Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Größe: px
Ab Seite anzeigen:

Download "Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg"

Transkript

1 Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (2) 1 / 23

2 Gliederung 1 Zusammenhang zwischen Graphenstruktur und Wahrscheinlichkeitsverteilung 2 Lösungsverfahren für BAYES-Netze 3 Lernverfahren für BAYES-Netze (Lehrstuhl KI) Bayes-Netze (2) 2 / 23

3 Konstruktion von Graphen für Kausalzusammenhänge Beispiel: Ist das Fussballfeld rutschig? Je nach Jahreszeit (Frühling, Sommer, Herbst, Winter) regnet es (ja, nein). Je nach Jahreszeit muss man mit dem Sprenger den Rasen bewässern ja, nein). Wird der Rasen bewässert, ist er nass (ja, nein). Regnet es, ist der Rasen nass. Ist er Rasen nass, ist das Fussballfeld rutschig (ja, nein). Abhängigkeitsgraph A Jahreszeit giessen B C Regen nass D E rutschig (Lehrstuhl KI) Bayes-Netze (2) 3 / 23

4 Formale Formulierung von Kausalzusammenhängen Die Suche nach Gründen für nassen Rasen liefert (ohne zusätzliches Wissen) keine eindeutige Information (vgl. Schließen per Abduktion). Repräsentiert man jeden Einflussfaktor als Zufallsvariable, lässt sich eine gemeinsame Verteilung finden. P (A, B, C, D, E) Aus dieser Verteilung lässt sich eine Wahrscheinlichkeit dafür ableiten, mit der nasser Rassen von den anderen Einflussfaktoren abhängt: P (A, B, C, D, E) = P (D A, B, C, E) P (A, B, C, E) Diese Aussage folgt aus dem Multiplikationssatz für bedingte Wahrscheinlichkeiten. (Lehrstuhl KI) Bayes-Netze (2) 4 / 23

5 Formale Formulierung von Kausalzusammenhängen In unserem Beispiel gibt es = 64 mögliche Ergebnisse für das Zufallsexperiment zu P (A, B, C, D, E). Bei mehr Variablen und größeren Wertemengen pro Variable ist es praktisch unmöglich, die Verteilung zu konstruieren. Aus dem im Graphen festgehaltenen Domänenwissen lassen sich Unabhängigkeitsannahmen folgern! Zunächst haben wir: P (A, B, C, D, E) = P (D A, B, C, E) P (A, B, C, E) = P (D A, B, C, E) P (E A, B, C) P (A, B, C) = P (D A, B, C, E) P (E A, B, C) P (C A, B) = P (A, B) = P (D A, B, C, E) P (E A, B, C) P (C A, B) P (B A) P (A) (Lehrstuhl KI) Bayes-Netze (2) 5 / 23

6 Formale Formulierung von Kausalzusammenhängen Keine Regel belegt einen Einfluss von B auf C. Also: P (C A, B) P (C A). Es gibt auch keine Kante im Graphen zwischen B und C. Für die gemeinsame Verteilung gilt dann: P (A, B, C, D, E) = P (D A, B, C, E) P (A, B, C, E) = P (D A, B, C, E) P (E A, B, C) P (C A) P (B A) P (A) Es gibt also einen Zusammenhang zwischen Pfaden und der Unabhängigkeit von Variablen. Markow-Kompatibilität einer Verteilung Wenn eine Wahrscheinlichkeitsverteilung P sich so faktorisieren lässt, wie es die Struktur eines Abhängigkeitsgraphen G vorgibt, ist P zu G Markow-kompatibel. (Lehrstuhl KI) Bayes-Netze (2) 6 / 23

7 Kausalzusammenhänge mit Zusatzwissen (bei beobachteten Ereignissen) Sei ausschließlich die Jahreszeit bekannt, wie stehen Regen und giessen zueinander? Unabhängig! (B C A) Die Jahreszeit blockiert also jede Argumentationskette von Regen zu Giessen, sie separiert die beiden Faktoren. Sei hingegen der Wert von nass bekannt, sind Regen und giessen noch unabhängig? Nein, da das Auftreten von nass Rückschlüsse über Regen und giessen zulässt. Intuitiv: Sind die Werte der Vorgänger einer Variable bekannt, so ist diese unabhängig von allen anderen Variablen im Netz, außer von ihren Nachfolgern. (Lehrstuhl KI) Bayes-Netze (2) 7 / 23

8 d-separation (1) Wie kann man einem BAYES-Netz ansehen, welche modellierten Zufallsvariablen voneinander (un)abhängig sind? d-separation eines Pfades über mehrere Kanten Ein Pfad p ist d-separiert von einer Knoten-Menge Z genau dann, wenn 1 p einen Teilpfad i m j oder eine Gabelung i m j enthält, wobei m Z, oder 2 p einen Treffpunkt i m j enthält, wobei m Z und auch für alle Nachfolger n von m gilt: n Z. (Lehrstuhl KI) Bayes-Netze (2) 8 / 23

9 d-separation (2) X2 X1 X4 X3 X 1 d-separiert X 2 und X 3 : Für X 2 X 1 X 3 gilt Fall 1,für X 2 X 4 X 3 Fall 2. für Bedeutung: Wenn man den Wert von X 1 kennt, sind X 2 und X 3 voneinander unabhängig. X 4 d-separiert X 3 und X 5. Bedeutung: Wenn man weiß, daß es das Gras naß ist, ist es auch rutschig, unabhängig davon, ob es gerade regnet. X5 {X 1, X 5 } d-separiert nicht X 2 und X 3 : X 5 ist Nachfolger des Treffpunkts X 4. Bedeutung: Je nach Wert von X 5 ändern sich P (X 2 ) und P (X 3 ). (Lehrstuhl KI) Bayes-Netze (2) 9 / 23

10 Bedingte Unabhängigkeit d-separierter Variablen Man kann zeigen: Sind die Knoten-Mengen X und Y durch die Knoten-Menge Z d-separiert, dann ist X unabhängig von Y unter der Bedingung Z. Im Beispiel: Weiteres Beispiel: P (X 2 X 3 X 1 ) = P (X 2 X 1 ) P (X 3 X 1 ) X 4 ist unabhängig von X 1, weil beide Variablen sowohl von X 2 als auch von X 3 d-separiert werden. (Lehrstuhl KI) Bayes-Netze (2) 10 / 23

11 Elementares Lösungsverfahren P (A) = [ a1 a ], P (B A) = A gemeinsame Verteilung von A und B: P (A B) = P (A) P (B A) = b 1 b 2 a a b 1 b 2 a a B Verteilung für B: P (B) = a 2 a=a 1 P (A = a B) = = a 2 a=a 1 b 1 b 2 a a [ b1 b ] (Lehrstuhl KI) Bayes-Netze (2) 11 / 23

12 Propagation von Werten entlang von Kanten A B B=b P (A B = b) = = P (A B = b) P (B = b) 1 P (B = b A) P (A) P (B = b) Damit läßt sich für jeden Wert a, den A annehmen kann, die a posteriori-wahrscheinlichkeit P (A = a B = b) berechnen. Die Faktoren ergeben sich, indem Information gegen die Pfeilrichtung gesammelt wird: 1 P (b = b) P (B = b A) P (A) Normalisierungsfaktor Kantenübergang a priori-wahrscheinlichkeit (Lehrstuhl KI) Bayes-Netze (2) 12 / 23

13 Transport von Werten über Knoten A B C C=c P (A C = c) = P (A B = b C = c) P (C = c) B=b 1 = P (A)P (b A)P (c A b) P (c) B=b 1 = P (c b)p (b A)P (A) P (c) B=b In der Summierung steckt eine Rekursion: 1 Berechne alle Wahrscheinlichkeiten P (C = C B = b) 2 Berechne alle Wahrscheinlichkeiten für die Vorgängerkante P (B = b A) Es wird über B = b summiert, um alle Möglichkeiten für P (A C = c) zu erfassen. (Lehrstuhl KI) Bayes-Netze (2) 13 / 23

14 Information aus zwei Richtungen A B C A=a C=c P (B A = a C = c) = = = Die Propagation von Werten findet: P (A = a B C = C) P (A = a C = c) P (c B a)p (B a) P (a)p (c) 1 P r(c B) P (B a) P (c) 1 gegen die Kantenrichtung: P (C = c B) und 2 in die Kantenrichtung: P (B A = a) statt. Dank der BAYES-Regel kann die Information lokal berechnet werden: P (B A = a) = P (B) P (A = a B) P (A = a) (Lehrstuhl KI) Bayes-Netze (2) 14 / 23

15 Einfach verbundene Netze (1) einfach verbunden: höchstens ein Pfad zwischen zwei beliebigen Knoten 1 α P (X i P ( i a i P ( i (u 1,..., u n ) a i Y j = y j P (a i ) i i (u 1,..., u n ) Y j = y j i u i a i U i Y j b j ) = i j i u i X j y j j b j) j y j j b j) =: α = P (u i a i )P (X i P (y l X) l l j u i ) P (b l y l ) (Lehrstuhl KI) Bayes-Netze (2) 15 / 23

16 Einfach verbundene Netze (2) Also: P (X a i U i Y j b j ) = i i j j 1 P (a i ) P (X u i ) P (u i a i ) α i (u 1,...,u n) i i P (y j X)P (b j y j ) Propagation von X nach Y k : 1 α P (a i ) i (y 1,...,y m) P (Y k i P (X (u 1,...,u n) i j a i U i X b k ) = i u i ) i P (u i a i ) y k P (y k X)P (b k y k ) (Lehrstuhl KI) Bayes-Netze (2) 16 / 23

17 Einfach verbundene Netze (3) Propagation von X nach U k : 1 α P (a i ) X=x Der Wert enthält i P (U k i k (u 1,..., u n ) k auslassen a i i k U i X j P (x i (y 1,...,y m) u i ) i Y j b j ) = j P (u i a i ) P (y j x)p (b j y j ) die a posteriori-wahrscheinlichkeiten der Kinder von X und die a-posteriori-wahrscheinlichkeiten aller Vorgänger von X außer U k j (Lehrstuhl KI) Bayes-Netze (2) 17 / 23

18 Zusammenfassung Die Propagation von Werten in einem BAYES-Netz erfolgt in drei Schritten: 1 Aktualisierung in Knoten X: Berechne die Wahrscheinlichkeit P (X...) 2 Propagation gegen die Pfeilrichtung an alle Vorgängerknoten 3 Propagation in die Pfeilrichtung an alle Nachfolgerknoten Sonderfälle: 1 X hat keine Vorgänger: benutze als Vorgängerwahrscheinlichkeit den a-priori-wert P (X). 2 X hat keine Nachfolger: benutze als Nachfolgerwahrscheinlichkeit den konstanten Wert 1. (Lehrstuhl KI) Bayes-Netze (2) 18 / 23

19 Andere Lösungsverfahren Das Rechnen in BAYES-Netzen ist sehr aufwändig, da die Tabellen für die bedingten Wahrscheinlichkeiten exponentiell mit den Variablen wachsen. Es gibt aberapproximationsmethoden: Clustering Manche Knoten werden nach geeigneten Kriterien zu Megaknoten zusammengefaßt. Danach wird gerechnet wie in einem einfach verknüpften Netz. Stochastische Simulation Es wird zufällig eine große Zahl von Instantiierungen der Zufallsvariablen im Netz erzeugt, die mit der Wahrscheinlichkeitsverteilung des Netzes konsistent sind. Damit wird die gesuchte Lösung approximiert. (Lehrstuhl KI) Bayes-Netze (2) 19 / 23

20 Überblick BAYES-Netze stellen zwei Herausforderungen an die Modellierung: Welche Struktur hat ein Netz? Welche Werte haben die bedingten Verteilungen? Topologie und Wahrscheinlichkeitsverteilungen können aus Beispieldaten bestimmt werden. Dementsprechend gibt es vier Typen von Lernproblemen: Struktur bekannt bekannt unbekannt unbekannt Beispiele für alle Parameter einige Parameter alle Parameter einige Parameter (Lehrstuhl KI) Bayes-Netze (2) 20 / 23

21 Lernen der Struktur Zielsetzung: Lernen eines gerichteten, azyklischen Graphen G, der die gegebene Stichprobe D am besten erklärt, d.h. maximiere: P (G D) = P (D G)P (G) P (D) Der Suchraum ist also die Menge aller gerichten, azyklischen Graphen mit N Knoten (bei N Variablen in D). Dieses Problem ist NP -hart. Drei Ansätze: top-down, bottom-up und middle-out Wie vermeidet man, alle denkbaren Strukturen vergleichen zu müssen? Z.B. Monte-Carlo-Simuation. Alternative: Anwendung des expection maximization-algorithmus: berechne Erwartungswerte für bedingte Wahrscheinlichkeiten. (Lehrstuhl KI) Bayes-Netze (2) 21 / 23

22 Lernen von Wahrscheinlichkeiten (1) Die Topologie ist gegeben, es müssen aber die bedingten Wahrscheinlichkeiten gelernt werden. Falls Daten für alle bedingten Wahrscheinlichkeiten bekannt sind, schätze P (X = x i Y i = y i,k ) N(X = x i Y i = y i,k ) N( i Y i = y i,k ) durch Auszählen. Der Nenner berechnet sich dabei als: N( i Y i = y i,k ) = X=x N(X = x i Y i = y i,k ) Man braucht also viele Datensätze der Form: X Y 1... Y n N( i Y i = y i,k ) x y 1,1... y n,1 45 (Lehrstuhl KI) Bayes-Netze (2) 22 / 23

23 Lernen von Wahrscheinlichkeiten (2) Falls nicht für alle Variablen Werte in den Daten vorliegen, findet die Schätzung über Erwartungswerte statt: P (X = x i Y i = y i,k ) E(N(X = x i Y i = y i,k )) E(N( i Y i = y i,k )) Dabei ist für die Stichprobe D: E(N(x)) = E( k D(x = k)) Im Iterationsschritt werden die Parameter anhand der berechneten Schätzung maximiert, dann wird wieder neu geschätzt usw., bis ein Abbruchkriterium erfüllt ist. (Lehrstuhl KI) Bayes-Netze (2) 23 / 23

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Semester-Fahrplan 1 / 17

Semester-Fahrplan 1 / 17 Semester-Fahrplan 1 / 17 Hydroinformatik I Einführung in die Hydrologische Modellierung Bayes sches Netz Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ 1 Technische Universität Dresden TUDD

Mehr

Bayes sche und probabilistische Netze

Bayes sche und probabilistische Netze Bayes sche und probabilistische Netze Gliederung Wahrscheinlichkeiten Bedingte Unabhängigkeit, Deduktion und Induktion Satz von Bayes Bayes sche Netze D-Separierung Probabilistische Inferenz Beispielanwendung

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014 idden Markov Models Vorlesung omputerlinguistische Techniken Alexander Koller 8. Dezember 04 n-gramm-modelle Ein n-gramm ist ein n-tupel von Wörtern. -Gramme heißen auch Unigramme; -Gramme Bigramme; -Gramme

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Dynamische Programmierung Markus Ullrich Norbert Baum Fachbereich Informatik - IIb07 Hochschule Zittau/Görlitz 28. Mai 2009 1 / 29 Wie sieht es mit langen Ketten aus? A 1 A

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Übungsblatt Nr. 6. Lösungsvorschlag

Übungsblatt Nr. 6. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 6 Aufgabe (K) (4 Punkte)

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Syntaktische und Statistische Mustererkennung. Bernhard Jung

Syntaktische und Statistische Mustererkennung. Bernhard Jung Syntaktische und Statistische Mustererkennung VO 1.0 840.040 (UE 1.0 840.041) Bernhard Jung bernhard@jung.name http://bernhard.jung.name/vussme/ 1 Rückblick Nicht lineare Entscheidungsfunktionen SVM, Kernel

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Bayes sche Netze: Konstruktion, Inferenz, Lernen und Kausalität. Volker Tresp

Bayes sche Netze: Konstruktion, Inferenz, Lernen und Kausalität. Volker Tresp Bayes sche Netze: Konstruktion, Inferenz, Lernen und Kausalität Volker Tresp 1 Einführung Bisher haben wir uns fast ausschließich mit überwachtem Lernen beschäftigt: Ziel war es, eine (oder mehr als eine)

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten

Lösungen zu Übungsblatt 10 Höhere Mathematik Master KI Diskrete Zufallsgrößen/Markov-Ketten Lösungen zu Übungsblatt 0 Höhere Mathematik Master KI Hinweise: Die Aufgaben - beziehen sich auf das Thema Diskrete Zufallsgrößen, Ihre Verteilungen und Erwartungswerte. Siehe dazu auch das auf der Homepage

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Das Bayes'sche Prinzip

Das Bayes'sche Prinzip Das Bayes'sche Prinzip Olivia Gradenwitz Patrik Kneubühler Seminar über Bayes Statistik FS8 26. Februar 28 1 Bayes'sches statistisches Modell 1.1 Statistische Probleme und statistische Modelle In diesem

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 09.02.2009 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen möchte den Einfluss seiner Werbemaßnahmen auf den erzielten Umsatz quantifizieren. Hierfür werden die jährlichen

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Erich Schubert 6. Juli 2003 LMU München, Institut für Informatik, Erich Schubert Zitat von R. P. Feynman Richard P. Feynman (Nobelpreisträger

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

v 5 v 4 v 3 v 1 x v = y A(x a /y a ) x a y a A = OA = x v = y ( A(x a /y a ) B(x ( b /y b ) x b x a x c = y c = x 2 c + yc

v 5 v 4 v 3 v 1 x v = y A(x a /y a ) x a y a A = OA = x v = y ( A(x a /y a ) B(x ( b /y b ) x b x a x c = y c = x 2 c + yc v v v M v v 6 v x v y v Ax a /y a A OA x a y a v x v y AB v v v A v B v v Ax a /y a Bx b /y b AB x b x a x c y b y a y c A / B/ AB + AB x c + yc AB AB + AB xb x a + y b y a AB 9 AB, 9 AB x y m m y x α

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population Thema der Stunde I. Die Form der Stichprobenkennwerteverteilung II. Schlüsse von der Stichprobe auf die Population III. t-test für unabhängige und abhängige Stichproben Stichprobenkennwerte Population

Mehr

So viel wie möglich Extremwertaufgaben aus Geometrie

So viel wie möglich Extremwertaufgaben aus Geometrie So viel wie möglich Extremwertaufgaben aus Geometrie Andreas Ulovec 1 Einführung Die meisten Leute sind mit Extremwertaufgaben vertraut: Was ist das flächengrößte Dreieck, das man in einen Kreis einschreiben

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

2. Beispiel: n-armiger Bandit

2. Beispiel: n-armiger Bandit 2. Beispiel: n-armiger Bandit 1. Das Problem des n-armigen Banditen 2. Methoden zur Berechung von Wert-Funktionen 3. Softmax-Auswahl von Aktionen 4. Inkrementelle Schätzverfahren 5. Nichtstationärer n-armiger

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007 Resampling in»statistische Methoden in der Physik«Referent: Studenten-Seminar Sommersemester 2007 Gliederung 1 Resampling Prinzip Einleitung Resampling Methoden 2 3 4 Einleitung intuitv Resampling Prinzip

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr