Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Größe: px
Ab Seite anzeigen:

Download "Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen"

Transkript

1 Rotationen und Schwingungen von Molekülen

2 Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei Möglichkeiten Rotation Vibration Schwingung Einführung in die Struktur der Materie 86

3 Rotationen Rotationen Rotation eines zweiatomigen Moleküls um seinen Schwerpunkt M b R b S R a Ma Die Kerne werden als Punktförmig angenommen Schwerpunkt R B M B = R A M A (36) Einführung in die Struktur der Materie 87

4 Rotationen Trägheitsmoment Klassische Rotationsenergie I = M A R 2 A + M BR 2 B (37) = M A M B M A + M B (R A + R B ) 2 (38) = M red R 2 (39) E rot = 1 2 Iω2 (40) Quantenphysik: Der Drehimpuls L ist gequantelt L 2 = J(J + 1) 2 (41) Einführung in die Struktur der Materie 88

5 Rotationen Damit wird die Rotationsenergie E rot = L2 = J(J + 1) 2 = 2I 2I (42) J(J + 1) 2 2M red R 2 (43) J ist die Rotationsquantenzahl Einführung in die Struktur der Materie 89

6 Rotationen Das Energiediagramm eines starren Rotators (R ist festgehalten) hat damit die Form J=0 Einführung in die Struktur der Materie 90

7 Rotationen Wie sieht der Abstand zweier benachbarter Rotationsniveaus aus? E rot = = 2 [(J + 1)(J + 2) J(J + 1)] 2M red R2 (44) 2 2 (J + 1) = (J + 1) M red R2 I (45) Die Masse eines Moleküls und damit auch M red ist bekannt, so daß aus den Rotationsspektren somit der Abstand R bestimmt werden kann Einführung in die Struktur der Materie 91

8 Rotationen Die Wellenfunktion des starren Rotators sind die Kugelflächenfunktionen Ψ rot (R) = Y JM (ϑ,ϕ) (46) Die Parität der Kugelflächenfunktionen ist durch ( 1) J gegeben Die typischen Energien von Rotationsspektren liegen im Bereich von ev Zur Untersuchung von Rotationsspektren ist somit die Infrarotspektroskopie geeignet Auswahlregeln sind somit identisch dener der optischen Spektroskopie für Dipolübergänge durch das Dipolmatrixelement gegeben ψ end e r ψ anf (47) Einführung in die Struktur der Materie 92

9 Rotationen Parität Parität P: Punktspiegelung am Ursprung P : r r Der Operator e r hat somit negative Parität P = 1 Operator r 2 hat positive Parität, da r 2 ( r) 2 = r 2 ψ end e r ψ anf = ψ end e rψ anf dτ Damit ψ end e r ψ anf 0, muß der Integrand gerade sein Die Parität von Anfangs- ψ anf und Endzustand ψ end müssen unterschiedlich sein Einführung in die Struktur der Materie 93

10 Rotationen Damit folgt die Auswahlregel J = ±1 (48) Die Ankopplung an eine elektromagnetische Welle erfordert ein elektrisches Dipolmoment O 2, N 2,... können nicht angeregt werden, aber NaCl, CO, OH können untersucht werden IR Spektren sind sehr einfach und zeigen äquidistante Linien E rot = 2 M red R2(J + 1) (49) Einführung in die Struktur der Materie 94

11 Rotationen Rotationspektrum eines HCl Moleküls Einführung in die Struktur der Materie 95

12 Rotationen Konvention in der Spektroskopie Angabe der Energie der Niveaus als Termwerte F = E hc = hν hc = ν c = 1 λ (50) 1/λ = ν ist die Wellenzahl gemessen in cm 1 und entspricht der Zahl der Wellenlängen pro cm Wellenzahl eines Überganges mit F rot = J(J + 1) 2 2hcM red R 2 = B ej(j + 1) (51) B e = Diese Werte sind in der Literatur tabelliert 2 2hcM red R 2 (52) Einführung in die Struktur der Materie 96

13 Rotationen Rotationskonstanten einiger Moleküle Schwingung B e (cm 1 ) R 0 (10 12 m) ω e (cm 1 ) H N O Li NO HCl cm 1 = s 1 = ev Schwingung: v = 0 v = 1 Übergang Einführung in die Struktur der Materie 97

14 Schwingungen Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung Annäherung der Potentialkurve durch eine Parabel in der Nähe des Gleichgewichtsabstandes R 0 Einführung in die Struktur der Materie 98

15 Schwingungen Klassisch E p (R) = 1 2 k(r R 0) 2 (53) M a k M b R 0 Übergang zum Schwerpunktsystem und Einführung von Relativkoordinaten M red d2 (R R 0 ) dt 2 = k(r R 0 ) (54) Ansatz R R 0 = A cosωt M red ω 2 k A cosωt = k A cosωt mit ω = (55) M red Einführung in die Struktur der Materie 99

16 Schwingungen Quantenphysik: Schrödingergleichung des harmonischen Oszillators [ 2 d2 (R R 0 ) 2M red dx 2 + k ] 2 (R R 0) 2 Ψ vib (R R 0 ) = E vib Ψ vib (R R 0 ) Die Eigenfunktionen des harmonischen Oszillators sind die hermitschen Polynome mit α = 1 Mred k v E vib Ψ vib ω A 0 e α 2 R ω A 1 2 R e α 2 R ω A 2 (1 2α R 2 ) e α 2 R ω A 3 (2 R 3 3α R) e α 2 R2 (56) Einführung in die Struktur der Materie 100

17 Schwingungen v=0 + Optische Dipolübergänge: v = ±1, da die Parität wechseln muß Ankopplung an eine elektromagnetisch Welle, wenn dp el 0, d.h. dr das elektrische Dipolmoment muß sich ändern Keine Ankopplung an N 2, O 2, H 2 Einführung in die Struktur der Materie 101

18 Schwingungen Schwingungsspektren E v = [(v + 1) ω v ω] = ω IR-Spektrum des harmonischen Oszillators zeigt nur eine Linie Aus dem Vibrationsspektrum können die reduzierte Masse M red und die Kopplungskonstante k ermittelt werden Das Modell eines harmonischen Oszillators ist aber sicher etwas zu einfach, da das Potential nur im Grundzustand einem harmonischen Oszillator ähnelt Absorption langwellig Photonenenergie Einführung in die Struktur der Materie 102

19 Der anharmonische Oszillator Schwingungen Wir wissen schon, wie das Potential eines zwei-atomigen Moleküls aussieht Um Schwingungen zu berechnen, wird häufig als empirischer Ansatz das Morse Potential verwendet ( ) E el (R) = D e 1 e β(r R 2 k 0) mit β = (57) 2D e Einführung in die Struktur der Materie 103

20 Schwingungen Schwingungen Harmonische Näherung für kleine Auslenkungen Entwicklung von (1 x) 2 E pot (R) = D e (1 1+β(R R 0 )) 2 (58) In 1. Näherung ist somit E pot (R) D e β 2 (R R 0 ) 2, (59) was genau einer Parabel entspricht Einführung in die Struktur der Materie 104

21 Schwingungen Energieskalen in Molekülen: Elektronisch: E = V 1 V 0 ev Vibration: E Vib = 0.1 ev Rotation: E Rot = mev Einführung in die Struktur der Materie 105

22 Schwingungen Zusammenfassung Zweiatomige Moleküle Die Born-Oppenheimer Näherung erlaubt die Separation von Elektronen-, Vibrations- und Rotationsbewegung H = H El +H Vib +H Rot (60) Ψ(R, r) = Ψ El (R, r)ψ Vib (R)Ψ Rot (ϑ,ϕ) (61) Produktdarstellung der Wellenfunktion Die Energie ist damit E = E ges = E El + E Vib + E Rot (62) Einführung in die Struktur der Materie 106

23 Rovibronische Spektren Rotation dreiatomiger Moleküle Lineare Moleküle : z.b. O C O CO 2 O C O Drei Orthogonale Rotationsachsen Die Trägheitsmomente um die beiden Achsen zur Molekülachse sind gleich, die Rotation um die Molekülachse entfällt Einführung in die Struktur der Materie 107

24 Rotation dreiatomiger Moleküle Rovibronische Spektren Nichtlineare (gewinkelte) Moleküle : z.b. H 2 O O H H Drei Orthogonale Rotationsachsen durch den Schwerpunkt Alle drei Trägheitsmomente sind verschieden Einführung in die Struktur der Materie 108

25 Rovibronische Spektren Schwingungen dreiatomiger Moleküle O symmerische Streckmode H H O H H 3657 cm 1 Biegeschwingung 1595 cm 1 Schwingungen nichtlineare (gewinkelte) Moleküle Beispiel H 2 O Die beiden Streckschwingungen haben sehr ähnliche Energien O asymmetrische Streckschwingung H H Einführung in die Struktur der Materie 109

26 Rotations-Vibrationsspektren Rovibronische Spektren Wie sehen typische Rotations und Vibrationsspektren von Molekülen aus? Beispiel CO Eine Hauptschwingungsbande und schwächere Obertöne Spektrum mit niedriger Auflösung Einführung in die Struktur der Materie 110

27 Rotations-Vibrationsspektren Rovibronische Spektren CO Spektrum der Hauptbande mit hoher Auflösung Beobachtung der Rotationsstruktur Rotation und Vibration können nicht getrennt beobachtet werden, da ein schwingendes Molekül eigentlich auch immer rotiert Einführung in die Struktur der Materie 111

28 Rotations-Vibrationsspektren Rovibronische Spektren Rotations-Vibrationsspektren komplizierter Moleküle: CH 3 I Einführung in die Struktur der Materie 112

29 Rovibronische Spektren Bedeutung von Schwingungen und Rotationen Spektrum Sonne und Erde Einführung in die Struktur der Materie 113

30 Rovibronische Spektren Bedeutung von Schwingungen und Rotationen Absorption Luft mit Wasser und CO 2 Einführung in die Struktur der Materie 114

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 4 Emission und Absorption elektromagnetischer Strahlung Stephan Huber, Markus Kotulla, Markus Perner 01.09.2011 Inhaltsverzeichnis 1 Emission und Absorption elektromagnetischer

Mehr

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun UV/VIS-Spektroskopie: Optische Bestimmung der Dissoziationsenergie von I 2 Es soll ein UV/VIS-Spektrum von Ioddampf aufgenommen werden. Daraus sollen die Bandensysteme der v 00 -Progressionen (v 00 = 0,

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Physikalische Ursachen der Molekülbindung

Physikalische Ursachen der Molekülbindung Physikalische Ursachen der Molekülbindung Molekülbindungen können auf verschiedene Arten entstehen: gemeinsame Elektronen durch räumliche Umrodnung der W keitverteilung - - + + Verringerung der kinetischen

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 5 Dr. Jan Friedrich Nr. 4.7.5 Email Jan.Friedrich@ph.tum.de Telefon 89/89-586 Physik Department E8, Raum 564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 6. Vorlesung, 16. 5. 2013 Molekülspektren, Normalkoordinaten, Franck-Condonprinzip,

Mehr

Einführung in die Struktur der Materie. Studierende des Lehramtes und des Nebenfachs. Michael Martins und Erika Garutti

Einführung in die Struktur der Materie. Studierende des Lehramtes und des Nebenfachs. Michael Martins und Erika Garutti Einführung in die Struktur der Materie für Studierende des Lehramtes und des Nebenfachs Michael Martins und Erika Garutti Inhalt der Vorlesung Einleitung Teil A (M. Martins): I. Molekülphysik II. Festkörperphysik

Mehr

PC-II-08 Seite 1 von 5 WiSe 09/10. Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie

PC-II-08 Seite 1 von 5 WiSe 09/10. Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie PC-II-08 Seite 1 von 5 WiSe 09/10 Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie PC-II-08 Seite von 5 WiSe 09/10 Rotations- und Schwingungsspektroskopie Rotationsspektroskopie Die Rotationsspektroskopie

Mehr

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment Rotations-Spektroskopie aus der klassischen Physik J E = I Drehimpuls Energie eines Rotators Trägheitsmoment I = mr Atommassen Geometrie von Molekülen Abstandsinformationen!!! C 3 -Rotation C -Rotation

Mehr

TU Clausthal Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/16 Praktikum Teil C und D. 1. Einleitung Seite 2. 2.

TU Clausthal Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/16 Praktikum Teil C und D. 1. Einleitung Seite 2. 2. Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/6 IR SPEKTROSKOPIE Inhaltsangabe:. Einleitung Seite. Theorie Seite. Einleitung Seite. Rotation und Schwingung von zweiatomigen Molekülen Seite

Mehr

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie Übersicht: Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie 6.1 Schwingungen zweiatomiger Moleküle: harmonische Näherung 6.2 Auswahlregeln für vibratorische Übergänge 6.3 Schwingungen

Mehr

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien Molekülphysik Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder Oldenbourg Verlag München Wien Vorwort XI 1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Einleitung 1 Kurzer historischer

Mehr

Klausur zum Modul PC-3-P - Matrie und Strahlung

Klausur zum Modul PC-3-P - Matrie und Strahlung Klausur zum Modul PC-3-P - Matrie und Strahlung Nils Bartels 8. September 008 Formaldehyd 1 Spektroskopischer Nachweis von Formaldehyd in der Raumluft 1.1 Rotationsspektrum Die übergeordnete Auswahlregel

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 5. Vorlesung, 25. 4. 2013 Born Oppenheimernäherung, Molekülrotation, Molekülschwingungen

Mehr

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie Bachelorstudiengang CBI / LSE - Teil Physikalische Chemie SS10 - Blatt 1 / 15 Klausur Bachelorstudiengang CBI / LSE Physikalische Chemie 27.09.2010 Name: Vorname: geb. am: in: Studienfach: Matrikelnummer:

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Kapitel 5: Rotationsbewegung von Molekülen und Rotationsspektroskopie

Kapitel 5: Rotationsbewegung von Molekülen und Rotationsspektroskopie Kapitel 5: Rotationsbewegung von Molekülen und Rotationsspektroskopie Übersicht: 5.1. Schrödingergleichung für die Drehbewegung 5.2 Molekulare Trägheitsmomente 5.3 Klassifikation molekularer Kreisel 5.4.

Mehr

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2

Der nichtrelativistische Hamiltonoperator für ein System aus N k Atomkernen (mit Ladung +Z n ) und N e = N k. n=1 Z n Elektronen lautet: z n z m e 2 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

2 Spektroskopie. 2.1 Einleitung

2 Spektroskopie. 2.1 Einleitung 2.1 Einleitung Mikrowellen-Spektroskopie ist ein Teil der Molekular-Spektroskopie, welche die Wechselwirkung von elektromagnetischer Strahlung mit Materie untersucht. Ein Ziel der Spektroskopie ist es

Mehr

Rotationsschwingungsspektren von HCl

Rotationsschwingungsspektren von HCl Seminar zum Fortgeschrittenen Praktikum am II Physikalischen Institut Rotationsschwingungsspektren von HCl Oliver Flimm Oberstraße 74 51149 Köln Uwe Münch Schmittgasse 92 51143 Köln e-mail: flimm@ph-cipuni-koelnde

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Physikalische Chemie für Fortgeschrittene. Protokoll

Physikalische Chemie für Fortgeschrittene. Protokoll Universität Leipzig Studiengang Chemie (Bachelor) Physikalische Chemie für Fortgeschrittene Sommersemester 014 Protokoll Versuch 3 Infrarotspektroskopie Rotationsschwingungsspektren Betreuer: M.Sc. Marcel

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Mit 245 Abbildungen und 43 Tabellen Physikalische Bibliothek Fachbereich

Mehr

2 Spektroskopie. 2.1 Einleitung

2 Spektroskopie. 2.1 Einleitung 2.1 Einleitung Mikrowellen-Spektroskopie ist ein Teil der Molekular-Spektroskopie, welche die Wechselwirkung von elektromagnetischer Strahlung mit Materie untersucht. Ein Ziel der Spektroskopie ist es

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Kapitel 7: Elektronische Spektroskopie

Kapitel 7: Elektronische Spektroskopie Kapitel 7: Elektronische Spektroskopie Übersicht: 7.1 Drehimpuls-Kopplungshierarchien in Molekülen: Hundsche Fälle 7.2 Auswahlregeln für rovibronische Übergänge 7.3 Das Franck-Condon-Prinzip 7.4 Zerfall

Mehr

Infrarot- Spektroskopie

Infrarot- Spektroskopie Technische Universität Darmstadt Fachbereich Physik Institut für Festkörperphysik Versuch 1.8: Infrarot- Spektroskopie Praktikum für Fortgeschrittene Von Isabelle Zienert (16586) & Mischa Hildebrand (12766)

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Schwingungsspektren organischer Moleküle

Schwingungsspektren organischer Moleküle 1. Theorie Schwingungsspektren organischer Moleküle Die Grundlagen der Rotationsschwingungsspektroskopie werden im Versuch Molekülspektroskopie besprochen, so dass hier lediglich auf die Schwingungsspektroskopie

Mehr

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Cluster-Struktur in Kernen Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Die Struktur von 11 Li Beim Aufbruch von 11 Li wird nicht nur ein Neutron herausgeschlagen

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Versuch 27. IR-Spektroskopie

Versuch 27. IR-Spektroskopie Grundpraktikum Physikalische Chemie Versuch 7 IR-Spektroskopie Überarbeitete Versuchsanleitung, Dr. Ludwig Kibler 9.01.09 1 Aufgabenstellung In diesem Versuch wird ein Rotations-Schwingungsspektrum von

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Struktur von HCl aus IR Spektroskopie und theoretischen Modellen

Struktur von HCl aus IR Spektroskopie und theoretischen Modellen IR Spektroskopie 1 Struktur von HCl aus IR Spektroskopie und theoretischen Modellen 1. Einleitung In diesem Versuch wird das Rotations-Schwingungs-Spektrum von gasförmigem HCl mit Hilfe eines Fourier-Transform-IR

Mehr

PC-II-04 Seite 1 von 8 WiSe 09/10

PC-II-04 Seite 1 von 8 WiSe 09/10 PC-II-04 Seite 1 von 8 WiSe 09/10 Nachdem wir uns mit dem Teilchen im ein- und dreidimensionalen Kasten beschftigt haben, und Wellenfunktionen finden konnten, wollen wir das gleiche Problem nun fr ein

Mehr

4. Molekülspektroskopie

4. Molekülspektroskopie 4. Molekülspektroskopie E i n f ü h r u n g i n d i e P h y s i k a l i s c h e C h e m i e K4-1 Molekülspektroskopie - Einführung - Aufbau eines Spektrometers - Quantisierung der Molekülbewegungen - Rotation,

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

M. Musso: Physik II Teil 37 Moleküle Seite 1

M. Musso: Physik II Teil 37 Moleküle Seite 1 M. Musso: Physik II Teil 37 Moleküle Seite 1 Tipler-Mosca Physik Moderne Physik 37. Moleküle (Molecules) 37.1 Die chemische Bindung (Molecular bonding) 37. Mehratomige Moleküle (Polyatomic molecules) 37.3

Mehr

PHYSIK. Studienbrief Moleküle. AUTOR: Dr. Johannes Bernardi

PHYSIK. Studienbrief Moleküle. AUTOR: Dr. Johannes Bernardi PHYSIK AUTOR: Dr. Johannes Bernardi Inhalt: 1 Einführung...3 2 Ionenbindung (heteropolare Bindung): A + B...4 3 Kovalente Bindung (chemische Bindung): AB...6 4 Van der Waals Bindung...7 5 Wasserstoffbindung...8

Mehr

Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase

Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase. Versuchsziel / Experimentelles In diesem Versuch wird ein Infrarot-Spektrum von CO im Bereich der Wellenzahlen ν von 6000 bis 400 cm- mit einer

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Fortgeschrittenenpraktikum Fouriertransformationsinfrarotspektroskopie

Fortgeschrittenenpraktikum Fouriertransformationsinfrarotspektroskopie 1 Fortgeschrittenenpraktikum Fouriertransformationsinfrarotspektroskopie (FTIR) Mit Hilfe der Fouriertransformierten-Infrarotspektroskopie sollen verschiedene Messungen durchgeführt werden. Zum einen werden

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

1.8 Infrarot-Spektroskopie

1.8 Infrarot-Spektroskopie Physikalisches Praktikum für Fortgeschrittene Technische Universität Darmstadt Abteilung B : Institut für Festkörperphysik 1 Einführung 1.8 Infrarot-Spektroskopie Die Absorptionsspektren von mehratomigen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i Die Wahrscheinlichkeit, das System zu einem bestimmten Zeitpunkt in einem bestimmten Zustand anzutreffen, ist durch das Betragsquadrat der Wellenfunktion (x, t) 2 gegeben Die Erwartungswerte von Operatoren

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

TU Clausthal Institut für Physikalische Chemie 6. IR-Spektroskopie Stand 12/04 Fortgeschrittenenpraktikum

TU Clausthal Institut für Physikalische Chemie 6. IR-Spektroskopie Stand 12/04 Fortgeschrittenenpraktikum Institut für Physikalische Chemie 6. IR-Spektroskopie Stand /4 IR SPEKTROSKOPIE Inhaltsangabe:. Einleitung Seite. Theorie Seite. Einleitung Seite. Rotation und Schwingung von zweiatomigen Molekülen Seite

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische Chemie III III Metallorganische Chemie Dr. J. Wachter IR-Teil3 www.chemie.uni-regensburg.de/anorganische_chemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_chemie/wachter/lehre.html

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Funktionelle Gruppen

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie: Übersicht Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Kapitel 4: Molekülspektroskopie

Mehr

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie Methoden-Kurs - Teil I-Spektroskopie Dr. Markus berthür Fachbereich Chemie, Uni Marburg aum 6217 oberthuer@chemie.uni-marburg.de Anwendungen der I-Spektroskopie Strukturaufklärung von organischen Molekülen

Mehr

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie Infrarot-Spektroskopie 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden die absorbierten

Mehr

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie WS 17/18 Infrarot-Spektroskopie 1 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

F61-1. Elektronische Absorption des Iod-Moleküls: Elektronenschwingungsspektren

F61-1. Elektronische Absorption des Iod-Moleküls: Elektronenschwingungsspektren F6- F 6 Elektronische Absorption des Iod-Moleküls: Elektronenschwingungsspektren. Aufgabe Es ist das elektronische Absorptionsspektrum mit Schwingungsfeinstruktur von Iod Dampf mit einem NIR/UV/VIS Gitterspektrometer

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration

4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration g 4.2.2.Das Wasserstoff-Molekül H 2 Vergleich der Wellenfunktionen für antiparallele Spinkonfiguration a () ϕ ( 2) ϕ ( 2) ϕ ( 1) ψ = ϕ + 1 b a b Heitler-London ( ) ϕ ( 2) + ϕ ( 2) ϕ ( 1) + [ ϕ ( 1) ϕ (

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

Optische Absorption von Molekülen. 4. Februar 2008

Optische Absorption von Molekülen. 4. Februar 2008 Optische Absorption von Molekülen 4. Februar 2008 Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Grundlagen 4 2.1 Allgemeines zur Spektroskopie......................... 4 2.2 Spezielle Theorie für zweiatomige

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Das Schwingungsspektrum von Wasser

Das Schwingungsspektrum von Wasser Das Schwingungsspektrum von Wasser Vortrag im Rahmen des Seminars zum anorganisch-chemischen Fortgeschrittenenpraktikum Institut für Anorganische Chemie Universität Karlsruhe Matthias Ernst Freitag, 29.6.2006

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

molekulare Anregungen Rotation, Vibration, Spektren...

molekulare Anregungen Rotation, Vibration, Spektren... 3 Moleküle Übersicht: Molekülbindung Grundzustands-Eigenschaften usw. molekulare Anregungen Rotation, Vibration, Spektren... Moleküldynamik Wellenpakete 3.1 Molekülbindung Die Schrödingergleichung für

Mehr

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b

Übungen zur Vorlesung Theoretische Chemie II Übungsblatt 1 SoSe 2015 Lösungen Ĥ Ψ = E Ψ (1) c b Übungen zur Vorlesung Theoretische Chemie II Übungsblatt SoSe 205 Lösungen. H 2 + Molekülion a) Konstruieren Sie die Schrödingergleichung in Matrixdarstellung. Zunächst geht man von der stationären Schrödinger-Gleichung

Mehr

Infrarot-Spektroskopie (Stand: )

Infrarot-Spektroskopie (Stand: ) Physikalisches Praktikum für Fortgeschrittene FP 11 Infrarot-Spektroskopie (Stand: 10.08.2016) Literatur: Bergmann - Schaefer Lehrbuch der Experimentalphysik Band IV, Kap. III K. H. Hellwege Einführung

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

IR- Kurs OC1-Praktikum

IR- Kurs OC1-Praktikum IR- Kurs OC1-Praktikum Dr. Julia Wirmer-Bartoschek Schwalbe Gruppe N160 Raum 315 ferner@nmr.uni-frankfurt.de Seite 1 Spektroskopische Methoden, Messgrössen -rays x-rays UV VIS IR -wave radio 10-10 10-8

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

Theoretische Chemie / Computerchemie

Theoretische Chemie / Computerchemie Theoretische Chemie / Computerchemie Bernd Hartke Theoretische Chemie Institut für Physikalische Chemie Christian-Albrechts-Universität Kiel Max-Eyth-Straße 2 Erdgeschoß, Raum 29 Tel.: 43/88-2753 hartke@pctc.uni-kiel.de

Mehr

Frank Cichos. Molekülphysik & Kernphysik

Frank Cichos. Molekülphysik & Kernphysik Frank Cichos Molekülphysik & Kernphysik Einführung Willkommen zum Skript Vorlesung Experimentalphysik IV aus dem Sommersemester im Studiengang Bachelor/Physik 5. Die Vorlesung soll einen Überblick über

Mehr

Dissoziationsenergie von Iod (FP5(MP))

Dissoziationsenergie von Iod (FP5(MP)) Dissoziationsenergie von Iod (FP5(MP)) Ziel des Versuches Die optische Spektroskopie war und ist die wohl wichtigste Methode zur Untersuchung der Struktur von Atomen und Molekülen. So ermöglicht die Einstrahlung

Mehr

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls

Molekülphysik. April Grundzustand und angeregte Zustände eines Moleküls Molekülphysik April 2010 1 Grundzustand und angeregte Zustände eines Moleküls 1.1 Hamiltonoperator für das Gesamtproblem Die Quantenmechanik ist die fundamentale Theorie der Materie. Sowohl die Koordinaten

Mehr