Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Größe: px
Ab Seite anzeigen:

Download "Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading"

Transkript

1 Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005

2 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate R(c) = {i {1,...,N} c(x i) ĉ(x i )} N Resubstitutionsfehler R ts (c) = {x L ts c(x) ĉ(x)} L ts Missklassifikationsrate auf der Testmenge R cv = 1 K K k=1 R ts (c k ) Missklassifikationsrate bei Kreuzvalidierung R ts (als Beispiel) ermöglicht auch den Vergleich von Lernverfahren. Gibt es ein bestes Lernverfahren? V-2 Ensemble Methods c Lettmann 2005

3 Einführung No free lunch theorems There Ain t No Such Thing As A Free Lunch. [Robert A. Heinlein in The Moon Is a Harsh Mistress, 1966] In der Optimierung: [...] all algorithms that search for an extremum of a cost function perform exactly the same, when averaged over all possible cost functions. [David H. Wolpert und William G. Macready, 1995] Im Maschinellen Lernen: Some of those theorems show, loosely speaking, that for any two algorithms A and B, there are as many targets for which algorithm A has lower expected OTS [off-training set sampling] error than algorithm B as vice-versa (whether one averages over training sets or not). [David H. Wolpert 1996] V-3 Ensemble Methods c Lettmann 2005

4 Einführung Probleme von Lernverfahren Statistisches Problem: Das Verfahren betrachtet eine gemessen an der Menge von Trainingsdaten zu große von Hypothesen. Auf Basis der Trainingsdaten eignen sich mehrere Hypothesen gleichermaßen gut als Klassifizierer. Rechentechnisches Problem: Aufgrund der Komplexität des Problems kann das Lernverfahren nicht das Finden einer besten Lösung innerhalb der Hypothesenmenge garantieren. Bei Verwendung von Heuristiken besteht die Gefahr einer suboptimalen Lösung. Repräsentationsproblem: Die Kandidatenmenge der Hypothesen enthält keine ausreichend guten Approximationen des Zielkonzeptes. Das Lernverfahren kann einen gewünschten Approximationsgrad nicht liefern. V-4 Ensemble Methods c Lettmann 2005

5 Einführung Instabilität von Lernverfahren Heuristische Formulierung: Ein Lernverfahren heißt instabil, wenn eine kleine Veränderung in den Trainingsdaten eine große Veränderung im gelernten Klassifikator bewirkt. Instabile Lernverfahren: Neuronale Netze CART Stabile Lernverfahren: k Nearest Neighbor V-5 Ensemble Methods c Lettmann 2005

6 Bagging Bootstrap Aggregating Idee: Eine Gruppe von Klassifikatoren, die gemeinsam klassifizieren, kann die Nachteile einzelner Klassifikatoren aufwiegen. Problem: Das Lernverfahren braucht verschiedene Trainingsmengen, um verschiedene Klassifikatoren zu bestimmen. Lösung: Generierung von ähnlichen Trainingsmengen durch Bootstrapping (vgl. Kreuzvalidierung). V-6 Ensemble Methods c Lettmann 2005

7 Bagging Bootstrap Aggregating [Breiman 1994] Ausgangspunkt Lernmenge L mit N Beispielen Für b =1,...,B wiederhole den folgenden Auswahlprozess Ziehe aus L insgesamt N Beispiele mit Zurücklegen und bilde daraus die Lernmenge L b Mit den Lernmengen L 1,...,L B werden mit Hilfe eines Lernverfahrens die einzelne Klassifikatoren c k bestimmt. Die Klassifikatoren c 1,...,c B werden zu einem Ensemble zusammengefasst und legen durch Mehrheitsentscheid die Klasse eines Beispiels fest: c(x) := argmax {b {1,...,B} : c b (x) =j} j {1,...,J} V-7 Ensemble Methods c Lettmann 2005

8 Bagging Leistungsfähigkeit von Bootstrap Aggregating Die Wahrscheinlichkeit, dass ein Beispiel mindestens einmal gezogen wird, ist 1 (1 1/N ) N. Für N groß, gilt 1 (1 1/N ) N 1 1/e In jeder Lernmenge sind etwa 63.2% der Beispiele in L. Verbesserungen der Fehlerrate von 20% bis 47% bei Anwendung mit Entscheidungsbäumen wurden beobachtet. V-8 Ensemble Methods c Lettmann 2005

