10. Übungsblatt zu Algorithmen I im SoSe 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "10. Übungsblatt zu Algorithmen I im SoSe 2016"

Transkript

1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. ennis ofheinz Lukas arth, Lisa Kohl 0. Übungsblatt zu lgorithmen I im SoSe 0 ufgabe (Minimale Spannbäume, Punkte) Musterlösungen a) Markieren Sie in dem folgenden raphen einen Schnitt, mit dem das ewicht des eingezeichneten Spannbaums reduziert werden kann oder zeigen Sie, dass ein solcher Schnitt nicht existiert. (inweis: eben Sie in letzterem all nicht alle möglichen Schnitte an, sondern überlegen Sie eine geeignete Vorgehensweise.) b) Markieren Sie im folgenden raphen einen Kreis, der die Kreiseigenschaft minimaler Spannbäume verletzt oder zeigen Sie, dass so ein Kreis nicht existiert. (inweis: eben Sie in letzterem all nicht alle möglichen Kreise an, sondern überlegen Sie eine geeignete Vorgehensweise.)

2 c) Sei ein ungerichteter zusammenhängender raph mit positiven Kantengewichten. eweisen oder widerlegen Sie durch ein egenbeispiel, dass der minimale Spannbaum von eindeutig ist, wenn alle Kantengewichte in paarweise verschieden sind. d) Sei wieder ein ungerichteter zusammenhängender raph mit positiven Kantengewichten. eweisen oder widerlegen Sie die Umkehrung von c). In anderen Worten, beweisen oder widerlegen Sie durch ein egenbeispiel, dass alle Kantengewichte in paarweise verschieden sind, wenn der minimale Spannbaum eindeutig ist. Musterlösung: a) ie schwerste Kante im eingezeichneten Spannbaum hat ewicht, für eine mögliche ewichtsreduzierung müssen dager nur Kanten mit kleinerem ewicht betrachtet werden, nämlich die Kanten (, ), (, ) und (, ). Wir müssen nun zeigen, dass für jeden Schnitt, der eine dieser Kanten enthält, eine weitere Kante Schnittkante ist, die gleiches oder kleineres ewicht hat und bereits Teil des minimalen Spannbaums ist. araus folgt, dass die Schnitteigenschaft für alle möglichen Schnitte erfüllt ist und damit der Spannbaum minimal. Wir bezeichnen im olgenden mit V die Knotenmenge {,,,,,,, }. Sei S V ein Schnitt, zu dem (, ) eine Schnittkante ist und ohne eschränkung der llgemeinheit S (und damit V \S). alls S, dann ist (, ) eine Schnittkante von ewicht und Teil des minimalen Spannbaums. ilt andernfalls / S, dann ist (, ) eine Schnittkante von ewicht des minimalen Spannbaums. Sei nun ein Schnitt S gegeben, zu dem (, ) eine Schnittkante ist und ohne eschränkung der llgemeinheit S (und damit V \S). ann können wir analog zu unseren obigen Überlegungen zeigen, dass entweder die Kante (, ) oder die Kante (, ) eine weitere Schnittkante sein muss, die höchstens ewicht hat. Sei schließlich S ein Schnitt, zu dem (, ) eine Schnittkante ist und ohne eschränkung der llgemeinheit S (und damit V \S). ann tritt immer einer der folgenden älle ein: i.) S : (, ) ist Schnittkante von ewicht ii.) / S S : (, ) ist Schnittkante von ewicht iii.) / S : (, ) ist Schnittkante von ewicht b) uf dem eingezeichneten Kreis ist die schwerste Kante und trotzdem Teil des Spannbaums. amit ist die Kreiseigenschaft verletzt und der Spannbaum nicht minimal. c) In der Vorlesung wurde bewiesen, dass die leichteste Kante eines Schnittes für einen minimalen Spannbaum verwendet werden kann. Wenn die Kantengewichte paarweise verschieden sind, ist die leichteste Kante eines Schnittes jeweils eindeutig und damit insbesondere auch der minimale Spannbaum.

3 usführlicher: Sei = (V, ) ein ungerichteter zusammenhängender raph mit ewichtsfunktion c: R und paarweise verschiedenen Kantengewichten. Wir beweisen die ehauptung durch einen Widerspruchsbeweis. nnahme: s gibt minimale Spannbäume T, T mit T T. a die Spannbäume verschieden sind und die Kanten paarweise verschiedenes ewicht haben existiert genau eine minimale Kante e = {u, v}, die in genau einem der beiden Spannbäume vorkommt. Wir nehmen ohne eschränkung der llgemeinheit an, dass e T \T gilt. Wir betrachten nun := T {e}. a T ein aufspannender aum ist, enthält einen Kreis K. Nach Wahl von e sind alle Kanten mit kleinerem ewicht entweder in keinem oder in beiden der Spannbäume T und T enthalten. Wenn e die schwerste Kante auf dem Kreis K wäre, dann würde damit T einen Kreis enthalten. Sei e also eine Kante auf K mit c(e ) > c(e). ann kann T durch rsetzen von e durch e zu einem Spannbaum mit echt kleinerem ewicht gemacht werden, was der Minimalität widerspricht. amit ist die indeutigkeit bewiesen. d) Im folgenden raphen sind die Kanten nicht paarweise verschieden, der minimale Spannbaum aber eindeutig: ufgabe (Jarník-Prims und Kruskals lgorithmus, Punkte) erechnen Sie je einen Minimum Spanning Tree (MST) des angegebenen raphen mit dem lgorithmus von Jarník-Prim und dem lgorithmus von Kruskal. eben Sie jeweils die Kanten des MST in der Reihenfolge an, in der sie der lgorithmus auswählt. Verwenden Sie Knoten als Startknoten von Jarník-Prim und wählen Sie in beiden lgorithmen bei gleichen Kantengewichten diejenige Kanten mit alphabetisch kleinstem ndknoten aus.

4 Musterlösung: ie Reihenfolgen, in denen die Kanten ausgewählt werden, sind: Jarník-Prim {, }, {, }, {, }, {, }, {, }, {, }, {, } Kruskal {, }, {, }, {, }, {, }, {, }, {, }, {, } ufgabe (Zweitminimalste Spannbäume, Punkte) Sei = (V, ) mit V ein ungerichteter zusammenhängender raph mit positiven Kantengewichten c(e) R >0. Wir betrachten nun zweitminimalste Spannbäume. Sei T ein minimaler Spannbaum. ann ist ein zweitminimalster Spannbaum definiert als ein aufspannender aum T T für den e T c(e) minimal wird. (alls es mehrere minimale Spannbäume gibt, ist also ein zweitminimalster Spannbaum auch ein minimaler Spannbaum.) a) eweisen oder widerlegen Sie durch ein egenbeispiel, dass der zweitminimalste Spannbaum von eindeutig ist, wenn alle Kantengewichte in paarweise verschieden sind. b) Sei T ein minimaler Spannbaum von. eweisen Sie, dass es Kanten {u, v} T und {x, y} / T gibt, sodass (T {u, v}) + {x, y} ein zweitminimalster Spannbaum von ist. c) Sei T ein beliebiger Spannbaum von und und für zwei Knoten u, v V sei max[u, v] die Kante mit maximalem ewicht auf dem eindeutigen Pfad zwischen u und v in T. eschreiben Sie einen O ( V ) -lgorithmus, der gegeben T für alle u, v den Wert max[u, v] berechnet und beweisen Sie die Laufzeit. d) eben Sie einen effizienten lgorithmus, der den zweitminimalsten Spannbaum von berechnet. egründen Sie die Korrektheit Ihres lgorithmus. Musterlösung: In der ufgabenstellung und Musterlösung wurde die Schreibweise in die für ungerichtete raphen üblichen Mengenschreibweise umgeändert. ußerdem schreiben wir zur besseren Übersichtlichkeit T + {u, v} statt T {{u, v}} und T {u, v} statt T \{{u, v}}. a) Siehe bbildung für ein egenbeispiel: ie beiden abgebildeten zweitminimalsten Spannbäume sind unterschiedlich, haben aber dasselbe ewicht.

5 b) iese ufgabe lösen wir mit einer allunterscheidung: Zunächst unter der nnahme, dass der minimale Spannbaum eindeutig ist, und dann unter der nnahme, dass es mehrere minimale Spannbäume gibt. nnahme: MST ist eindeutig Sei T ein zweitminimalster Spannbaum, und sei {u, v} eine Kante in T, die nicht in T enthalten ist. ann enthält T + {u, v} insgesamt V Kanten, und somit einen Kreis. a T keinen Kreis enthält, muss eine Kante auf diesem Kreis nicht in T enthalten sein. iese Kante sei {x, y}. s muss nun gelten, dass c({x, y}) > c({u, v}), denn ansonsten könnten wir {u, v} in T durch {x, y} ersetzen und einen nicht schwereren Spannbaum als T erhalten, was der nnahme, dass T der eindeutige leichteste Spannbaum in ist, widerspricht. Sei nun T = (T {x, y}) + {u, v}. a c({x, y}) > c({u, v}) gilt, ist T leichter als T, und somit muss (nach der efinition des zweitminimalsten Spannbaums T ) T ein minimaler Spannbaum sein. T und T unterscheiden sich nur in einer Kante. leichzeitig ist der minimale Spannbaum eindeutig, damit gilt T = T, und die ehauptung ist gezeigt. nnahme: MST ist nicht eindeutig In diesem all gilt ja, dass zu einem MST T jeder andere MST ein zweitminimalster Spannbaum ist. Wir müssen also zeigen, dass unter der nnahme von nicht-eindeutigen Spannbäumen zu jedem MST T ein MST T existiert, der sich nur in einer Kante von T unterscheidet. Sei T ein beliebiger, von T verschiedener MST. ann enthält T mindestens eine Kante {u, v}, die T nicht enthält. Wir betrachten nun T + {u, v}: s ist klar, dass die zusätzliche Kante einen Kreis schließt. Sei dieser Kreis e, e,... e k mit e k = {u, v}. Wir können nun zeigen, dass alle e i das gleiche ewicht haben müssen: Zunächst ist klar, dass max ei (c(e i )) c({u, v}) gelten muss: äbe es auf dem Kreis eine Kante, die schwerer als {u, v} ist, so ließe sich diese gegen {u, v} austauschen, und damit hätten wir einen Spannbaum, der leichter als T ist, gefunden. leichzeitig muss aber auch c({u, v}) max ei (c(e i )) gelten, da ansonsten {u, v} die eindeutig schwerste Kante auf einem Kreis in wäre, und mittels Kreiseigenschaft niemals zu einem MST gehörten könnte. Wenn also alle Kanten auf dem Kreis mindestens so schwer wie {u, v} sein müssen, gleichzeitig {u, v} maximal so schwer wie die schwerste Kante auf dem Kreis sein kann, so müssen alle Kanten e i gleichschwer sein. amit können wir uns nun eine beliebige Kante {x, y} {u, v} des Kreises aussuchen und entfernen. Wir erhalten einen Spannbaum, der genauso schwer ist wie T (also ein minimaler Spannbaum ist) und sich von T nur durch inzufügen von {u, v} und ntfernen von {x, y} unterscheidet. c) ür jeden Knoten v starten wir eine S (oder eine S) auf T, die also nur die Kanten von T benutzt. ei jedem besuchten Knoten u setzen wir dabei max[u, v] auf das maximale Kantengewicht, dass wir auf dem Pfad von v nach u bisher gesehen haben. ine S hat laut Vorlesung Laufzeit O( V + ). Wir betrachten nur den Spannbaum, für diesen gilt = V, und damit ist die Laufzeit für eine S in O( V ). Wir benötigen insgesamt V solcher Suchen, und damit esamtlaufzeit O ( V ). d) er lgorithmus geht wie folgt vor: Zunächst finden wir einen minimalen Spannbaum T. ann finden wir eine Kante {x, y} T, die c({x, y}) c(max[x, y]) minimiert, wobei max[x, y] berechnet wird wie in ufgabenteil c. er gesuchte zweitminimalste Spannbaum ist dann (T max[x, y]) + {x, y}. er lgorithmus ist korrekt, weil c({x, y}) c(max[x, y]) gerade das ewicht ist, dass der aum mindestens zusätzlich erhält, wenn man {x, y} in den aum aufnimmt und dafür eine andere Kante aus dem aum entfernt. Laut ufgabenteil b) lässt sich aber genau auf diese rt immer ein zweitminimalster Spannbaum konstruieren.

6 0 (a) raph = (V, ) 0 (b) Minimaler Spannbaum, ewicht 0 0 (c) Zweitminimalster Spannbaum, ewicht 0 (d) Zweitminimalster Spannbaum, ewicht bbildung : egenbeispiel für ufgabe a

Zusammenfassung des 2. Abends

Zusammenfassung des 2. Abends lgorithmen in der iologie r. Hans-Joachim öckenhauer r. ennis Komm Zusammenfassung des. bends Zürich, 0. pril 0 lignment-verfahren Für einen Überblick über die lignment-lgorithmen zur estimmung der Ähnlichkeit

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Tutoraufgabe 1 (Floyd-Warshall):

Tutoraufgabe 1 (Floyd-Warshall): für Informatik Prof. aa r. Ir. Joost-Pieter Katoen atenstrukturen und lgorithmen SS hristian ehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (Floyd-Warshall): etrachten Sie den folgenden

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Wege, Pfade und Kreise

Wege, Pfade und Kreise Wege, Pfade und Kreise ef.: in Weg ist eine olge von Knoten (v 1, v2,..., vk), so dass {vi,vi+1} für alle 1 i

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. B. Beckert Thorsten Bormer Formale Systeme, WS 2/2 Lösungen zum Übungsblatt ieses Blatt wurde in der Übung am 29..2 besprochen.

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

3. Musterlösung. Problem 1: Heapsort

3. Musterlösung. Problem 1: Heapsort Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 3. Musterlösung Problem : Heapsort ** 2 3 4 5 Algorithmus : Heapsort (A) Eingabe : Array A der Länge n Ausgabe : Aufsteigend

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

9. Übungsblatt zu Algorithmen I im SoSe 2016

9. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 9. Übungsblatt zu Algorithmen I im SoSe 06 https//crypto.iti.kit.edu/index.php?id=algo-sose6

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

11. Übungsblatt zu Algorithmen I im SS 2010

11. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 11. Übungsblatt zu Algorithmen I im SS 2010 http://algo2.iti.kit.edu/algorithmeni.php

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 7.06.016 Bellman-Ford-Algorithmus (Brute-Force-Suche) Varianten des Kürzeste-Wege-Problems (azyklische Graphen) Ausblick: Routenplanung in Straÿennetzwerken Motivation Minimale Spannbäume

Mehr

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

Drei Vorlesungen über Bäume

Drei Vorlesungen über Bäume Bäume. Einleitung Drei Vorlesungen über Bäume Jens Vygen Nehmen wir einmal an, für einen neuen Zug wollen wir ein komplett neues Schienennetz bauen, das einige Städte miteinander verbindet. Oder ein neues

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Kap. 6.5: Minimale Spannbäume

Kap. 6.5: Minimale Spannbäume Kap. 6.5: Minimale Spannbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19./20. VO DAP2 SS 2009 30.6./2.7.2009 1 Anmeldung zur Klausur 31.07.2009 um 10:15

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

3. Winkelsätze und der Kongruenzsatz (WWS).

3. Winkelsätze und der Kongruenzsatz (WWS). 3. Winkelsätze und der Kongruenzsatz (WWS). Nachdem wir die beiden ersten Kongruenzsätze bewiesen haben, kommen wir zum ritten Kongruenzsatz (WWS). r ist der am schwersten zu beweisende. Um ihn zu beweisen,

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen Programm heute lgorithmen und atenstrukturen (für T/IT) Sommersemester 0 r. Tobias Lasser omputer ided Medical Procedures Technische Universität München inführung rundlagen von lgorithmen rundlagen von

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0;

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0; für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS5 hristian Dehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (ellman-ford Algorithmus): a) Passen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 22.06.2016 Dijkstra: Implementierung, Laufzeit Heute: Negative Kantengewichte (Bellman-Ford) Weitere Variationen (azyklische Graphen) Ausblick: Routenplanung in Straÿennetzwerken Abschluss

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal spannende Bäume Ronny Harbich 4. Mai 006 (geändert 19. August 006) Vorwort Ich danke Patrick Bahr und meinem Bruder Steffen Harbich für die Unterstützung bei dieser Arbeit. Sie haben sowohl zu

Mehr

Lösungsvorschläge Aufgaben 14.1, 14.3, 14.4

Lösungsvorschläge Aufgaben 14.1, 14.3, 14.4 Lösungsvorschläge ufgaben.,.,. ufgabe. Wir starten mit dem gegebenen Graphen, dessen Restgraph beim Nullfluss ϕ 0 dem ingabenetzwerk entspricht. ktueller Fluss: Restgraph: 0/ 0/ 0/ 0/ 0/5 0/ 0/ 0/8 5 8

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Minimale Spannbäume. Übersicht. 1 Spannbäume. 2 Minimale Spannbäume. 3 Greedy Algorithmen. 4 Die Algorithmen von Kruskal und Prim

Minimale Spannbäume. Übersicht. 1 Spannbäume. 2 Minimale Spannbäume. 3 Greedy Algorithmen. 4 Die Algorithmen von Kruskal und Prim Datenstrukturen und Algorithmen Vorlesung 16: (K23) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-1/dsal/ 12. Juni 201

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

Tutoraufgabe 1 (Starke Zusammenhangskomponenten):

Tutoraufgabe 1 (Starke Zusammenhangskomponenten): für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Datenstrukturen und Algorithmen SS1 Übungsblatt (Abgabe 4.0.01) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder

Mehr

Seminar. Das Steinerbaumproblem

Seminar. Das Steinerbaumproblem Seminar Das Steinerbaumproblem Philipp Gillitzer Matrikelnr.: 51829 Studiengang Informatik(IT-Sicherheit) Semester 6 Hochschule Aalen Wintersemester 16/17 1 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr