CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1"

Transkript

1 CTL Model Checking SE Systementwurf CTL Model Checking Alexander Grafe 1

2 Einführung/Historie Model Checking ist... nur reaktive Systeme werden betrachtet vor CTL Model Checking gab es... Queille, Sifakis, Clarke, Emerson und Sistla (1982) Alexander Grafe 2

3 Crash Course: Kripke-Struktur M = (S, I, R, L) Alexander Grafe 3

4 Crash Course: Kripke-Struktur M = (S, I, R, L) Alexander Grafe 4

5 Crash Course: CTL Aussagenlogik + Zeitoperatoren = CTL Pfadoperatoren: A, E Zustandsoperatoren: X, F, G, U Alexander Grafe 5

6 Crash Course: CTL AX Φ Alexander Grafe 6

7 Crash Course: CTL EX Φ Alexander Grafe 7

8 Crash Course: CTL AF Φ Alexander Grafe 8

9 Crash Course: CTL EF Φ Alexander Grafe 9

10 Crash Course: CTL AG Φ Alexander Grafe 10

11 Crash Course: CTL EG Φ Alexander Grafe 11

12 Crash Course: CTL A[Φ 1 U Φ 2 ] Alexander Grafe 12

13 Crash Course: CTL E[Φ 1 U Φ 2 ] Alexander Grafe 13

14 Crash Course: CTL Aussagenlogik + Zeitoperatoren = CTL Pfadoperatoren: A, E Zustandsoperatoren: X, F, G, U Die Menge, Λ, EX, EU, EG reicht aus Alexander Grafe 14

15 Einfaches Beispiel Gilt AGStart AF Heat? E[ true UStart EG Heat ] EFStart EG Heat Alexander Grafe 15

16 Der Algorithmus Input = Modell + Spezifikation f := Φ 1 Λ Φ 2 Λ Φ 3 Λ Φ 4 Λ Φ 5 welche Zustände erfüllen die Formel ist Startzustand dabei: erfüllt keine Ausführungsverfolgung - nur Zustände Alexander Grafe 16

17 Der Algorithmus 1. AG ( Start -> AF Heat ) 2. AG ( Start -> AF Heat ) 3. AG ( Start -> AF Heat ) 4. AG ( Start -> AF Heat ) 5. AG ( Start -> AF Heat ) Alexander Grafe 17

18 Der Algorithmus minimale Menge:, Λ, EX, EU, EG 1. atomare Formel: f = Φ, TRUE, FALSE 2. Negation: f = Φ 3. Konjunktion: f = Φ 1 Λ Φ 2 4. f = EX Φ 5. f = E[Φ 1 U Φ 2 ] 6. f = EG Φ Alexander Grafe 18

19 Der Algorithmus 1. atomare Formel: Markierung schon in L(s) 2. procedurechecknegation f for all s {s f label s} do label s:=label s { f } end procedure 3. procedurecheckconjunction f 1, f 2 for all s {s f 1 label s f 2 label s} do label s:=label s { f 1 f 2 } end procedure 4. EX (für Vortrag nicht benötigt) Alexander Grafe 19

20 Der Algorithmus 5. procedure CheckEU f 1, f 2 T :={s f 2 label s} for all s T do label s:=label s {E[ f 1 U f 2 ] } whilet do choose s T T :=T {s} for all t such that Rt, sdo if E[ f 1 U f 2 ] label t and f 1 label t then label t :=label t {E[ f 1 U f 2 ]} T :=T {t } end if end for all end while end procedure Alexander Grafe 20

21 Der Algorithmus 6. procedure CheckEG f 1 S':={s f 1 label s} SCC :={C C is a nontrivial SCC of S'} T := C SCC {s s C } for all s T do label s:=label s {EG f 1 } while T do choose s T T :=T {s} for all t such that t S'and Rt, sdo if EG f 1 label tthen label t :=label t {EG f 1 } T :=T {t } end if end for all end while end procedure Alexander Grafe 21

22 Der Algorithmus am Beispiel Gilt AGStart AF Heat? E[ true UStart EG Heat ] EFStart EG Heat Alexander Grafe 22

23 Ausblick CTL Model Checking: 1982 Kripke-Struktur zu groß 200 Variablen -> Zustände Lösung: Zustände -> Formeln 1992: BDDs und SAT solver Alexander Grafe 23

24 Fragen was ist...? woher kommt...? was, wenn man...? aber da war doch noch...? ist das jetzt richtig wenn man da...? gibt's da auch was von ratiopharm...? Alexander Grafe 24

25 Vielen Dank Alexander Grafe 25

26 Quellen en.wikipedia.org/wiki/computational_tree_logic en.wikipedia.org/wiki/temporal_logic en.wikipedia.org/wiki/model_checking Clarke, Grumberg, Peled: Model Checking. MIT Press, 3. Auflage, 2001 CTL-Vortrag von Lars Biermann Automatic Verification of Finite State Concurrent Systems using temporal logic specifications SE Systementwurf CTL Model Checking Alexander Grafe 26

Kapitel 2: Algorithmen für CTL und LTL

Kapitel 2: Algorithmen für CTL und LTL Kapitel 2: Algorithmen ür CTL und LTL Für eine gegebene Kripke-Struktur M = (S, R, L) und eine gegebene temporal-logische Formel ist zu berechnen: {s S M, s = } M ist hier als Graph explizit gegeben. Algorithmus

Mehr

Aussagenlogik. Spezifikation und Verifikation Kapitel 1. LTL und CTL Syntax & Semantik. Aussagenlogik: Syntax. Aussagenlogik: Syntax (Alternative)

Aussagenlogik. Spezifikation und Verifikation Kapitel 1. LTL und CTL Syntax & Semantik. Aussagenlogik: Syntax. Aussagenlogik: Syntax (Alternative) Spezifikation und Verifikation Kapitel 1 Aussagenlogik LTL und CTL & Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben Eine abzählbare Menge V = {x 1, x 2,...} von aussagenlogischen Variablen

Mehr

Model Checking I. Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg

Model Checking I. Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Model Checking I Yi Zhao Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Zhao, Spisländer FAU Erlangen-Nürnberg Model Checking I 1 / 22 1 Inhalt 2 Model

Mehr

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

Software Engineering in der Praxis

Software Engineering in der Praxis Software Engineering in der Praxis Praktische Übungen Marc Spisländer Josef Adersberger Lehrstuhl für Software Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg 10. November 2008 Inhalt Nachlese

Mehr

Kurzeinführung in SAL

Kurzeinführung in SAL Kurzeinführung in SAL Holger Pfeifer Institut für Künstliche Intelligenz Fakultät für Ingenieurwissenschaften und Informatik Universität Ulm 2. Mai 2007 H. Pfeifer Comp.gest. Modellierung u. Verifikation

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Aussagenlogische Testspezifikation

Aussagenlogische Testspezifikation Seminar Spezifikationsbasierter Softwaretest Aussagenlogische Testspezifikation Peer Hausding (10.06.2006) 1 Gliederung Einführung Begriffe Test Modellspezifikation AutoFocus Transformation Spezifikation

Mehr

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1 Einführung in LTL unter MAUDE Mashine!es Beweisen Einführung in LTL Seit# 1 Verifikation eines Systems System- Verhalte% System- Spezifikatio% Mashine!es Beweisen Einführung in LTL Seit# 2 Verifikation

Mehr

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur Bisher Wiederholung NFA Modellierung durch NFA Kripke-Struktur Model-Checking Modell beschrieben durch Kripke-Struktur A Spezifikation ϕ in einer Temporallogik Verifikation: Nachweis, dass die Struktur

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Formale Verifikation von Software. 10. Juli 2013

Formale Verifikation von Software. 10. Juli 2013 Formale Verifikation von Software 10. Juli 2013 Überblick Wann ist formale Softwareverifikation sinnvoll? Welche Techniken gibt es? Was ist Model Checking und wie kann man es zur Verifikation einsetzen?

Mehr

Formale Verifikation von Software. 8. Juli 2015

Formale Verifikation von Software. 8. Juli 2015 Formale Verifikation von Software 8. Juli 2015 Überblick Wann ist formale Softwareverifikation sinnvoll? Welche Techniken gibt es? Was ist Model Checking und wie kann man es zur Verifikation einsetzen?

Mehr

Foundations of Systems Development

Foundations of Systems Development Foundations of Systems Development Vergleich und Zusammenfassung Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer WS 2007/08 2 Ziele Wichtige Aspekte von algebraischen Spezikationen

Mehr

Universität Potsdam Seminar: Automatic Problem Solving. SAT und DPLL. Falko Zander

Universität Potsdam Seminar: Automatic Problem Solving. SAT und DPLL. Falko Zander Universität Potsdam Seminar: Automatic Problem Solving SAT und DPLL Falko Zander Überblick Das SAT Problem: Einführung, Praxisbezug und aktuelle Algorithmen Geschichtlicher Rückblick Davis-Putman-Algorithmus

Mehr

Beweissysteme für die Aussagenlogik. Beweissysteme in der Aussagenlogik Beweissysteme 1 / 105

Beweissysteme für die Aussagenlogik. Beweissysteme in der Aussagenlogik Beweissysteme 1 / 105 Beweissysteme für die Aussagenlogik Beweissysteme in der Aussagenlogik Beweissysteme 1 / 105 Automatisches Beweisen Ein Beweissystem für eine Sprache L ist eine effizient berechenbare Funktion B : Σ Σ

Mehr

Software Engineering Praktikum

Software Engineering Praktikum Dipl-Inf Martin Jung Seite 1 Software Engineering Praktikum Formale Verifikation nebenläufiger Systeme mittels s 0 s 1 s 2 s 3 s 4 s 5 Dipl-Inf Martin Jung Seite 2 mit NuSMV Ziel: Frühe Fehlererkennung

Mehr

Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes

Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes Können Computer programmieren? Bernd Finkbeiner, Universität des Saarlandes Alonzo Church (1903-1995) Given a requirement which a circuit is to satisfy, we may suppose the requirement expressed in some

Mehr

Cognitive Interaction Technology Center of Excellence

Cognitive Interaction Technology Center of Excellence Kanonische Abdeckung Motivation: eine Instanz einer Datenbank muss nun alle funktionalen Abhängigkeiten in F + erfüllen. Das muss natürlich immer überprüft werden (z.b. bei jedem update). Es reicht natürlich

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Learning regular sets from queries and counterexamples

Learning regular sets from queries and counterexamples Learning regular sets from queries and countereamples Seminar: Spezialthemen der Verifikation H.-Christian Estler estler@upb.de 7..28 Universität Paderborn Motivation Wie können wir Unbekanntes erlernen?

Mehr

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemerg and National Large-scale Research Center of the Helmholtz

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Thomas Schirrmann Nebenläufigkeit. Nebenläufigkeit. Vortrag Thomas Schirrmann. Seminar Systementwurf Dozentin Daniela Weinberg

Thomas Schirrmann Nebenläufigkeit. Nebenläufigkeit. Vortrag Thomas Schirrmann. Seminar Systementwurf Dozentin Daniela Weinberg Nebenläufigkeit Vortrag Seminar Systementwurf Dozentin Daniela Weinberg 1 Gliederung 1. Einführung 2. Modellierung 2.1. POMSET 2.2. Transitionssystem 2.3. Petrinetz 2.4. abstraktes nebenläufiges Programm

Mehr

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Theorie des Algorithmischen Lernens Sommersemester 2006 Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Version 1.1 Gliederung der LV Teil 1: Motivation 1. Was ist Lernen 2. Das Szenario der Induktiven

Mehr

Modellbasierter Test mit der UML. Vortragender: Lars Westmeier Seminar: Spezifikationsbasierter Softwaretest

Modellbasierter Test mit der UML. Vortragender: Lars Westmeier Seminar: Spezifikationsbasierter Softwaretest Modellbasierter Test mit der UML Vortragender: Lars Westmeier Seminar: Spezifikationsbasierter Softwaretest Inhalt Einleitung und Motivation UML Testgenerierung Fazit Inhalt Einleitung und Motivation UML

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Aussagenlogik. Motivation Syntax Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Motivation Syntax Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Motivation Syntax Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.1 Aussagenlogik Syntax 22 Einführendes Beispiel

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

M. Sc. Mirjana Jakšić Dipl.-Inf. Christian Schönberg Dipl.-Inf. Franz Weitl

M. Sc. Mirjana Jakšić Dipl.-Inf. Christian Schönberg Dipl.-Inf. Franz Weitl Spezifikationsmuster für Web Dokumente M. Sc. Mirjana Jakšić Dipl.-Inf. Christian Schönberg Dipl.-Inf. Franz Weitl Verdikt Übersicht Formale Wissensrepräsentation Model Checking Formale Spezifikation Introduction

Mehr

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Modallogik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Modale Logik Im Unterschied

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch 1 L 3 P 1 L a 3 P a 1 L a m 3 P a l 1 L a m a 3 P a l m 2 P 3 P a l m e 2 P o 4 L 2 P o p 4 L a 2 P o p o 4 L a m 4 L a m p 6 N a 4 L a m p e 6 N a m 5 5 A A m 6 6 N a m e N a m e n 5 A m p 7 M 5 A m p

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

tl Revision: 1.37 Lese [a] f als für alle a-nachfolger des momentanen Zustandes gilt f

tl Revision: 1.37 Lese [a] f als für alle a-nachfolger des momentanen Zustandes gilt f Temorale Logik Gebrauch in der Informatik geht auf A. Pnueli zurück 1 Vereinfachte Hennessy-Milner Logik (HML) zunächst betrachten wir HML als Bs. für Temorale Logik für LTS 2 Häufig zur Sezifikation von

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation Entscheidungsverfahren mit Anwendungen in der Softwareverifikation SATABS: Predicate Abstraction Dr. Stephan Falke Institut für Theoretische Informatik Dr. Carsten Sinz 01.07.2013 Prädikatabstraktion (Predicate

Mehr

- Theorie der uninterpretierten

- Theorie der uninterpretierten Theorie der uninterpretierten Funktionen Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 13. Universität Mai 2013 des S.

Mehr

UNIVERSITÄT SIEGEN FACHBEREICH MATHEMATIK

UNIVERSITÄT SIEGEN FACHBEREICH MATHEMATIK UNIVERSITÄT SIEGEN FACHBEREICH MATHEMATIK Hauptseminar PLTL Model Checking Benedikt Meurer 22.01.2007 INTERNE BERICHTE INTERNAL REPORTS Hauptseminar im Fachbereich Mathematik der Universität Siegen Betreuer:

Mehr

Research Collection. Bounded Model Checking was kommt danach? Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2000

Research Collection. Bounded Model Checking was kommt danach? Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2000 Research Collection Other Conference Item Bounded Model Checking was kommt danach? Author(s): Biere, Armin Publication Date: 2000 Permanent Link: https://doi.org/10.3929/ethz-a-004242422 Rights / License:

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Model Checking mit SPIN

Model Checking mit SPIN Model Checking mit SPIN Sabine Daniela Bauer Seminar Formal Methods for Fun and Profit Institut für Informatik SS 05 1 Einleitung Programme sollen aus vielerlei Gründen fehlerfrei arbeiten. Entweder weil

Mehr

Entscheidungsverfahren für die Software-Verifikation. 3 Aussagenlogische Erfüllbarkeit

Entscheidungsverfahren für die Software-Verifikation. 3 Aussagenlogische Erfüllbarkeit Entscheidungsverfahren für die Software-Verifikation 3 Aussagenlogische Erfüllbarkeit Definition SAT-Problem Gegeben: Formel F in CNF. Frage: Ist F erfüllbar, d.h. gibt es ein Modell von F? Beispiel: F

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten

Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten E. Zenker 9. November 2011 1 / 28 Gliederung 1. Field Programmable Gate Array - FPGA 2. Satisfiability Testing

Mehr

Theorem Proving. Software Engineering in der Praxis. Prädikatenlogik. Software Engineering in der Praxis Wintersemester 2006/2007

Theorem Proving. Software Engineering in der Praxis. Prädikatenlogik. Software Engineering in der Praxis Wintersemester 2006/2007 Seite 1 Theorem Proving Prädikatenlogik Seite 2 Gliederung Warum Theorembeweisen? Wie funktioniert Theorembeweisen? Wie kann mir das Werkzeug KIV dabei helfen? Seite 3 Warum Theorembeweisen? Wie kann man

Mehr

Modellbasierte Software- Entwicklung eingebetteter Systeme

Modellbasierte Software- Entwicklung eingebetteter Systeme Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS Folie

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

NP-vollständige Probleme

NP-vollständige Probleme Effiziente Algorithmen Lösen NP-vollständiger Probleme 256 NP-vollständige Probleme Keine polynomiellen Algorithmen, falls P NP. Viele wichtige Probleme sind NP-vollständig. Irgendwie müssen sie gelöst

Mehr

Temporale Logiken: CTL und LTL

Temporale Logiken: CTL und LTL Westfälische Wilhelms-Universität Münster usarbeitung Temporale Logiken: CTL und LTL im Rahmen des Seminars Formale Spezifikation im WS 2005/06 Thorsten Bruns Themensteller: Prof. Dr. Herbert Kuchen Betreuer:

Mehr

Vorlesung Modellierung nebenläufiger Systeme Sommersemester 2014 Universität Duisburg-Essen

Vorlesung Modellierung nebenläufiger Systeme Sommersemester 2014 Universität Duisburg-Essen Vorlesung Modellierung nebenläufiger Systeme Sommersemester 2014 Universität Duisburg-Essen Barbara König Übungsleitung: Sebastian Küpper Barbara König Vorlesung Modellierung nebenläufiger Systeme 1 Das

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 1 MINT Mathekurs SS 2017 1 / 19 Organisation Vorlesung (2 SWS): Do., 16:15 Uhr -18:00

Mehr

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren Spiele für den Linearzeit µ-kalkül Christian Dax Betreuer: Dr. Martin Lange 1 Kurzer Rückblick 2 Linearzeit µ-kalkül Definition (µtl) ϕ ::= a X ϕ ϕ ϕ ϕ Oϕ µx.ϕ νx.ϕ Example νx.a OOX (an jd. 2. Stelle gilt

Mehr

Theoretische Informatik. Reguläre Sprachen und Automaten

Theoretische Informatik. Reguläre Sprachen und Automaten Theoretische Informatik Reguläre Sprachen und Automaten Reguläre Sprachen Reguläre Ausdrücke und Sprachen Gleichungen Syntaxdiagramme Erweiterungen Anwendungen Reguläre Ausdrücke über Σ Syntax: Konstante

Mehr

Logik. Vorlesung im Wintersemester 2010

Logik. Vorlesung im Wintersemester 2010 Logik Vorlesung im Wintersemester 2010 Organisatorisches Zeit und Ort: Di 14-16 MZH 5210 Do 16-18 MZH 5210 Prof. Carsten Lutz Raum MZH 3090 Tel. (218)-64431 clu@uni-bremen.de Position im Curriculum: Modulbereich

Mehr

Model Checking Vergleich verschiedener Tools

Model Checking Vergleich verschiedener Tools Model Checking Vergleich verschiedener Tools Diplomarbeit Im Studiengang Mathematik mit Studienrichtung Informatik vorgelegt von Name: Brzoska Vorname: Frederic Erstprüfer: Prof. Dr. Heribert Vollmer Zweitprüfer:

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20 Labor Compilerbau Jan Hladik DHBW Stuttgart Sommersemester 2017 Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester 2017 1 / 20 Resolution in der Prädikatenlogik testet Erfüllbarkeit (indirekt

Mehr

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation Entscheidungsverfahren mit Anwendungen in der Softwareverifikation I: Einführung Dr. Stephan Falke Institut für Theoretische Informatik Dr. Carsten Sinz 15.04.2013 Ist mein Programm korrekt? Beispiel:

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Algorithmen & Programmierung. Logik

Algorithmen & Programmierung. Logik Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage

Mehr

Formalisierung von Sicherheitseigenschaften im µ-kalkül

Formalisierung von Sicherheitseigenschaften im µ-kalkül Formlisierung von Sicherheitseigenschften im µ-klkül Huptseminr: Nchweis von Sicherheitseigenschften für JvCrd durch pproximtive rogrmmuswertung Michel Whler (whler@in.tum.de) Überblick Einführungsbeispiel:

Mehr

2.9 Formale Verifikation

2.9 Formale Verifikation 2.9 Formale Verifikation Formale Verifikation Formale Verifikation Simulation und Formale Verifikation Werkzeuge Equivalence Checking Erfüllbarkeitsproblem SAT1-Problem SAT-Equivalence- Checker Graphenisomorphie

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Beispiel. p,q. q,r. v.henke: Maschinelles Beweisen 7 27

Beispiel. p,q. q,r. v.henke: Maschinelles Beweisen 7 27 Beispiel S0 p,q q,r S1 r S2 v.henke: Maschinelles Beweisen 7 27 SMV - Überblick Ziel: Überprüfung der Erfülltheit von CTL-Formeln in dem Anfangszustand s 0 eines Modells: (M, s 0 = φ). Eingabesprache zur

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten

Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten Analyse von Ansätzen zur Beschleunigung von SAT - Lösern durch dedizierte Hardware Komponenten E. Zenker 24. Februar 2011 1 / 20 Gliederung 1. Satisfiability Testing 2. FPGAs 3. Aktuelle Hardware SAT Solver

Mehr

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Abgeschlossenheit (Definition) Gegeben sei eine Menge M und ein n-ärer

Mehr

Computergestützte Modellierung und Verifikation

Computergestützte Modellierung und Verifikation Computergestützte Modellierung und Verifikation Vorlesung mit Übungen SS 2007 Prof. F. von Henke mit Dr. H. Pfeifer Inst. für Künstliche Intelligenz Organisatorisches Vorlesung: Mi 14 16 Raum 3211 Do 14

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Suchen und Amortisierte Analyse Heute: Suchen / Schreibtischtest Amortisierte Analyse Nächste

Mehr

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Organisatorisches KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Personen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Organisatorisches. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Organisatorisches KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Personen

Mehr

Fuzzy Logic. Seminar im Sommersemester 2006 an der TU-Darmstadt (Prof. Dr. Fürnkranz) 06/18/06 Knowledge Engineering in Computer Spielen 1

Fuzzy Logic. Seminar im Sommersemester 2006 an der TU-Darmstadt (Prof. Dr. Fürnkranz) 06/18/06 Knowledge Engineering in Computer Spielen 1 Fuzzy Logic Seminar im Sommersemester 2006 an der TU-Darmstadt (Prof. Dr. Fürnkranz) 06/18/06 Knowledge Engineering in Computer Spielen 1 Geschichte und Definition Grundlegende Begriffe Fuzzy Process Anwendungen

Mehr