Versuch Verweilzeit. Zielstellung: Untersuchung der Verweilzeitcharakteristik mikrofluidischer Bauteile.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Versuch Verweilzeit. Zielstellung: Untersuchung der Verweilzeitcharakteristik mikrofluidischer Bauteile."

Transkript

1 Versuch Verweilzei Zielsellung: Unersuchung er Verweilzeicharakerisik mikrofluiischer Baueile. Grunlagen: In mikrofluiischen Baueilen mi gergem Kanalurchmesser is ie lamare Srömung as vorherrschene Flussregime. Turbulene Srömungen können nur uner exremen Begungen erzeug weren. Das vorherrschene parabolie Srömungsprofil führ abei zu eer ausgeprägen Dispersion (Abb 1. l Abb.1: Geschwigkeisprofil un Dispersion eem Mikrokanal Z.B. is im Falle von parallelen Mikrokanälen ie aufreene Dispersion gerger als eem Kanal mi gleichem Querschni (Abb.. l Abb. : Geschwigkeisprofil un Dispersion parallelen Kanälen Komplexe Srömungsvorgänge nerhalb ees Mikromischers haben een sarken Efluss auf ie Dispersion un hängen sowohl von er Geomerie es Mischers als auch von Flussrae un Viskosiä er Lösungen ab. Die unerschielichen Geomerien von Mikromischern führen zu unerschielich wirkenen Mechanismen zur Resrukurierung von Fluilamellen nerhalb es Baueils un haben somi sarken Efluss auf ie Dispersion. Dies führ zu unerschielichen Aufenhalsauern ezelner Volumenelemene nerhalb es

2 Mikromischers. Je nach Geomerie kann es hierbei auch zu Zonen sagnierener Fluie kommen. Durch Unersuchung er Verweilzeivereilung kann ie Häufigkei er Aufenhalsauer ezelner Volumenelemenen besimm weren. Abb. 3: Dispersion eem Mikromischer Zur Unersuchung er Verweilzeieigenschafen von Mikroreakoren un Kapillaren wir ie Mehoe er Pulsmarkierung egesez. Hierbei wir e Markierpuls (Farbsoff im Zuführungskanal erzeug un essen Form vor un her em mikrofluiischen Baueil eekier (Abb. 4. Die Änerung er Pulsform wir urch ie spezifische Dispersion nerhalb es unersuchen Baueils bewirk. Die resulierene Verweilzeivereilung (RTD gib an wie lange sich ee Volumenfrakion nerhalb es Baueils aufgehalen ha. Die Änerung er Verweilzeivereilungen is auf en mi er Flussrae variierenen Efluss folgener Effeke zurückzuführen: - Dispersion urch as raiale Geschwigkeisprofil - Resrukurierung es Fluis urch Mischoperaionen nerhalb ees Mischers - Molekulare Diffusion - Aufreen von Sekunär Flow Effeken wie z.b. saische Wirbel - Turbulene Vermischung bei hohen Re-Zahlen bzw. hohem Druckverlus.

3 Farbsoff Wasser Phoomeer Messsellen Schlauch Injekionsvenil 1µL Mikroreakor Farbsoff Konzenraion E( Zei [s] 0 C( C( ou C ou Abb. 5: Pulsverlauf eem mikrofluiischen Sysem ( C ( C ( ' E( ' ' Gl. 1 0 ε [ C ( C ( ] m ou C calc ou ( C ( Gl. Zur Ermilung er Verweilzeivereilung wir ee Pulsmarkierungsmessung urchgeführ un e Verweilzei Moell an ie Messaen angepass. Hierzu weren ie Moellparameer so lange opimier, bis ee besmögliche Überesimung es gemessenen Response-Signals mi em berechneen Response Signal erziel wir (Gl.. Die aus em Moell resulierene Verweilzeivereilung E(T weren für unerschieliche Flussraen besimm. Die milere Verweilzei wir mi Hilfe von Gl. besimm. Um ie Verweilzeivereilungen E( für unerschielicher Flussraen vergleichen zu können wir mi Hilfe von Gl. 4 un Gl. 5 ie imensionslose Verweilzei θ berechne. E ( [ ] θ [ ] s Gl. 3 Gl. 4 E ( θ E( Gl. 5

4 E Moell zu Beschreibung er Verweilzeivereilung is as Dispersionsmoel nach Gl. 6. Die iale Pecle-Zahl Pe beschreib hierbei ie Dispersion ialer Richung nach Gl. 7. Der iale Dispersionskoeffizien D is abei vom molekularen Diffusionskoeffizien D M, eem Geomeriefakor χ, er mileren Srömungsgeschwigkei w un em Rohrraius R abhängig. E Pe Pe ( 3 (1 4 1 e [ ] 4 π Pe w R [ ] DAx s Gl. 6 Gl. 7 D w DM χ m D Gl. 8 m s w υ h Re [ ] v Sc [ ] D M Gl. 9 Gl. 10 Zur Beschreibung er Verweilzeivereilung E( können ebenfalls empirische Moelle wie z.b. Gl. 9 egesez weren. Die resulierenen Verweilzeivereilungsfunkionen von Mikroreakoren können hiermi häufig exaker beschreiben weren. E( A e e W1 ( T W ( T Gl. 11 Als Maß für ie Sreuung er Verweilzeivereilung um ie milere Verweilzei wir ie Varianz σ ( Gl. 1 sowie σ (θ Gl. 13verwene. σ ( ( E( [ ] Gl. 1 σ ( θ σ ( ( θ 1 E( θ θ Gl. 13

5 Versuchsaufbau: Abb. 1.: Schema Versuchsaufbau Aufgabensellung: 1 Messen Sie ie Verweilzeivereilung für ie Mischer M1 M6 für ie Flussraen: 50, 50, 500, 750, 1000, 1500, 000, 500, 3000, 4000, 5000 µl/m. Enscheien Sie welches Moell zur Beschreibung er Verweilzeivereilung am besen geeigne ersche un berechnen Sie ami E (θ 3 Sellen Sie ie Verweilzeivereilungen E (θ als Diagramme ar 4 Diskuieren Sie ie Ergebnisse Versuchsurchführung Nach Eweisung urch en Versuchsbereuer is zur Durchführung es Versuches ie Seuerungssofware konfigurier weren. Zur Auswerung wir ee am Versuchsplaz vorhanene Sofware egesez. Lieraur: Baerns, A.Behr, A. Brehm, J. Gmehl, H. Hofmann, U. Onken, A. Renken, Technische Chemie, Wiley-VCH, 006, Seie 167ff.

TC1 - Grundlagen der Technischen Reaktionsführung 9-1. TC 1 - Grundlagen der Technischen Reaktionsführung

TC1 - Grundlagen der Technischen Reaktionsführung 9-1. TC 1 - Grundlagen der Technischen Reaktionsführung TC - Grunlagen er Technischen Reakionsführung Thermoynamische un kineische Grunlagen Soffbilanen Umsaverhalen er Grunypen von Reakoren Kaalyse Soffranspor un Reakion bei heerogen kaalysieren Reakionen

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052 FERMACELL Gipsaser-Plaen Bemessung von Wanaeln nach DIN 05:004-08 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Grunsäzliche

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2010 Prüfung Grunprinzipien er Versicherungs- un Finanzmahemaik Aufgabe : (5 Minuen a Gegeben sei ein einperioiger Sae Space-Mark mi rei Zusänen, er aus rei Werpapieren besehe, einer sicheren Anlage zu % sowie

Mehr

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05:

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05: Prof. Dr. ajana Lange Lehrgebie: egelungsechnik Laborübung 4/5: hema: Sreckenidenifikaion. Ermilung on egelkennweren aus dem offenen egelkreis. Übungsziele: Veriefung ausgewähler Mehoden der Sreckenidenifikaion

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Flugzeugaerodynamik I Lösungsblatt 3

Flugzeugaerodynamik I Lösungsblatt 3 Flugzeugaerodynam I Lösungsbla 3 Lösung Aufgabe 5 geg: dünnes Profil a) ges: A 1 mi m (1) f 0.01 () Annahme Amosphärendaen: Abschäzung der Ansrömmachzahl U 1 50m/s (3) ρ 1 1.kg/m 3 (4) α 1 10 o (5) dc

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirschafsforschung Prof. Dr. Bernd Süßmuh Universiä Leipzig Insiu für Empirische Wirschafsforschung Volkswirschafslehre, insbesondere Ökonomerie 9.6. Zeireihen und Zeireihenmodelle Prinzipielle

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt:

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt: Lebeziehunen - Lösunen. Prüfen sie ob die Punke A5, B und C : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4, B 4 und C 7 : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4 und B : x x x lieen. A ; B in

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik er Koninua 60 ee Körper 60 lüigkeien un Gae um wa geh e? Bechreibung von Bewegungen (phy. Verhalen e nich-arren Körper (elaich, plaich Koninuum Hyro- un Aeroynamik Komparimenale Moellierung

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit

24.1 Mindestzuverlässigkeit und Aussagewahrscheinlichkeit 24 Versuche ohne Ausfälle Success un 24. Mindeszuverlässigkei und Aussagewahrscheinlichkei Um eine Aussage üer die Zuverlässigkei eines Baueiles oder einer Baugruppe zu erhalen, werden vor der eigenlichen

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

Untersuchungen durchgeführt im Auftrag : Th. Schulte GmbH, Hauptstraße 349,26683 Saterland

Untersuchungen durchgeführt im Auftrag : Th. Schulte GmbH, Hauptstraße 349,26683 Saterland { d A J i ) 1) U Aku Sikbu ro Olde n b urg Dr. chrisian Nocke 1) 7 1 r" il JE Berich zu Hallraummessungen von vier Aufbauen ei nes perforieren Wand paneels Unersuchungen durchgeführ im Aufrag : h. Schule

Mehr

Schaltwerksanalyse-Übungen

Schaltwerksanalyse-Übungen Schaltwerksanalyse-Übungen Übung : Gegeben ist folgene Schaltung, eren Funktion zu bestimmen ist. c Ergänzen Sie as folgene Signal-Zeit-iagramm. c ie Lösung kann sehr zeitaufwenig sein, wenn man keine

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7)

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7) ik und eemenre esigkeisehre Prof. Popov Wie 6/7,.Tuorium Lösungshinweise eie uperposiion, Biegespnnungen Version 6. Jnur 07 Tuorium Aufge us Due: + A w(x) w I (x) + w II (x) w I (x) q 0 4 [ 4 5 x ( x )

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Aufgaben zum t-test. 1. Grubbs-Test

Aufgaben zum t-test. 1. Grubbs-Test ufgaben zum -Te 1. Grubb-Te 2. -Te zum Vergleich von Mielweren von Sichproben mi Sollweren (Rechenhilfen am Ene e rbeiblae 2.1. Eine Gereieore wir auf 51 Veruchfelern angebau un er geernee Errag beimm.

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Universität Stuttgart. Institut für Technische Chemie

Universität Stuttgart. Institut für Technische Chemie Universiä Sugar Insiu für Technische Chemie Technisch-Chemisches Prakikum Versuch 5: Verweilzei-Vereilungscharakerisiken von Reakoren 8/1 Verweilzei-Vereilungscharakerisiken von Reakoren 1. Einleiung Die

Mehr

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung Muerlöung zur Einenearbei Moul 3511 Seuern un ökonomiche Anreize, Kur 00694 Seuerwirkunglehre I, KE 3 Verbraucheuern, Wineremeer 011/1 1 Muerlöung zur Einenearbei zur Erlangung er Teilnahmeberechigung

Mehr

BSc: Waldmesslehre Waldinventur I

BSc: Waldmesslehre Waldinventur I Bestanesmessun Themen von Interesse: Wie können wir Bestäne un ihre Charakteristika beschreiben? Wie könnnen wir iese Charakteristika erfassen (messen)?, Geor-Auust-Universität Göttinen Folie Nr. Interessierene

Mehr

Deutschsprachiger Wettbewerb 2009 / 2010 Mathematik Jahrgang 2 2. Runde

Deutschsprachiger Wettbewerb 2009 / 2010 Mathematik Jahrgang 2 2. Runde Deuschsprachiger Webewerb 009 / 00 Mahemaik Jahrgang. Rune Liebe Schülerin, lieber Schüler, iese Rune es Webewerbs ha 0 Fragen, Sie sollen von en vorgegebenen Lösungsmöglichkeien immer ie einzige richige

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Abschlussklausur im WS 02/03

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Abschlussklausur im WS 02/03 Lehrsuhl für Saisik und emp. irschafsforschung, Prof. Regina T. Riphahn, Ph.D. Muserlösung zur Baseler Abschlussklausur im S 0/03 Aufgabe 1: [] Sie wollen die Skifahrgewohnheien von innen und Schweizern

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt.

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. 2 Theorie der semanischen Typen 2.2.2 Semanik von TL Menge der omänen Zu jedem Typ gib es eine Menge von möglichen enoaionen der Ausdrücke dieses Typs. iese Menge wird omäne des bereffenden Typs genann.

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Thema 11: Signifikanz von Parametern

Thema 11: Signifikanz von Parametern Thema 11: Signifikanz von Parameern Zweck Überprüfung, ob Zusammenhang (zwischen Y und X) wirklich gegeben. Y = b + m X, wenn m = 0 wäre, gil Y = b und Y wäre nich von X abhängig kein Zusammenhang Das

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

IIR-Filter. Prof. Dr. C. Clemen. y(n) x(n) IIR-Filter. t Xd(f) Yd(f) Hd(f) f f A. f A /2

IIR-Filter. Prof. Dr. C. Clemen. y(n) x(n) IIR-Filter. t Xd(f) Yd(f) Hd(f) f f A. f A /2 Fachhochschule ugsburg Fachbereich Elekroechik Pro. Dr. C. Cleme.8.3 IIR-Filer achricheüberragugsechik.8.3 IIR-Filer ei Verweug vo rekursive Mehoe ur erechug es geilere usgagssigals aus em Eigagssigal

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgaben zur Ökonomerie I 4. Mulikollineariä 4. Worin beseh das Problem der Mulikollineariä? A. Perfeke Mulikollineariä Perfeke Mulikollineariä lieg dann vor, wenn zwei oder mehrere unabhängige Variable

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

11 Sequentielle Schaltungen

11 Sequentielle Schaltungen 11 Sequenielle Schalungen E 1 E 2 Kombinaorische Schalung A 2 A=f(E) E n A 1 A m E 1 A 1 E 2 Sequenielle A 2 Schalung E n A=f(E, Z) Z'=g(E, Z) A m Abbildung 1: Kombinaorische / Sequenielle Schalung Z'

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Musterlösung zur Baseler Zwischenklausur im WS 02/03 Lehrsuhl für Saisik und emp. irschafsforschung, Prof. Regina T. Riphahn, Ph.D. Muserlösung zur Baseler Zwischenklausur im S 0/0 Aufgabe 1: [1] Mi den Daen von 177 Miewohnungen einer Schweizer Sad wurde

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung

10 Gleichspannungs-Schaltvorgänge RL-Reihenschaltung GleichspannungsSchalvorgänge eihenschalung Seie von 6 222 Prof. Dr.Ing. T. Harriehausen Wolfenbüel.9.2. Beziehung zwischen en lemmengrößen einer konsanen Inukiviä Die Abhängigkei zwischen en lemmengrößen

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Lk Mathematik in 12/2 1. Klausur Blatt 1 (von 2)

Lk Mathematik in 12/2 1. Klausur Blatt 1 (von 2) Blatt 1 (von 2) 4 BE 1. Glücksspiel Für ein Casino soll ein Glücksspiel entworfen weren. Bei einem festen Einsatz soll en Spielern ein zufallsabhängiger Betrag ausbezahlt weren. Erläutere, welche Anforerungen

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Industriepreisliste. SmartKosi Displaytücher Brillentücher Mini-Display-Cleaner IPL 2013.4 N. gültig ab 15. Juli 2013

Industriepreisliste. SmartKosi Displaytücher Brillentücher Mini-Display-Cleaner IPL 2013.4 N. gültig ab 15. Juli 2013 DISPLAY-CLEANER Industriepreisliste IPL 2013. N gültig ab 15. Juli 2013 Pat. pendg Displaytücher Brillentücher Mi-Display-Cleaner Industriepreisliste IPL 2013. N gültig ab 15. Juli 2013 Seite 1 von 6 Industriepreisliste

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Wechselstrom- und Impulsverhalten von RCL-Schaltungen

Wechselstrom- und Impulsverhalten von RCL-Schaltungen Fakultät für Technik Bereich Informationstechnik Wechselstrom- und Impulsverhalten von RCL-Schaltungen Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemees Mittels passiven Komponenten (R, C, L) werden

Mehr

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S.

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S. REA Eine Zeisudie Kapiel 10, S. 1-24 Gliederung Theoreische Grundlagen Ziele von REA Voraussezungen für eine REA-Zeiaufnahme Ablauf einer REA-Zeiaufnahme Vor- und Nacheile Praxiseil REA 2 Theoreische Grundlagen

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

MEHRWERK. Logistik Optimierung in SAP mit Dispositions- Lösung Forecast

MEHRWERK. Logistik Optimierung in SAP mit Dispositions- Lösung Forecast MEHRWERK Logisik Opimierung in SAP mi Disposiions- Lösung Forecas Disposiionslösung Forecas Logisik-Opimierung in SAP Forecas Conrolling Operaions Kanban Planning Seie 2 Disposiionslösung Forecas Forecas-Kreislauf

Mehr

C. Abituraufgabe MV GK 2006 B1

C. Abituraufgabe MV GK 2006 B1 9.5.216 biuraufgabe MV GK 26 B1 Die bbildung zeig einen usschni einer Nuklidkare. Die Linie k wird im Bereich leicher Kerne als Sabiliäslinie bezeichne. omkerne auf oder dich neben dieser Linie sind sabil.

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

Statistik I (Sozialwissenschaften)

Statistik I (Sozialwissenschaften) Dr. Hans-Ofried Müller Insiu für Mahemaische Sochasik Fachrichung Mahemaik Technische Universiä Dresden hp://www.mah.u-dresden.de/so/mueller/ Saisik I (Sozialwissenschafen) 2. Rechenübung, WS 2014/2015,

Mehr

Drehfeldmagnete. Schaltung. Drehmomentänderung. Sonderausführung

Drehfeldmagnete. Schaltung. Drehmomentänderung. Sonderausführung RHMAGNT rehfemanee ie rehfemanee sin rehsrommooren mi Käfiäfer in Sonerasführn. Sie sin eerisch so asee, ass sie bei ihrer Bemessnssannn n bei rehzah 0 ( fesebremse Wee ) ihr rößes rehmomen ( Sisansmomen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr