaten (DFA) Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: M = (Z,3,*,qo,E) Z = Die Menge der Zustände 3 = Eingabealphabet

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.

Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen. Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

7 Endliche Automaten. 7.1 Deterministische endliche Automaten

7 Endliche Automaten. 7.1 Deterministische endliche Automaten 7 Endliche Automaten 7.1 Deterministische endliche Automaten 7.2 Nichtdeterministische endliche Automaten 7.3 Endliche Automaten mit g-übergängen Endliche Automaten 1 7.1 Deterministische endliche Automaten

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Einführung in die Informatik

Einführung in die Informatik Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für

Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften

Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 2: Eigenschaften von regulären Sprachen schulz@eprover.org Software Systems Engineering Alphabet Definition: Ein Alphabet Σ ist eine nichtleere, endliche

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

I.2. Endliche Automaten (ohne Ausgabe)

I.2. Endliche Automaten (ohne Ausgabe) I2 Endliche Automaten (ohne Ausgabe) I2 Deterministische endliche Automaten Beispiel: Pascal-Syntax für Zahlen hat folgende Form: ::=

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von

Mehr

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : brezany@par.univie.ac.at

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Theoretische Informatik I

Theoretische Informatik I heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

4.2 Varianten der Turingmaschine. 4 Turingmaschinen

4.2 Varianten der Turingmaschine. 4 Turingmaschinen 4 Turingmaschinen Alles was intuitiv berechenbar ist, d.h. alles, was von einem Menschen berechnet werden kann, das kann auch von einer Turingmaschine berechnet werden. Ebenso ist alles, was eine andere

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Lösungen zur 3. Projektaufgabe TheGI1

Lösungen zur 3. Projektaufgabe TheGI1 Marco Kunze (makunze@cs.tu-berlin.de) WS 2001/2002 Sebastian Nowozin (nowozin@cs.tu-berlin.de) 21. 1. 2002 Lösungen zur 3. Projektaufgabe TheGI1 Definition: Turing-Aufzähler Ein Turing-Aufzähler einer

Mehr

Deterministische Turing-Maschinen

Deterministische Turing-Maschinen Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 8 18. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Theoretische Informatik I

Theoretische Informatik I heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016. FORMALE SYSTEME 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten Markus Krötzsch TU Dresden, 14. November 2016 Rückblick Markus Krötzsch, 14. November 2016 Formale Systeme Folie 2 von

Mehr

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 27. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 27. Juni HA-Lösung. TA-Lösung Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 27. Juni 2016 HA-Lösung TA-Lösung Einführung in die theoretische Informatik Aufgabenblatt 9 Beachten Sie: Soweit

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen.

Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel: 1234q567 bedeutet: Kopf steht auf 5, Zustand ist q. Rechnung:

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände).

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände). Endliche Automaten Endliche Automaten Definition Ein deterministischer endlicher Automat (kurz DFA für deterministic finite automaton ) ist ein Quintupel M = (Σ, Z, δ, z 0, F), wobei Σ ein Alphabet ist,

Mehr

Kapitel 2 Das Modell der endlichen Automaten

Kapitel 2 Das Modell der endlichen Automaten Kapitel 2 Das Modell der endlichen Automaten Wenn man ein Berechnungsmodell beschreiben will, muss man folgende Fragen beantworten (siehe auch das Modul Geschichte der Informatik und Begriffsbildung in

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Musterlösung Informatik-III-Klausur

Musterlösung Informatik-III-Klausur Musterlösung Informatik-III-Klausur Aufgabe 1 (1+4+3+4 Punkte) (a) 01010 wird nicht akzeptiert: s q 0 q 1 q 2 f q 2 10101 wird akzeptiert: s q 2 q 2 f q 2 f (b) ε: {s, q 0, q 1, q 2 }, {f} 0: {s, q 0,

Mehr