Stochastische Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "Stochastische Differentialgleichungen"

Transkript

1 INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen Markov-Familie in Definiion 7.9 in geeigneer, innvoller Weie für einen N 0 -werigen ochaichen Proze X X 0 den Begriff einer Markov-Familie X, P x x N0. Kann der homogene Poion-Proze N 0 mi Parameer µ > 0 zu einer Markov-Familie erweier werden? Löung: Wir gehen au von Definiion 7.9, erezen R d durch N 0 und erhalen: ine N 0 -werige Markov-Familie Ω, A, F, X, P x x N0, kurz X, P x x N0, i ein F-adapierer, N 0 -weriger ochaicher Proze X X 0 auf einem Meraum Ω, A zuammen mi einer Familie P x x N0 von Wahrcheinlichkeimaßen auf Ω, A, o da für alle A A die Abbildung x P x A univerell mebar i, für alle x N 0 P x X 0 x 1, für alle x N 0,, 0 und B PN 0 P x [X + B F ] P x [X + B σx ] P x -f.., für alle x N 0,, 0 und B PN 0 P x [X + B X y] P y X B für P x X -f.a. y N 0. Hierbei kann die ere Bedingung weggelaen werden, da alle Funkionen f : N 0 R auomaich mebar ind wenn man N 0, wie üblich mi der σ-algebra A PN 0 verieh und wa wir oben chon implizi verwende haben. Ferner kann man ich beim Nachwei der beiden lezen Bedingungen auf den Fall von lemenarereignien B {n}, n N 0 bechränken, da der allgemeine Fall ich durch Aufummieren ergib. Wir erhalen: ine N 0 -werige Markov-Familie Ω, A, F, X, P x x N0, kurz X, P x x N0, i ein F-adapierer, N 0 -weriger ochaicher Proze X X 0 auf einem Meraum Ω, A zuammen mi einer Familie P x x N0 von Wahrcheinlichkeimaßen auf Ω, A, oda a für alle x N 0 P x X 0 x 1, b für alle x N 0,, 0 und n N 0 P x [X + n F ] P x [X + n σx ] P x -f..,

2 c für alle x N 0,, 0 und n N 0 P x [X + n X y] P y X n für P x X -f.a. y N 0. In [SP], Kap. 5.1 wurde die xienz eine homogenen Poion-Prozee N : N 0 mi Ineniä µ > 0 gezeig, den wir kurz mi PPµ bezeichnen, wobei nach den dor geroffenen Überlegungen noch voraugeez werden kann, da N Were in N 0 annimm und da N 0 0 gil. Wir nehmen an, da die Zufallvariablen N auf dem Wahrcheinlichkeiraum Ω, A, P definier ind und ezen noch F 0 : σn,. F 0 : F 0 0 i alo die naürliche Filraion von N. Wegen [SP], Saz 5.4 beiz N unabhängige Zuwäche und e gil N N Poµ für 0 <. Dami ind inbeondere F 0 und N N ochaich unabhängig für 0 <. Dami i nach Beipiel 7.3 N ein Markov-Proze bzgl. F 0 N i auch ein R-weriger Proze. Sei Ω, A : N 0 Ω, PN 0 A, F : PN 0 F 0 und X : N 0 Ω N 0 definier durch X ω : n + N ω für ω n, ω Ω und 0. Ferner ei P x : δ x P für x N 0. Dami i Ω, A, F, X, P x x N0 fegeleg. gil dann P x X k Px + N k PN k x, x, k N 0, 0. Wir benöigen die folgende Darellung von F : { } F {k} A k : A k F 0 Zu zeigen bleiben die Bedingungen a, b und c. a gil wegen P x X 0 x Px + N 0 x PN k0 c gil, obald PN y x > 0, alo y x 0, P x [X + n X y] P[x + N + n x + N y] P[x + N + N + N n x + N y] P[x + y x + N + N n x + N y] P[N + N n y N y x] PN + N n y PN n y P y X n. b Sei n N 0 fe und gy : P x [X + n X y] P y X n PN n y, y N 0. Dann i gx σx -mebar und e genüg zu zeigen [SII], 21.3, da für A σx P x {X + n} A gx dp x gil. Dabei genüg e, den Fall A {X y} zu berachen, da jede A σx eine abzählbare Vereinigung derariger reignie i. Dann gil aber wie geforder P x {X + n} A P x {X + n} {X y} P x [X + n X y] PX y A {X y} gx dp x,