9 Boosting Boosting Weak Classifiers Idee: Eine Gruppe von Klassifikatoren, die gemeinsam klassifizieren, kann die Nachteile einzelner Klassifikatoren aufwiegen. Problem: Das Lernverfahren braucht verschiedene Trainingsmengen, um verschiedene Klassifikatoren zu bestimmen. Lösung: Verschränkung von Lernalgorithmus und Generierung von Lernmengen: Gewichtung der Lernbeispiele (Änderung der relativen Häufigkeiten) aufgrund der Auswertung des vorherigen Klassifikators. V-9 Ensemble Methods c Lettmann 2005

10 Boosting AdaBoost (Adaptive Boosting [Freund, Schapire 1996] Ausgangspunkt Lernmenge L mit N Beispielen Gewichtung der Lernbeispiele entsprechend dem Klassifikationsergebnis des zuletzt generierten schwachen Klassifikators Verringerung des Gewichts von korrekt klassifizierten Beispielen Erhöhung des Gewichts von falsch klassifizierten Beispielen Mit der neuen Lernmenge wird mit Hilfe eines Lernverfahrens der nächste Klassifikator bestimmt. Die Klassifikatoren c 1,...,c T werden zu einem Ensemble zusammengefasst und legen durch gewichteten Mehrheitsentscheid die Klasse eines Beispiels fest. Anwendung z.b. mit Stümpfen von Entscheidungsbäumen V-10 Ensemble Methods c Lettmann 2005

11 Boosting Algorithm: AdaBoost.M1 Input: Lernbeispiele (x 1,y 1 ),...,(x N,y N ), N N mit x i X und y i {1,...,J} für 1 i N; Anzahl T mit T N für die Anzahl der Runden. Output: Klassifizierer c für X. 1. Initialisiere Gewichte für alle Beispiele durch w 1 (i) =1/m für 1 i N. 2. Für t =1,...,T führe folgende Schritte aus: (a) Trainiere einen schwachen Klassifikator c t,d.h.c t : X R, mit den durch w t gewichteten Beispielen. (b) Sei ε t = N i=1 w t(i) (1 δ(c t (x i ),y i )) = {i c t (x i ) y i } w t(i). (δ Kronecker-Funktion, d.h. δ(x, y) = 1für x = y und δ(x, y) = 0sonst.) (c) Setze β t = ε t (1 ε t ) {. wt (i) β (d) Setze w t+1 (i) = t 1/z t falls c t (x i )=y i für 1 i N. w t (i) 1/z t sonst z t ist Normalisierungsfaktor, durch den das Gesamtgewicht aller Beispiele den Wert 1 erhält, also eine Verteilung widerspiegelt. 3. Ergebnis ist der Klassifikator c(x) = argmax log 1 β t j {1,...,J} {t c t (x i )=j} V-11 Ensemble Methods c Lettmann 2005

12 Boosting Leistungsfähigkeit von AdaBoost.M1 Der Klassifikator c gewichtet die Entscheidungen der einzelnen Klassifikatoren stärker, wenn ihr Fehler klein ist. Wenn die einzelnen Klassifikatoren eine bessere Fehlerrate als 1/2 haben, dann fällt der Fehler von c exponentiell in T gegen 0. Satz 1 Falls für die Fehlerraten ε t während des Ablaufs von Algorithmus AdaBoost.M1 gilt ε t 1/2, so folgt für den trainierten Klassifizierer c 1 N {i : c(x i) y i } exp ( 2 T t=1 ( ) ) ε t V-12 Ensemble Methods c Lettmann 2005

13 Boosting Problem: Fehlerrate der im Fall von J Klassen mit J>2 nicht so einfach erreichbar. Spezialfall J =2: Klassifikationsproblem mit genau 2 Klassen, ein schwacher Klassifizierer muss nur geringfügig besser sein als Raten. Betrachtung der Klassen { 1, +1} erlaubt einfachere Schreibweisen. V-13 Ensemble Methods c Lettmann 2005

14 Boosting Algorithm: Discrete AdaBoost Input: Lernbeispiele (x 1,y 1 ),...,(x N,y N ), N N mit x i X und y i { 1, +1} für 1 i N; Anzahl T mit T N für die Anzahl der Runden. Output: Klassifizierer c für X. 1. Initialisiere Gewichte für alle Beispiele durch w 1 (i) =1/N für 1 i N. 2. Für t =1,...,T führe folgende Schritte aus: (a) Trainiere einen schwachen Klassifikator c t,d.h.c t : X R, mit den durch w t gewichteten Beispielen. (b) Sei ε t = N i=1 w t(i) 1/2 c t (x i ) y i = {i c t (x i ) y i } w t(i). (c) Setze β t = ε t (1 ε t ) {. wt (i) β (d) Setze w t+1 (i) = t 1/z t falls c t (x i )=y i für 1 i N. w t (i) 1/z t sonst z t ist Normalisierungsfaktor, durch den das Gesamtgewicht aller Beispiele den Wert 1 erhält, also eine Verteilung widerspiegelt. 3. Ergebnis ist der Klassifikator ( T ) c(x) =sign log 1 c t (x) β t t=1 V-14 Ensemble Methods c Lettmann 2005

15 Boosting Erweiterungen von AdaBoost Real AdaBoost (2 Klassen) Die schwachen Klassifikatoren liefern eine Schätzung der mit den w t gewichteten Wahrscheinlichkeit für die Klasse +1. V-15 Ensemble Methods c Lettmann 2005

16 Cascading Cascades of Classifiers [Viola, Jones 2001] h h h c c 2 c 3 c T h 1-f 1-f 1-f 1-f Gesucht wird eine Folge c 1,...,c T von Klassifikatoren mit steigender Komplexität für ein 2-Klassen-Problem. Für jeden Klassifikator werden Mindestbedingungen gestellt an die Hitrate {x L:c t(x)=ĉ(x)=+1} {x L:ĉ(x)=+1} und die False Alarm Rate {x L:c t(x)=+1} {x L:ĉ(x)= 1}. Aus der Lernmenge L wird eine Teilmenge von Beispielen gezogen, die von der bisherigen Kaskade mit +1 klassifiziert werden. Das Verhältnis von Positivbeispielen und Negativbeispielen ist fest. Für 10 Stufen in der Kaskade, einer Hitrate von mindestens 0.99 und einer False Alarm Rate von höchstens 0.3 erhält man für die Kaskade eine Hitrate von und eine False Alarm Rate von höchstens V-16 Ensemble Methods c Lettmann 2005

Kapitel ML:IX (Fortsetzung)

Kapitel ML:IX (Fortsetzung) Kapitel ML:IX (Fortsetzung) IX. Combined Models and Meta Learning Motivating Ensemble Classification Bagging Boosting Cascading Ensemble Classifier ML:IX-1 Meta Learning LETTMANN 2007-2015 Motivating Ensemble

Mehr

Von schwachen zu starken Lernern

Von schwachen zu starken Lernern Von schwachen zu starken Lernern Wir nehmen an, dass ein schwacher Lernalgorithmus L mit vielen Beispielen, aber großem Fehler ε = 1 2 θ gegeben ist. - Wie lässt sich der Verallgemeinerungsfehler ε von

Mehr

Kapitel 5: Ensemble Techniken

Kapitel 5: Ensemble Techniken Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Sommersemester 2009 Kapitel 5:

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor

Seminar: Multi-Core Architectures and Programming. Viola-Jones Gesichtsdetektor Seminar: Multi-Core Architectures and Programming Viola-Jones Gesichtsdetektor Hardware-Software-Co-Design Universität Erlangen-Nürnberg 1 Übersicht Einleitung Viola-Jones Gesichtsdetektor Aufbau Blockmerkmale

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Entscheidungsbäume aus großen Datenbanken: SLIQ

Entscheidungsbäume aus großen Datenbanken: SLIQ Entscheidungsbäume aus großen Datenbanken: SLIQ C4.5 iteriert häufig über die Trainingsmenge Wie häufig? Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel! SLIQ:

Mehr

Splitting. Impurity. c 1. c 2. c 3. c 4

Splitting. Impurity. c 1. c 2. c 3. c 4 Splitting Impurity Sei D(t) eine Menge von Lernbeispielen, in der X(t) auf die Klassen C = {c 1, c 2, c 3, c 4 } verteilt ist. Illustration von zwei möglichen Splits: c 1 c 2 c 3 c 4 ML: III-29 Decision

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Theorie des maschinellen Lernens

Theorie des maschinellen Lernens Theorie des maschinellen Lernens Hans U. Simon 1. Juni 2016 10 Boosting In diesem Kapitel gehen wir der Frage nach: Kann man aus den Ratschlägen eines Narren Weisheit schöpfen? Die Rolle des Narren übernimmt

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Wintersemester 2015/16 Musterlösung für das 7. Übungsblatt Aufgabe 1 Evaluierungsmethoden Ein Datenset enthält 2 n Beispiele, wobei genau n Beispiele positiv sind und

Mehr

3.5 Entscheidungsbäume

3.5 Entscheidungsbäume 3.5 Entscheidungsbäume Entscheidungsbäume (decision trees) sind diskriminative Verfahren zur Klassifikation in zwei oder mehr Klassen; unabhängige Merkmale der Datenpunkte können nominal, ordinal oder

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Kapitel 4: Ensemble Learning und Multi Repräsentierte Daten

Kapitel 4: Ensemble Learning und Multi Repräsentierte Daten Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases II im Wintersemester 2013/14 Kapitel

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

3.3 Nächste-Nachbarn-Klassifikatoren

3.3 Nächste-Nachbarn-Klassifikatoren 3.3 Nächste-Nachbarn-Klassifikatoren Schrauben Nägel Klammern Neues Objekt Instanzbasiertes Lernen (instance based learning) Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Object recognition with Boosting

Object recognition with Boosting Object recognition with Boosting Hauptseminar Lernverfahren der Neuroinformatik und Robotik, Universität Ulm, Abteilung Neuroinformatik, SS 2007, Betreuer Friedhelm Schwenker Zusammenfassung Diese Ausarbeitung

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 3 Maschinelles Lernen und Klassifikation Aufgabe : Zufallsexperiment

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Syntaktische und Statistische Mustererkennung. Bernhard Jung

Syntaktische und Statistische Mustererkennung. Bernhard Jung Syntaktische und Statistische Mustererkennung VO 1.0 840.040 (UE 1.0 840.041) Bernhard Jung bernhard@jung.name http://bernhard.jung.name/vussme/ 1 Rückblick Entscheidungstheorie Bayes'sche Klassifikation

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 2.6.2015 1 von 33 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 33 Ausgangspunkt: Funktionsapproximation Die bisher

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007.

Modellierung. Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest. Wolfgang Konen Fachhochschule Köln Oktober 2007. Modellierung Entscheidungsbäume, ume, Boosting, Metalerner, Random Forest Wolfgang Konen Fachhochschule Köln Oktober 2007 W. Konen DMC WS2007 Seite - 1 W. Konen DMC WS2007 Seite - 2 Inhalt Typen der Modellierung

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Online Lernen: Die Themen

Online Lernen: Die Themen Online Lernen: Die Themen (a) Das Online-Spiel: In jeder Runde präsentiert ein Lehrer ein Beispiel, das ein Schüler klassifiziert. Nach wie vielen Runden hat der Schüler das unbekannte Zielkonzept gelernt?

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Sh Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Boosting für Bäume. Seminar Modellwahlkriterien. Holger Rettig. 18. Dezember 2009

Boosting für Bäume. Seminar Modellwahlkriterien. Holger Rettig. 18. Dezember 2009 Boosting für Bäume Seminar Modellwahlkriterien Holger Rettig 18. Dezember 2009 Holger Rettig (Vortrag 15) Boosting für Bäume 18. Dezember 2009 1 / 43 Gliederung 1 Einführung in CART Motivation Regressionsbäume

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Theorie des Algorithmischen Lernens Sommersemester 2006 Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Version 1.1 Gliederung der LV Teil 1: Motivation 1. Was ist Lernen 2. Das Szenario der Induktiven

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden Lernverfahren zur Berechnung von Wertefunktionen und Policies werden vorgestellt. Vollständige Kenntnis der Dynamik wird nicht vorausgesetzt (im Gegensatz zu den Verfahren der DP).

Mehr

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2)

Übersicht. Allgemeines Modell lernender Agenten. Lernende Agenten (1) Lernende Agenten (2) Übersicht Allgemeines Modell lernender Agenten I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen

Mehr

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Erich Schubert 6. Juli 2003 LMU München, Institut für Informatik, Erich Schubert Zitat von R. P. Feynman Richard P. Feynman (Nobelpreisträger

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Automaten und formale Sprachen. Lösungen zu den Übungsblättern

Automaten und formale Sprachen. Lösungen zu den Übungsblättern Automaten und formale Sprachen zu den Übungsblättern Übungsblatt Aufgabe. (Sipser, exercise.3) M = ({q, q2, q3, q4, q5}, {u, d}, δ, q3, {q3}) δ: u d q q q 2 q 2 q q 3 q 3 q 2 q 4 q 4 q 3 q 5 q 5 q 4 q

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Reguläre Ausdrücke und reguläre Grammatiken Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Regular expressions (1) Let Σ be an alphabet. The

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Modellierung mit künstlicher Intelligenz

Modellierung mit künstlicher Intelligenz Samuel Kost kosts@mailbox.tu-freiberg.de Institut für Numerische Mathematik und Optimierung Modellierung mit künstlicher Intelligenz Ein Überblick über existierende Methoden des maschinellen Lernens 13.

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Musterlösung für das 7. Übungsblatt Aufgabe 1 Gegeben sei folgende Beispielmenge: Day Outlook Temperature Humidity Wind PlayTennis D1? Hot High Weak No D2 Sunny

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Implizite Modellierung zur Objekterkennung in der Fernerkundung

Implizite Modellierung zur Objekterkennung in der Fernerkundung Implizite Modellierung zur Objekterkennung in der Fernerkundung Mitarbeiterseminar 20.01.2011 (IPF) Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften KIT Universität des Landes Baden-Württemberg

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Computational Linguistics Universität des Saarlandes Sommersemester 2011 28.04.2011 Entscheidungsbäume Repräsentation von Regeln als Entscheidungsbaum (1) Wann spielt Max Tennis?

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Text Mining 4. Seminar Klassifikation

Text Mining 4. Seminar Klassifikation Text Mining 4. Seminar Klassifikation Stefan Bordag 1. Klassifikation Stringklassifikation (männliche-weibliche Vornamen) Dokument klassifikation Bayesian Neuronal network (Decision tree) (Rule learner)

Mehr

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1

FRAGESTUNDE WS 2016/17 QM 2. Dr. Christian Schwarz 1 FRAGESTUNDE Dr. Christian Schwarz 1 #2 - Allgemein Q: Müssen wir den Standard Error händisch berechnen können? R: Nein. Q: Hat das Monte Carlo Experiment irgendeine Bedeutung für uns im Hinblick auf die

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Der Alpha-Beta-Algorithmus

Der Alpha-Beta-Algorithmus Der Alpha-Beta-Algorithmus Maria Hartmann 19. Mai 2017 1 Einführung Wir wollen für bestimmte Spiele algorithmisch die optimale Spielstrategie finden, also die Strategie, die für den betrachteten Spieler

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Christoph Sawade /Niels Landwehr/Paul Prasse Dominik Lahmann Tobias Scheffer Entscheidungsbäume

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 9. Übungsblatt Aufgabe 1: Decision Trees Gegeben sei folgende Beispielmenge: Age Education Married Income Credit?

Mehr

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Dozentin: Wiebke Petersen Foliensatz 3 Wiebke Petersen Einführung CL 1 Describing formal languages by enumerating all words

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22 Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 9 Aufgabe 1 Probabilistische Inferenz (30 Punkte) In einer medizinischen Studie wurden die Auswirkungen von Metastasen bildenden Karzinomen untersucht. Dabei wurde folgendes festgestellt: Bei

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Sommer-Semester 2008 Konzept-Lernen Konzept-Lernen Lernen als Suche Inductive Bias Konzept-Lernen: Problemstellung Ausgangspunkt:

Mehr

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1

Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine

Mehr

9. Heuristische Suche

9. Heuristische Suche 9. Heuristische Suche Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S Heuristische Suche Idee: Wir nutzen eine (heuristische)

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning

Kapitel ML: III. III. Entscheidungsbäume. Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning Kapitel ML: III III. Entscheidungsbäume Repräsentation und Konstruktion Impurity-Funktionen Entscheidungsbaumalgorithmen Pruning ML: III-1 Decision Trees c STEIN/LETTMANN 2005-2011 Spezifikation von Klassifikationsproblemen

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer Algorithm Theory 3 Fast Fourier Transformation Institut für Informatik Wintersemester 2007/08 Chapter 3 Fast Fourier Transformation 2 Polynomials Polynomials p over real numbers with a variable x p(x)

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Entscheidungsbäume. Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

Entscheidungsbäume. Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade /Niels Landwehr/Paul Prasse Silvia Makowski Tobias Scheffer Entscheidungsbäume Eine von vielen

Mehr

Prädiktion und Klassifikation mit

Prädiktion und Klassifikation mit Prädiktion und Klassifikation mit Random Forest Prof. Dr. T. Nouri Nouri@acm.org Technical University NW-Switzerland /35 Übersicht a. Probleme mit Decision Tree b. Der Random Forests RF c. Implementation

Mehr

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

v+s Output Quelle: Schotter, Microeconomics, , S. 412f The marginal cost function for a capacity-constrained firm At output levels that are lower than the firm s installed capacity of K, the marginal cost is merely the variable marginal cost of v. At higher

Mehr