NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums

Größe: px
Ab Seite anzeigen:

Download "NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums"

Transkript

1 NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende Magnetresonanztomographie eine zumindest dem Namen nach weitläug bekannte physikalische Erscheinung. Die Physik die dahintersteckt ist allerdings ebenso komplex wie spannend und soll in diesem Vortrag näher beleuchtet werden. Figure 1: Das Stern-Gerlach-Experiment 2 Physikalische Grundlagen 2.1 Kernspin Der Spin als intrinsische Teilcheneigenschaft wurde erstmals 1925 postuliert um die Ergebnisse des Stern-Gerlach-Experiments zu erklären, bei dem ein Strahl aus Silberatomen im Magnetfeld nicht wie klassisch erwartet kontiuierloich sondern diskret aufspaltet. Abbildung 1 Nach dem Standardmodell setzt sich der Kernspin aus den Spins der Neutronen und Protonen zusammen, und deren spin wiederum aus den Spins der am Aufbau beteiligten Quarks.(siehe Abbildung 2) Figure 2: Zusammensetzung des Kernspins 1

2 2.2 Verhalten des Kernspins im B-Feld Für uns ist das Verhalten des Kernspin in äuÿeren Feldern, vor allem in einem äuÿeren Magnetfeld von Interesse. Bei der Beschreibung dieses Verhaltens hilft uns die Tatsache, dass die Richtung des Spinvektors der Richtung zugehörigen magnetischen Moments entspricht. µ Bahn = e 2mc L µ Spin = g e S 2mc Wir können uns nun deshalb als Modell des Spinvektors einen Stabmagneten vorstellen, der sich in einem Magnetfeld bendet. Dieser wird versuchen sich entlang der Feldlinien auszurichten. Da der Spin wie aus der Quantenmechanik bekannt nur die Projektion des Spinvektors ist (siehe dazu Abbildung 3) und der Spinvektor im Winkel zur z-achse steht, wird dieser der Kreiselgleichung gehorchend eine Präzessionsbewegung ausführen, welche sich beschreiben lässt durch ω L = γb 0. ω L nennt man auch die Lamorfrequenz. Diese ist, wie aus der Gleichung hervorgeht abhängig von der Stärke des Magnetfeldes und vom gyromagnetischen Faktor γ der wie in Tabelle 4 ersichtlich von Kern zu Kern verschieden ist. Nun präzediert in einer makroskopischen Probe nicht nur ein Spin sondern eine enorme Anzahl an Spins mit der gleichen Frequenz aber in allen möglichen Phasen sowie in den beiden möglichen Ausrichtungen - entlang der Feldlinien bzw. entgegengesetzt Figure 3: Der Spin als Projektion des Spinverktors Figure 4: dazu. Setzen wir alle diese Spinvektoren gedanklich auf den Ursprung eines Koordinatensystems so können wir die resultierende Magnetisierung, auch Nettomagnetisierung genannt, als Vektorsumme der Einzelspins betrachten. Veranschaulicht ist das in Abbildung Formale Beschreibung Die eben angesprochenen Tatsachen helfen uns, das Verhalten der Spins auf einer abstrakteren Ebene zu beschreiben. Wir transformieren die Spins und somit auch die Netto-Magnetisierung in ein Koordinatensys- 2

3 Figure 5: Die Netto-Magnetisierung als Vektorsumme der einzelnen Spins tem, dass mit ω L rotiert, so dass in dem neuen Koordinatensystem keine Bewegung stattndet und können somit die Lage (und für später wichtig: die Bewegung) der Nettomagnetisierung mit Hilfe der sogenannten Bloch-Kugel zu beschreiben. (Abbildung 6) Dieses Phänomen ist als Zeeman-Eekt bekannt. Der Energieunterschied der der beiden Niveaus beträgt de = hγb 0 wobei wir aber wissen, dass γb 0 = ω L. Diese Zustände können durch Emission bzw. Absorption eines Photons mit der Energie E pho = hω pho ineinander übergehen, wobei ω pho = ω L sein muss. Wir brauchen also für das Wechseln der Zustände resonantes Licht, was den Begri Kernspinresonanz plausibel macht. Beim einfachsten Resonanz-Experiment, dem Continous-Wave-Experiment (cw Abbildung 7) nutzt man diese Tatsache um durch das langsame Ändern der Wellenlänge von eingestrahltem Licht irgendwann den Resonanzpeak zu nden und so Rückschlüsse auf z.b. die Teilchenart machen zu können. Figure 6: Bloch-Kugel Figure 7: Continous Wave Experiment 2.4 Resonanz Wie oben bereits erwähnt existieren zwei Spineinstellungen, was in einem anliegenden B-Feld zu einer Energieaufspaltung führt. 2.5 Relaxationszeiten Durch Einstrahlen eines transversalen Magnetpulses kann man die Ausrichtung der Spins und somit des Magnetisierungsvektors 3

4 (siehe dazu nochmals Abbildung 6) ändern. Wählt man die Dauer des Pulses richtig so ist es möglich ein Umklappen um beliebige Winkel zu erzeugen. Zwei wichtige, weil in der Praxis ständig angewandte Pulse sind der 90 - und 180 -Puls, die die Magnetisierung dementsprechend um 90 bzw 180 Grad klappen. Da das longtudinale Magnetfeld (aucch B 0 -Feld genannt) jedoch nach wie vor anliegt richten sich die Spins nach und nach wieder entlang der B 0 -Feldlinien aus. Diesen Vorgang bezeichnt man als Relaxation. Bei der longitudinalen Relaxation betrachten wir nur die z-komponente der Magnetisierung deren Änderung durch M z = M 0 (1 e t T 1 ) beschrieben wird (T1 ist hierbei die longitudinale Relaxationszeit). In Abbildung 8 ist der zeitliche Verlauf der Änderung grasch dargestellt. Die transversale Relaxation be- die Spins, die nach einem Transversalpuls alle in Phase präzedieren brauchen, um wieder zu dephasieren. Figure 9: Transversale Relaxation In der Praxis betrachtet man noch die T 2 -Zeit, die Zeit des Free Induction Decay. Durch Inhomogenitäten im B 0 -Feld und lokal induzierte Felder von benachbarten Kernen kommt es dabei zu einer schnelleren Dephasierung (und somit Relaxation) der Spins, als in der T 2-Zeit angenommen. Figure 8: Longitudinale Relaxation trachtet nur die transversale Komponente der Magnetisierung und ist beschrieben durch M xy = M xy0 e t T 2 (mit der transversalen Relaxationszeit T2)(Abbildung 9). Hierbei handelt es sich anschaulich um die Zeit, welche 2.6 Bloch'sche Bewegungsgleichung Die oben beschriebenen Vorgänge lassen sich alle durch die Bloch'schen Gleichungen ausdrücken. Diese wurden vom Nobelpreisträger Felix Bloch als Bewegungsgleichungen für den Magnetisierungsvektor eingeführt und lauten: 4

5 dm y dt dm x dt = (ω 0 ω)m y M x T 2 (1) = (ω 0 ω)m x + 2πγB 1 M z M y T 2 (2) Mit den Ergebnissen kann man Rückschlüsse auf die chemische Struktur der betrachteten Probe ziehen. In Abbildung 10 sind die verschiedenen Resonanzfrequenzen der Kohlenstoatome je nach ihrer Verbindung im Molekül zu sehen. dm z dt M z M z0 = 2πγB 1 M y T 1 (3) 3 Anwendungen Mit den bisher vorgestellten Eigenschaften der Kernspins im Feld, nämlich der der Resonanz und der Relaxationszeiten, haben wir schon sehr viel von der Teilchenart und - Umgebung abhängige Parameter gefunden. Diese mikroskopischen Parameter können wir durch Induktion (denn wir betrachten ja insbesondere bei den Relaxationszeiten sich zeitlich ändernde Magnetfelder) in messbare elektrische Signale umwandeln und somit auswerten. Zwei Anwendungen sind dabei besonders hervorzuheben. Die Magnetresonanzspektroskopie und die Magnetresonanztomographie (MRT). 3.1 NMR-Spektroskopie Bei der NMR-Spektroskopie wird die Tatsache ausgenutzt, dass das Feld am Kernort immer von seiner Umgebung abhängig ist. Man misst die Resonanzfrequenzen der Teilchen einer Probe und bestimmt die relative Verschiebung der Resonanzfrequenzen zur bekannten Eichfrequenz. δ = ν P robe ν ref νref Figure 10: Chemische Verschiebung 3.2 MR-Tomographie Bei der Magnetresonanztomographie werden mit Hilfe der NMR Schnittbilder des (menschlichen) Körpers gewonnen. Dazu müssen allerdings die empfangenen Signale räumlich kodiert werden. Das geschieht mit Hilfe von drei Gradientenspulen, deren Wirkungsweise aus Bild 11 hervorgeht. Die technische Umsetzung zeigt Bild 12. Der supraleitende Magnet erzeugt das statische B 0 -Feld, dessen Inhomogenitäten die Shim-Spulen ausgleichen. Die Gradientenspulen erzeugen die Gradientenfelder und die Körperspulen induzieren sowohl den B 1 - Puls, als wie sie auch die Relaxationssignale aufnehmen. 5

6 Figure 14: Bildrekonstruktion durch FT Figure 11: Gradientenspulen zur räumlichen Kodierung 4 Ausblick Auch wenn die Grundlagen der NMR schon lange bekannt sind, ist vor allem die Entwicklung der Bildgebung bei der MRT nach wie vor ein hochaktuelles Feld und wird es auf absehbare Zeit auch bleiben. Figure 12: Technische Umsetzung Die Bildrekonstruktion geschieht durch Fouriertransformation der Signale, wobei durch Manipulationen im Frequenzraum, dem sogenannten k-raum, noch einiges an Qualitätsgewinn möglich ist. (Abbildung 13 und 14 Figure 13: Aufnahme der Signale im k-raum 6

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8 2 Relaxation 7 7 2 Relaxation Dominik Weishaupt 2.1 T1: Longitudinale Relaxation 8 2.2 T2/T2*: Transversale Relaxation 8 D. Weishaupt, V. D. Köchli, B. Marincek, Wie funktioniert MRI?, DOI 10.1007/978-3-642-41616-3_2,

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

Fortgeschrittenenpraktikum

Fortgeschrittenenpraktikum Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3

Mehr

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Seminar 5. 0. 200 Teil : NMR Spektroskopie. Einführung und Physikalische Grundlagen.2 H NMR Parameter: a) Chemische

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

Kernspinresonanz - NMR

Kernspinresonanz - NMR Kernspinresonanz - NMR Referent: Pierre Sissol 10. Mai 2010 Seminar in Kern- und Teilchenphysik zum Fortgeschrittenenpraktikum 2 im SoSe 2010 Johannes-Gutenberg-Universität Mainz Betreuer: Dr. Andreas

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

Multipuls-NMR in der Organischen Chemie. Puls und FID

Multipuls-NMR in der Organischen Chemie. Puls und FID Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich

Mehr

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip

Mehr

Bericht zum Versuch Gepulste Kernspinresonanz

Bericht zum Versuch Gepulste Kernspinresonanz Bericht zum Versuch Gepulste Kernspinresonanz Anton Haase, Michael Goerz 22. Januar 27 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: M. Brecht Inhalt 1 Einführung 2 1.1 Kernspin................................

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Sta Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen

Mehr

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D

Mehr

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR

Mehr

Kernspinresonanztomographie (NMR)

Kernspinresonanztomographie (NMR) Kernspinresonanztomographie (NMR) Einleitung Physikalische Grundlagen: Makroskopische Kernmagnetisierung Präzession der Kernmagnetisierung Kernresonanzexperiment Blochsche Gleichungen/Relaxation Selektive

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester # 29,30 11/12/2008 und 16/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Magnetische Kernresonanz Spins im Magnetfeld, Relaxation, Bildgebung Magnetische

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR) ? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie

Mehr

Physikalische Grundlagen der Kernspin-Tomographie

Physikalische Grundlagen der Kernspin-Tomographie Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:

Mehr

Physikalische Grundlagen der Pulsspektroskopie I = ½. I > 1 Komplexe Kopplungsmuster. 2 B Resonanz!

Physikalische Grundlagen der Pulsspektroskopie I = ½. I > 1 Komplexe Kopplungsmuster. 2 B Resonanz! 4. Physikalische Grundlagen der Pulsspektroskopie Dieses Kapitel behandelt das ustandekommen des NMR-Signals sowie einige ausgewählte Messmethoden, die dem Verständnis der 2D-Techniken dienen. Am COS wird

Mehr

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion

Mehr

MR Grundlagen. Marco Lawrenz

MR Grundlagen. Marco Lawrenz MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

Kernresonanzspektroskopie

Kernresonanzspektroskopie Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen

Mehr

0.0.1 Polarisiertes Helium-3 und Anwendungen

0.0.1 Polarisiertes Helium-3 und Anwendungen 0.0.1 Polarisiertes Helium-3 und Anwendungen Polarisation Abbildung 0.1: Aufgrund der unterschiedlichen g-faktoren (gi P = 5, 5 u. g3he I = 4, 25) der Kerne kommt es zu unterschiedlichen Ausrichtungen

Mehr

Vorlesung "Grundlagen der Strukturaufklärung"

Vorlesung Grundlagen der Strukturaufklärung Vorlesung "Grundlagen der trukturaufklärung" für tudenten des tudiengangs "Bachelor Chemie" ommersemester 2003 Zeit: Montag, 9:00 bis 12:00 und Dienstag, 12:00 bis 14:00 Ort: MG 088 (Montags) und MC 351

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/93 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

Einstein-de-Haas-Versuch

Einstein-de-Haas-Versuch Einstein-de-Haas-Versuch Versuch Nr. 5 Vorbereitung - 7. Januar 23 Ausgearbeitet von Martin Günther und Nils Braun Einführung 2 Aufbau und Durchführung Das hier vorgestellte Experiment von Einstein und

Mehr

Kernspinresonanz, Kernspin-Tomographie

Kernspinresonanz, Kernspin-Tomographie Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography

Mehr

NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz)

NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p = ħ I, der ganz - oder halbzahlige Werte von ħ betragen

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Teil 1: Röntgen-Computertomographie CT

Teil 1: Röntgen-Computertomographie CT 11/12/2008 Page 1 HeiCuMed: Blockkurs Bildgebende Verfahren, Strahlenbehandlung, Strahlenschut Teil 1: Röntgen-Computertomographie CT Lehrstuhl für Computerunterstütte Klinische Mediin Mediinische Fakultät

Mehr

Magnetische Resonanzmethoden

Magnetische Resonanzmethoden Nuclear Magnetic Resonance (NMR) und Electron Spin Resonance (ESR) Kernspinresonanz und Elektronenspinresonanz Wichtige Technik in der organischen Chemie Zahlreiche Anwendungen in der Chemie, Medizin,

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,

Mehr

Vorbereitung. µ z = mγ h (1) γ = gq 2m wobei q die Ladung und m die Masse des Teilchens beschreiben.

Vorbereitung. µ z = mγ h (1) γ = gq 2m wobei q die Ladung und m die Masse des Teilchens beschreiben. Physikalisches Fortgeschrittenenpraktikum NMR-Spektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1. Theoretische Grundlagen 1.1. Kerndrehimpuls und magnetisches Moment Nach der Quantentheorie besitzt

Mehr

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I. Peter Schmieder AG NMR

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I. Peter Schmieder AG NMR Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil I Die Vorlesung 2/116 1. Grundlagen der NMR-Spektroskopie NMR-Prinzip, FT-NMR, Signaldetektion 2. Mehrdimensionale NMR (2D) Vektormodell,

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

Was wir heute daher vorhaben: Was Sie heute lernen sollen...

Was wir heute daher vorhaben: Was Sie heute lernen sollen... 18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine

Mehr

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

Magnetresonanztomographie (MRT) Grundlagen der Tomographie

Magnetresonanztomographie (MRT) Grundlagen der Tomographie Gegeben: Körper in einem starken B 0 -Feld - Folge von HF-Pulsen erzeugt rotierende Quermagnetisierung M T - M T variiert je nach Gewebetyp ortsabhängige Observable: M T (x,y,z) - kleine Volumenelemente

Mehr

Auswertung des Versuches Gepulste Kernspinresonanz

Auswertung des Versuches Gepulste Kernspinresonanz Auswertung des Versuches Gepulste Kernspinresonanz Andreas Buhr, Matrikelnummer 1229903 9. Mai 2006 Inhaltsverzeichnis Gepulste Kernspinresonanz 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin MaReCuM MRT OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie = MRI Magnetic

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 2)

Molekulare Biophysik. NMR-Spektroskopie (Teil 2) Molekulare Biophysik NMR-Spektroskopie (Teil 2) NMR-Parameter NMR-Parameter 3/88 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung Relaxation / NOE-Effekt NMR-Parameter

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Teil 3 2D-NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 3 2D-NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 3 2D-NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Protonen-Protonen-Korrelation durch J-Kopplung Pulssequenz für ein klassisches 1D- 1 H-NMR

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie 1 Inhalt Geschichtlicher Überblick MRT in Kürze Verfahrensschritte Physikalische Grundlagen der MRT Signal/Messung Bildgebung Vor- und Nachteile der MRT 2 Geschichtlicher Überblick

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec

4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec (1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12

Mehr

Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie

Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie hemisches Grundpraktikum II (270002) Kernresonanzspektroskopie NMR-Spektroskopie (Nuclear Magnetic Resonance). Kählig, SS 2010 Von der Substanz zur Struktur Substanz NMR - Spektren Struktur N N 1 Spektroskopie

Mehr

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Magnetisches Moment von Protonen - µ = y * h * m(i) (m = magn. Quantenzahl, y = gyromag. Verhältnis) - m(i)

Mehr

Versuchsanleitung für die gepulste Kernresonanz (NMR)

Versuchsanleitung für die gepulste Kernresonanz (NMR) Versuchsanleitung für die gepulste Kernresonanz (NMR) 1 Praktikumsanleitung 1.1 Einleitung Im Jahre 1945 gelang Felix Bloch und Edward Purcell unabhängig voneinander der erste experimentelle Nachweis eines

Mehr

NMR Spektroskopie I = 0 : C, 16 O (sogenannte gg-kerne haben immer I=0!) I = 1/2: 1 H, 13 C, 15 N, 19 F, 31 P,... I = 1: 2. H=D, 6 Li, 14 N I = 3/2: 7

NMR Spektroskopie I = 0 : C, 16 O (sogenannte gg-kerne haben immer I=0!) I = 1/2: 1 H, 13 C, 15 N, 19 F, 31 P,... I = 1: 2. H=D, 6 Li, 14 N I = 3/2: 7 NMR Spektroskopie folie00 Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.

Mehr

8 Instrumentelle Aspekte

8 Instrumentelle Aspekte 8.1 Spektrometer Literatur: einen einfachen Einstieg in die expperimentellen Aspekte der NMR bietet E. Fukushima and S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley, London (1981). Das Buch ist nicht

Mehr

Gepulste Kernspinresonanz (A9)

Gepulste Kernspinresonanz (A9) Gepulste Kernspinresonanz (A9) Christopher Bronner, Frank Essenberger Freie Universität Berlin 31. Mai 2007 Versuchsdurchführung am 4. Juni 2007 1 Vorbereitung 1.1 Kernspin Atomkerne besitzen im Allgemeinen

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Neurobiologie. Workshop A. PET & fmrt. Diagnoseaufgabe. BR Arnsberg GY/GE. KQ-Gruppe Biologie

Neurobiologie. Workshop A. PET & fmrt. Diagnoseaufgabe. BR Arnsberg GY/GE. KQ-Gruppe Biologie Neurobiologie Workshop A PET & fmrt Diagnoseaufgabe Experimentelle Aufgabe Dokumentationsaufgabe Analyseaufgabe Darstellungsaufgabe Überprüfungsformen.. Präsentationsaufgabe Bewertungsaufgabe Reflexionsaufgabe

Mehr

5.5 Kernspintomographie und Spektroskopie

5.5 Kernspintomographie und Spektroskopie 334 5. Elektrizität schen Evolution entstammenden Störfaktoren krankmachende Bedeutung zukommt. Mögliche Schädigung durch Strahlung niederfrequenter als sichtbares Licht muß wegen des Fehlens eines eindeutigen

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen 1 hysikalische Grundlagen 1.1 Atome und ihre Eigenschaften Ein Atom besteht aus einem Atomkern und ihn umgebenden Elektronen (negativ geladen). Der Atomkern besteht aus rotonen (positiv geladen) und eutronen

Mehr

Bildgebende Verfahren in der Medizinischen Physik

Bildgebende Verfahren in der Medizinischen Physik -1- Einführung in die Medizinische Physik Sommersemester 25, Fr 8-1, W2 1-148 Stichworte zur Vorlesung am 1.7.25 Bildgebende Verfahren in der Medizinischen Physik Dr. Stefan Uppenkamp

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 2)

Molekulare Biophysik. NMR-Spektroskopie (Teil 2) Molekulare Biophysik NMR-Spektroskopie (Teil 2) 3/96 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung dipolare Kopplung Relaxation / NOE-Effekt 4/96 Chemische Verschiebung

Mehr

Methoden der kognitiven Neurowissenschaften

Methoden der kognitiven Neurowissenschaften Methoden der kognitiven Neurowissenschaften SS 2013 Magnet-Resonanz-Tomographie (MRT) Jöran Lepsien Zeitplan Datum Thema 12.4. Einführung und Organisation 19.4. Behaviorale Methoden 26.4. Augenbewegungen

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Kernspin-Tomographie. Inhalte. SE+ MED 4. Semester. Werner Backfrieder. Kernspin. Physikalische Grundlagen Lamorfrequenz Relaxation

Kernspin-Tomographie. Inhalte. SE+ MED 4. Semester. Werner Backfrieder. Kernspin. Physikalische Grundlagen Lamorfrequenz Relaxation Kernspin-Tomographie SE+ MED 4. Semester Werner Backfrieder Inhalte Kernspin Phsikalische Grundlagen Lamorfrequen Relaation 90 o Impuls, T1-, T2-Relaation Free Induction Deca (FID) Kontrast Pulssequenen

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment 2.1.1 Felder und Dipole; Einheiten Wir beginnen mit einer

Mehr

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische hemie Prof. Dr. B. Dick PHYSIKALISH-HEMISHES PRAKTIKUM (Teil Ic) (Spektroskopie) Versuch NMR Protonenresonanz 0 http://www-dick.chemie.uni-regensburg.de/studium/praktikum1c.html

Mehr

Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05. Hella Berlemann Nora Obermann

Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05. Hella Berlemann Nora Obermann Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05 Hella Berlemann Nora Obermann Übersicht: Mößbauer (1958): rückstoßfreie Kernresonanzabsorption von γ-strahlen γ-strahlung: kurzwellige, hochenergetische,

Mehr

15 Kernspintomographie (MRI)

15 Kernspintomographie (MRI) Literatur zu diesem Kapitel Bushberg et al., The essential physics of medical imaging, Kap. 14, 15 McRobbie et al., MRI - From picture to proton, Cambridge Dössel, Bildgebende Verfahren in der Medizin,

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

15 Kernspintomographie (MRI)

15 Kernspintomographie (MRI) Literatur zu diesem Kapitel Bushberg et al., The essential physics of medical imaging, Kap. 14, 15 McRobbie et al., MRI - From picture to proton, Cambridge Dössel, Bildgebende Verfahren in der Medizin,

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV) C NMR Spektroskopie

Spektroskopische Methoden in der Organischen Chemie (OC IV) C NMR Spektroskopie 6. 3 C NMR Spektroskopie Die Empfindlichkeit des NMR Experiments hängt von folgenden physikalischen Parametern (optimale Abstimmung des Spektrometers vorausgesetzt) ab: Feldstärke B o, Temperatur T, gyromagnetisches

Mehr

Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR)

Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR) Fortgeschrittenenpraktikum Physik, FU-Berlin Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR) Jonas Lähnemann Antonia Oelke 29. Mai 2006 Elektronenspinresonanz an paramagnetischen

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil III. Peter Schmieder AG NMR

Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil III. Peter Schmieder AG NMR Vorlesung Moderne Methoden der Strukturaufklärung - NMR-Spektroskopie Teil III Programm 2/92 Was haben wir uns letztes Mal angeschaut: Wie beschreibt man Experimente mit Produktoperatoren Wie funktioniert

Mehr

NMR-Spektroskopie. Harald Günther. Grundlagen, Konzepte und Anwendungen der Protonenund Kohlenstoff-13 Kernresonanz-Spektroskopie in der Chemie

NMR-Spektroskopie. Harald Günther. Grundlagen, Konzepte und Anwendungen der Protonenund Kohlenstoff-13 Kernresonanz-Spektroskopie in der Chemie NMR-Spektroskopie Grundlagen, Konzepte und Anwendungen der Protonenund Kohlenstoff-13 Kernresonanz-Spektroskopie in der Chemie Harald Günther 317 Abbildungen, 49 Tabellen, 60 Aufgaben mit Lösungen 3.,

Mehr

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil V. Peter Schmieder AG NMR

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil V. Peter Schmieder AG NMR Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil V Das Programm 2/96 Beim letzten Mal Mehrdimensionale NMR-Spektroskopie COSY, DQF-COSY und Phasencyclen

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Gymnasium Oberwil / Maturitätsprüfung. Physik (Lösungen)

Gymnasium Oberwil / Maturitätsprüfung. Physik (Lösungen) Gymnasium Oberwil / Maturitätsprüfung Hilfsmittel: Arbeitszeit: 4 Stunden Hinweise: Physik (ösungen) Klasse 4 Az Physiklehrer N. Detlefsen - gelbe DMK-Formelsammlung oder die hauseigene kleine Grüne -

Mehr

Klassische Bloch-Gleichungen: mechanisches Zwei-Niveau-System

Klassische Bloch-Gleichungen: mechanisches Zwei-Niveau-System : mechanisches Zwei-Niveau-System von Ausarbeitung zum Seminarvortrag vom 5.11.015 Seminar zur Theorie der Atome, Kerne und kondensierte Materie 1 Motivation Das Zwei-Niveau-System ist ein sehr wichtiges

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Messung der Magnetischen Momente von p und n Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Till-Lucas Hoheisel 6.12.06 Inhalt: 1. Erste Messung des mag. Moments

Mehr

MRT. Funktionsweise MRT

MRT. Funktionsweise MRT MRT 1 25.07.08 MRT Funktionsweise Wofür steht MRT? Magnetische Resonanz Tomographie. Alternative Bezeichnung: Kernspintomographie. Das Gerät heißt dann Kernspintomograph. S N Womit wird der Körper bei

Mehr