3 da gx gy auf {X y} konan i. Aufgabe 22: C : R + R d r eine eige Funkion von R + in den Raum der d r-marizen d.h. eine Abbildung, die komponenenweie eig i. Zeigen Sie: a Da ochaiche Inegral M : 0 Cu db u 0 mi den Komponenen M i : k1 0 Cu ik db k u, 0 exiier und lieg komponenenweie in M c 2, kurz M M c 2. b F und M M ind ochaich unabhängig für 0 <. Hinwei: Benüzen Sie die folgende Verallgemeinerung von Aufgabe 1a: Sei Ω, A, P ein Wahrcheinlichkeiraum und eien X, X n R d -werige Zufallvariablen auf Ω, n N. I C A eine Uner-σ-Algebra von A, o da C und σx n für alle n N ochaich unabhängig ind und gil X n X P-ochaich für jede Komponene, o ind auch C und σx ochaich unabhängig. c M M beiz eine d-dimenionale Normalvereilung N d 0, Cu Cu du. Löung: Sei F k die zur Brownchen Bewegung B k gehörende naürliche Filraion. gil dann F k F, ferner ind nach Vorauezung die σ-algebren F 1,...,F r ochaich unabhängig für 0. a Da die C ik eig und dami auf endlichen Inervallen bechränk ind, gil C ik L B k und dami Cu 0 ik db u k 0 M c 2. Da M c 2 ein Vekorraum i, gil auch M i M c 2. Man beache, da F die zugrunde liegende Filraion i. b Wir beweien der Volländigkei halber zuer den Hinwei. Da auch die Komponenen X n k von X n P-ochaich gegen die k-e Komponene X k von X konvergieren, k 1,..., d, folg nach d-maliger Anwendung de Teilfolgekrierium für ochaiche Konvergenz die xienz einer Teilfolge X nl l N mi lim l X nl X P-f.. Sei D eine beliebige, nich leere abgechloene Teilmenge von R d und fx dx, D der Aband von x zu D. Dann i f : M R + eig mi f 1 0 D. Nach Vorauezung gil lim l fx nl fx P-f.. Da fx nl und C unabhängig ind, ind nach Aufgabe 1a auch fx und C unabhängig und dami auch D und C unabhängig. Da die Menge der abgechloenen Teilmengen von R d einen -abilen rzeuger von B d bilden, ind nach [SII], 9.5 auch X und C unabhängig. Al näche zeigen wir: Sei X 0 ein F-adapierer R d -weriger ochaicher Proze mi unabhängigen Zuwächen, o da F und der Zuwach X +h X für alle 0 < + h ochaich unabhängig ind. Dann ind F und C : σx +h X :, h > 0 für 0 ochaich unabhängig. genüg zu zeigen, da F und σx j+1 X j : j 0,...,n 1 unabhängig ind, wobei 0 < 1 <... < n und n N. Seien 0 < 1 <... < n, A F und B j B d für

4 d 1,...,n. Dann gil PA {X 1 X 0 B 1 }... {X n X n 1 B n } PA {X 1 X 0 B 1 }... {X n 1 X n 2 B n 1 } PX n X n 1 B n n... PA PX j X j 1 B j, wobei wir aunüzen, da A {X 1 X 0 B 1 }... {X n 1 X n 2 B n 1 } F n 1. Sei 0 < vorgegeben. Wir erezen vorer die eigen Funkionen C ik durch Treppenfunkionen. i dann jede Cu ik db u k eine Summe der Form n 1 α j B k j+1 B k j j0 mi gewien 0 < 1 <... < n und α j R. Nach dem gerade gezeigen ind daher F und M M Cu db u ochaich unabhängig. Wegen der Seigkei von C gib e eine Folge C n von Treppenfunkionen, die auf [0, ] gleichmäßig gegen C konvergier, inbeondere lim n d L C, C n 0 und dami auch lim n d M I B C n, I B C 0. Die bedeue inbeondere, da I B C n für alle 0 quadraich gegen I B C konvergier, alo auch lim n I B C n I B C n I B C I B C M M, alle komponenenweie. Da au der quadraichen Konvergenz die P-ochaiche Konvergenz folg, ind nach dem Hinwei auch F und M M ochaich unabhängig. c Sei vorer wie in b C n eine Treppenfunkion. Dann i j1 M n M n : I B C n I B C n eine Summe von unabhängigen normalvereilen Zufallvekoren A j B j+1 B j, wobei die A j geeignee d r-marizen ind, und dami elb d-dimenional normalvereil. Um zu zeigen, da M M normalvereil i, genüg e zu zeigen [SP], Saz 2.7, da a M M für alle a R d evenuell augeare normalvereil i. Wegen b und dem Teilfolgekrierium gib e eine Teilfolge n k k N mi lim k a M n k M n k a M M P-f.. und e genüg zu zeigen, da der fa ichere Lime einer Folge normalvereiler Zufallvariable wieder normalvereil i. Wir verwenden dazu: Lemma: Seien X n, X reellwerige Zufallvariable mi X D n X und X n Nµ n, σn. 2 Dann i X evenuell augeare normalvereil. Bewei de Lemma: Sei F : F X die Vereilungfunkion von X, X nich augeare, d.h. P-f.. konan, und eine Seigkeielle von F. Dann gil lim F µn X n lim Φ F. n n Da X nich augeare i, exiier ein kleine a und ein größe b mi a < b und 0 < F < 1 für alle a < < b und F nich konan auf a, b. Sei Dann i R \ C abzählbar und für C gil µ n lim n σ n σ n C : { R: Seigkeielle von F }. lim µ n n σ n σ n g : Φ 1 F R,

5 wobei wir noch Φ 1 0 : und Φ 1 1 : ezen. Wäre σ n n N nich bechränk, o müe g konan auf C ein. Die i nich möglich, da F nich konan auf a, b i. Nach Übergang zu einer Teilfolge können wir daher annehmen, da σ : lim n σ n R + exiier. I σ > 0, o gil auch µ : lim n µ n σ g, worau g µ folg σ und dami X Nµ, σ 2. σ 0 kann augechloen werden, da e a < < < b gib mi 0 < F < F < 1 und, C, alo < g < g <. Die i aber unverräglich mi, fall lim n σ n 0, da dann nowendig lim n µ n und lim n µ n. Da M ein Maringal i mi M 0 0, gil M M 0 0 und dami M M 0. Schließlich gil M i M i : Cu ik db u k und dami Cov M i M i, M j 8.9 M j I Bk k1 C ik I Bk C ik uc jl u d B k, B l u Cov Cu ik db u k, C ik, I Bl C jl I Bl C jl k1 Cu jl db u l C ik uc jk u du Cu Cu ij du, wobei Cu die Tranponiere von Cu i. Dami ergib ich die Kovarianzmarix von M M zu ΣM M Cu Cu du.

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt Karlruher Iniu für Technologie KIT Iniu für Analyi Dr Ioanni Anapoliano Dr Semjon Wugaler WS 25/26 Höhere Mahemaik III für die Fachrichung Elekroechnik und Informaionechnik Löungvorchläge zum 6 Übungbla

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen.

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen. Lemma 4.5.9. Der Algorihmu von Edmond-Karp führ höchen O( V E ) Augmenierungen durch. Bewei. Eine Kane (u, v) heiße kriich auf augmenierenden Weg p gdw. c f (u, v) = c f (p). Rekapaziä Eine kriiche Kane

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorihmen II Vorleung am 24.10.2013 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Univeriä de Lande Baden-Würemberg und Algorihmen naionale Forchungzenrum II Wineremeer 2013/2014

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

6 Stochastische Differentialgleichungen

6 Stochastische Differentialgleichungen 6 Sochaiche Differenialgleichungen Viele deerminiiche Modelle der Naur- und der Wirchafwienchafen laen ich mi Hilfe von Differenialgleichungen audrücken. Mi dem Io-Inegral und der Io-Formel haben wir die

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Stochastische Differentialgleichungen: Erweiterung deterministischer Modelle um. Angestrebter akademischer Grad

DIPLOMARBEIT. Titel der Diplomarbeit. Stochastische Differentialgleichungen: Erweiterung deterministischer Modelle um. Angestrebter akademischer Grad DIPLOMARBEIT Tiel der Diplomarbei Sochaiche Differenialgleichungen: Erweierung deerminiicher Modelle um zufällige Einflüe Angereber akademicher Grad Magira der Naurwienchafen Mag. rer. na.) Verfaerin:

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

1 Diskrete Wahrscheinlichkeitstheorie

1 Diskrete Wahrscheinlichkeitstheorie Prof. A. Sapozhnikov Wahrcheinlichkeittheorie I INHALTSVERZEICHNIS 1 Dikrete Wahrcheinlichkeittheorie 1.1 Laplace-Wahrcheinlichkeit. Urnenmodelle. N! Begriffe: Ziehen ohne Zurücklegen, mit Reihenfolge,

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorihmiche Graphenheorie Sommeremeer 2014 3. Vorleung Flualgorihmen Prof. Dr. Alexander Wolff 1 Erinnerung Oh my God i an LP! Gegeben ein gericheer Graph G = (V, E) mi, V und Kanenkapaziäen c : E R >0.

Mehr

Abbildungsmaßstab und Winkelvergrößerung

Abbildungsmaßstab und Winkelvergrößerung Abbildungmaßab und Winkelvergrößerung Abbildungmaßab Uner dem Abbildungmaßab vereh man da Verhälni /, wobei der Audruck ein negaive Vorzeichen erhäl, wenn da ild verkehr wird. Alo Abbildungmaßab V: Winkelvergrößerung

Mehr

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 9.

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 9. Noe: Name Vorname Marikelnummer Sudiengang Unerchrif der Kandidain/de Kandidaen Höraal Reihe Plaz Techniche Univeriä München Fakulä für Mahemaik Algorihmiche Dikree Mahemaik WS 0/0 Prof. Dr. P. Grizmann

Mehr

KAPITEL 2 KÜRZESTE WEGE

KAPITEL 2 KÜRZESTE WEGE KAPITEL 2 KÜRZESTE WEGE F. VALLENTIN, A. GUNDERT Da Ziel diee Kapiel i e kürzee Wege in einem gegebenen Nezwerk zu verehen und zu berechnen. Ein einführe Beipiel für ein Nezwerk zwichen den vier Säden

Mehr

4 Die K-Methode. Sei {A 0,A 1 } Interpolationspaar. Das Peetre sche K-Funktional ist definiert als. ( a 0 A 0 +t a 1 A 1 ), a A 0 +A 1, t > 0

4 Die K-Methode. Sei {A 0,A 1 } Interpolationspaar. Das Peetre sche K-Funktional ist definiert als. ( a 0 A 0 +t a 1 A 1 ), a A 0 +A 1, t > 0 25 4 Die K-Mehode Sei {A,A } Inerpolaionpaar. Da Peere che K-Funkional i definier al K,a;A,A K,a : a a + a a i A i,i, a A + a A, a A +A, > Bemerkung : wenn {A,A } fixier K,a anelle von K,a;A,A K,a a A

Mehr

Stochastische Analysis und Finanzmathematik

Stochastische Analysis und Finanzmathematik Sochasische Analysis und Finanzmahemaik Vorlesung im Winersemeser 211/212 von Dr. Markus Schulz Inhalsverzeichnis 1 Sochasische Prozesse 1 1.1 Grundlagen................................ 1 1.2 Die Brownsche

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

8 Der Reiterationssatz

8 Der Reiterationssatz 53 8 Der Reieraionaz Definiion 8. Seien {A,A } ein Inerpolaionpaar,E ein Banachraum mi A A E A +A, und θ. i E gehör zur Klae Kθ;A,A, fall ein c > exiier, o da für alle a E und alle, <

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}.

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. 1 Das Lebesgue-Maß 1.1 Etwas Maßtheorie Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. Definition 1.1. Ein nichtleeres Mengensystem A P(X) heißt σ-algebra, wenn: (A1) X A (A2) Wenn

Mehr

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen)

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen) Mahemaik für Machinenbau, M. Schuchmann (SoSe ) Aufgabenbla 5 (Ebenen) ) Geuch i eine Gleichung der Ebene E durch die Punke A(; -; ); B(; ; -) und C(; ; ) in Parameerform. ) Schreibe in Koordinaenform:

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Vorleung Kombinaoriche Opimierung (Wineremeer 007/08) Kapiel : Flüe und Zirkulaionen Volker Kaibel Oo-von-Guericke Univeriä Magdeburg (Verion vom 0. November 007) Definiion. Ein Nezwerk i ein Paar (D,

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Kapitel 7. Exponentialfamilien. 7.1 Wahrscheinlichkeitsverteilungen

Kapitel 7. Exponentialfamilien. 7.1 Wahrscheinlichkeitsverteilungen Kapiel 7 Exponenialfamilien Exponenialfamilien sind dominiere saisische Räume, deren Likelihoodfunkion eine besonders einfache Srukur besiz, ihr Logarihmus is von affiner Gesal. Neben der daraus resulierenden

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

5 Die Poisson-Approximation

5 Die Poisson-Approximation 5 Die Poion-Approximation Im vierten Kapitel hatten wir mit der Normalverteilung die icherlich wichtigte und meittudierte Verteilung der W.-Theorie kennengelernt und geehen, daß man diee al Lime eine geeignet

Mehr

Anhang. A1 Analytische Lösungen der erweiterten Anzahlbilanz

Anhang. A1 Analytische Lösungen der erweiterten Anzahlbilanz 117 Anhang A1 Analyiche Löungen der erweieren Anzahlbilanz Die Bilanzgleichungen der erweieren Anzahlvereilung owohl für die koninuierliche al auch für die dikoninuierliche Krialliaion (l..-34 und.-35)

Mehr

Stochastische Analysis

Stochastische Analysis Sochasische Analysis Maringale und sochasisches Inegral Franz Hofbauer Einleiung Sei (Ω, A, P ) ein Maßraum mi P (Ω) = 1. Die messbaren Mengen, das sind die Mengen in der σ-algebra A, werden als Ereignisse

Mehr

7. Funktionalgleichung der Zeta-Funktion

7. Funktionalgleichung der Zeta-Funktion Oo Forser: RZF 7 Funkionalgleichung der Zea-Funkion 7 Funkionalgleichung der Zea-Funkion 7 Saz (Poissonsche Summaionsformel Sei f : R C eine seig differenzierbare Funkion mi f(x O ( x für x Sei ˆf : R

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

Die Bildung des Präsens funktioniert dann beispielsweise so: "lauda + mus" - wir loben.

Die Bildung des Präsens funktioniert dann beispielsweise so: lauda + mus - wir loben. Präen Da Präen i die Gegenwarform. E bechreib alo Handlungen, die gerade paieren. Die Bildung i denkbar einfach und unercheide ich in den unerchiedlichen Konjugaionen (fa immer) nich. Dewegen reich e vollkommen

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Von der Fourier-Reihe zum Fourier-Integral

Von der Fourier-Reihe zum Fourier-Integral Von der Fourier-Reihe um Fourier-Inegral Fourier-Reihe für periodiche Signale + f() = ν= c e ω = π f = ν j νω π + j νω cν = f() e d Nichperiodiche Signale dω d = df =, νω ω π + + j ω j ω π dω cν f() e

Mehr

Robuste Portfolio Optimierung

Robuste Portfolio Optimierung Robue Porfolio Opimierung in Lévy Märken Dieraion zur Erlangung de Dokorgrade Dr. rer. na der Fakulä für Mahemaik und Wirchafwienchafen der Univeriä Ulm vorgeleg von Dipl.-Mah. oec. Frank Wiemann au Offenburg

Mehr

Übungen zu Funktionen Blatt 1

Übungen zu Funktionen Blatt 1 Übungen zu Funktionen Blatt 1 In den Aufgaben 1 und 2 seien A 1, A 2, B 1, B 2 Teilmengen von Z. 1. Man zeige: Es gilt (A 1 A 2 ) (B 1 B 2 ) (A 1 B 1 ) (A 2 B 2 ). 2. Man zeige: Ist A 1 A 2 =, A 1 A 2,

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Satz von Rademacher und weiterführende Resultate

Satz von Rademacher und weiterführende Resultate S E M I N R R B E I T Saz von Rademacher und weierführende Resulae ausgeführ am Insiu für nalysis und Scienific Compuing TU Wien uner der nleiung von o.univ.prof. Dipl.-Ing. Dr.echn. Michael Kalenbäck

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Grenzwertsätze für Zeitreihen

Grenzwertsätze für Zeitreihen KAPIEL 6 Grenzwersäze für Zeireihen In diesem Kapiel sellen wir wichige Grenzwersäze für saionäre Zeireihen {X n } in diskreer Zei zusammen. Sei µ = E(X ) und ρ(k) = E(X 1 µ)(x 1+k µ) = Cov (X 1, X 1+k

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

Metrische äußere Maße, Borel-Maße

Metrische äußere Maße, Borel-Maße Metrische äußere Maße, Borel-Maße Zum einen haben wir mit dem Fortsetzungssatz gesehen, dass man mit einem äußeren Maß (auf P(X) ) stets eine σ-algebra und ein Maß auf dieser bekommt. Liegt nun ein metrischer

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Bewertungsmethoden in der Versicherungsmathematik

Bewertungsmethoden in der Versicherungsmathematik Bewerungmehoden in der Vericherungmahemaik Techniche Reerven und Markwere II Johanne Pacheag Mahemaiche Iniu der Univeriä zu Köln Sommeremeer 2010 Bereuung: Prof. Schmidli, Dr. Eienberg 1 Inhalverzeichni

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Geometric Algebra Computing Transformationen in LA und CGA Dr. Dietmar Hildenbrand

Geometric Algebra Computing Transformationen in LA und CGA Dr. Dietmar Hildenbrand Geomeric Algebra Compuing Tranformaionen in LA und CGA 4.2.24 Dr. Diemar Hildenbrand Techniche Univeriä Darmad Fachbereich Mahemaik Überblick In linearer Algebra Homogene Koordinaen Tranformaionen in linearer

Mehr

A. Maß- und Integrationstheorie

A. Maß- und Integrationstheorie A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff 30.0.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Aufgabe : (6 Punte) Welche der folgenden Tupel sind Maßräume? Beweisen Sie Ihre Behauptung. {

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

8 Martingaldarstellung und Doob-Meyer Zerlegung

8 Martingaldarstellung und Doob-Meyer Zerlegung 8 Martingaldartellung und Doob-Meyer Zerlegung 8.1 Der Martingaldartellungatz In Kapitel 3 haben wir gezeigt, da da Ito-Integral eine H -Integranden ein tetige Martingal it. Der Martingaldartellungatz

Mehr

No-Arbitrage Modelle

No-Arbitrage Modelle No-Arbirage Modelle Sefan Fremd 17. Januar 27 1 Einleiung No-Arbirage Modelle: Modelle, bei denen die beobacheen Preise der Anleihen Derivae am Mark P obs (, T ) genau mi denen des Modells ˆP (, T ) übereinsimmen,

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: inegral.ex,v 1.12 2015/10/26 13:46:09 hk Exp $ 1 Inegrale von Funkionen in mehreren Variablen 1.1 Das Rieman Inegral im R n Im lezen Semeser wurde die Differenialrechnung auf Funkionen f(x 1,...,

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr