Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.

Größe: px
Ab Seite anzeigen:

Download "Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr."

Transkript

1 ALP I Die Natur rekursiver Funktionen SS 2011

2 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen wird oft als Strukturelle Rekursion über die natürlichen Zahlen bezeichnet.

3 Die Natur rekursiver Funktionen Eine Funktionsdefinition dieser Form über die natürlichen Zahlen sieht aus wie folgt: Sei = die natürliche Zahl n. Wenn wir die 0 mit c und (1+) mit h ersetzen, bekommen wir folgenden Ausdruck h(h( (h(c) ), in dem h n-mal auf c = f(0) angewendet wird.

4 Die Natur rekursiver Funktionen Folgende Faltungsfunktion stellt eine Verallgemeinerung der Funktionen mit dieser einfachen Grundform dar: data Natural = Zero S Natural deriving (Eq, Show) fold :: (a->a) -> a -> Natural -> a fold h c Zero = c fold h c (S n) = h (fold h c n)

5 Rekursionsarten Lineare Rekursion Rekursive Funktionen, die in jedem Zweig ihrer Definition maximal einen rekursiven Aufruf beinhalten, werden als linear rekursiv bezeichnet. Beispiel: f 0 = 1 f n n<0 = 2 * (f (n+1)) otherwise = 3 * (f (n-1))

6 Rekursionsarten Endrekursion (tail recursion) Linear rekursive Funktionen werden als endrekursive Funktionen klassifiziert, wenn der rekursive Aufruf in jedem Zweig der Definition die letzte Aktion zur Berechnung der Funktion ist. Das bedeutet, dass keine weiteren Operationen nach der Auswertung der Rekursion berechnet werden müssen.

7 Endrekursion Beispiel: Eine nicht endrekursive Funktion ist folgende Definition der Fakultätsfunktion: factorial 0 = 1 factorial n = n * factorial (n-1) Ablauf einer Berechnung: factorial 6 => 6 * factorial 5 => 6 * (5 * factorial 4) => 6 * (5 * (4 * factorial 3)) => 6 * (5 * (4 * (3 * factorial 2))) => 6 * (5 * (4 * (3 * (2 * factorial 1)))) => 6 * (5 * (4 * (3 * (2 * (1 * factorial 0))))) => 6 * (5 * (4 * (3 * (2 * (1 * 1))))) => 6 * (5 * (4 * (3 * (2 * 1)))) => 6 * (5 * (4 * (3 * 2))) => 6 * (5 * (4 * 6)) => 6 * (5 * 24) => 6 * 120 => 720 Der Ausführungsstapel wächst bei jedem rekursiven Aufruf und Teilausdrücke müssen ständig zwischengespeichert werden. Die Endberechnungen finden erst beim Abbau des Ausführungsstapels statt.

8 Endrekursion Beispiel einer endrekursiven Definition der Fakultätsfunktion quickfactorial n = factorial_helper 1 n where factorial_helper a 0 = a factorial_helper a n = factorial_helper (a*n) (n-1) Ablauf einer Berechnung: quickfactorial 6 => factorial_helper 1 6 => factorial_helper 6 5 => factorial_helper 30 4 => factorial_helper => factorial_helper => factorial_helper => factorial_helper => 720 Es müssen keine Zwischenausdrücke gespeichert werden. Endrekursive Funktionen können aus diesem Grund oft vom Übersetzer (Compiler) optimiert werden, indem diese in einfache Schleifen verwandelt werden.

9 Beispiele endrekursiver Funktionen Klassisches Beispiel einer nicht endrekursiven Definition ist: Die Standarddefinition der reverse-funktion rev :: [a] -> [a] rev [] = [] rev (x:xs) = rev xs ++ [x] Berechnungsaufwand von rev: Reduktionen rev [x 1, x 2,, x n ] => rev [x 2,, x n ] ++ [x 1 ] 1 => rev [x 3,, x n ] ++ [x 2 ] ++ [x 1 ] 1... => [x n ] ++ [x n-1 ] ++ [x 2 ] ++ [x 1 ] 1 => [] ++ [x n ] [x 2 ] ++ [x 1 ] 1 bis hier (n+1) Reduktionen!

10 Berechnungsaufwand von rev bis hier (n+1) Reduktionen! (++) :: [a] -> [a] -> [a] (++) [] ys = ys (++) (x:xs) ys = x:(xs ++ ys) => [] ++ [x n ] ++ [x n-1 ] [x 2 ] ++ [x 1 ] => [x n ] ++ [x n-1 ] [x 2 ] ++ [x 1 ] 1 => [x n, x n-1 ] [x 2 ] ++ [x 1 ] 2 => [x n, x n-1,x n-2 ] [x 2 ] ++ [x 1 ] 3 =>.... => [x n, x n-1,,x 1 ] n Die gesamte Anzahl der Reduktionen ist: Reduktionen Quadratischer Ausführungsaufwand!

11 Eine effizientere Version von rev quickrev xs = rev_helper xs [] where rev_helper [] ys = ys rev_helper (x:xs) ys = rev_helper xs (x:ys) Berechnungsaufwand: quickrev [x 1, x 2,, x n ] => rev_helper [x 1,,x n ] [] 1 => rev_helper [x 2,,x n ] (x 1 :[]) 1 => rev_helper [x 3,,x n ] (x 2 :x 1 :[]) 1... => (x n :,,x 2 :x 1 :[]) 1 => (x n :,,x 2 :[x 1 ]) 1 n... => (x n :,, x 3 :[x 2,x 1 ]) 1 lineare Komplexität 2n = O(n) Reduktionen n

12 Wichtiges Beispiel von Endrekursion foldl-funktion: foldl :: (b -> a -> b) -> b -> [a] -> b foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs foldl.1 foldl.2 Hier werden Zwischenergebnisse akkumuliert und weitergeleitet. Mit Hilfe von Faltungs-Operatoren können sehr leicht endrekursive Funktionen definiert werden. Beispiel: reverse_reloaded = foldl (flip (:)) [] flip :: (a -> b -> c) -> b -> a -> c flip f x y = f y x

13 Berechnungsverlauf reverse_reloaded [x 1, x 2,, x n ] foldl.2 => foldl (flip (:)) [] [x 1, x 2,, x n ] => foldl (flip (:)) ((flip (:)) [] x 1 ) [x 2,x 3,, x n ] => foldl (flip (:)) ((:) x 1 []) [x 2,x 3,, x n ] => foldl (flip (:)) (x 1 :[]) [x 2,x 3,, x n ] foldl.2 => foldl (flip (:)) [x 1 ] [x 2,x 3,, x n ] => foldl (flip (:)) ((flip (:)) [x 1 ] x 2 ) [x 3,, x n ] foldl.2 => foldl (flip (:)) ((:) x 2 [x 1 ]) [x 3,, x n ] => foldl (flip (:)) (x 2 :[x 1 ]) [x 3,, x n ] => foldl (flip (:)) [x 2, x 1 ] [x 3,, x n ] =>...

14 Berechnung der Fibonacci-Zahlen Wie viele Reduktionsschritte brauchen wir, um fib n zu berechnen? fib 0 1 fib = 1 fib 2 fib 3 fib 4 fib 5 fib Reduktionen + = = = = 13 Die Anzahl der Reduktionen für fib n ist gleich fib (n+1) Die rekursive Berechnung der Fibonacci- Zahlen hat eine exponentielle Komplexität O( (1,618...) n )

15 2. Lösung Endrekursive Funktion Berechnung der Fibonacci-Zahlen quickfib funktioniert nur, wenn diese mit den ersten zwei Fibonacci-Zahlen gestartet wird. fib' n = quickfib 0 1 n Zähler where quickfib a b 0 = a quickfib a b n = quickfib b (a+b) (n-1) quickfib.1 quickfib.2 Innerhalb jedes rekursiven Aufrufs wird eine neue Fibonacci-Zahl berechnet und der Zähler verkleinert. Die neue Zahl und ihr Vorgänger werden beim nächsten rekursiven Aufruf als Parameter weitergegeben. Anzahl der Reduktionen Für die Berechnung von quickfib n benötigen wir n Reduktionen, d.h. wir haben nur einen linearen Aufwand O(n)

16 Eine effiziente tree2list-funktion Noch ein Beispiel für die Verbesserung der Effizienz einer Funktion ist die Funktion tree2list. data Tree = Nil Leaf Int Node Int Tree Tree tree2list :: Tree -> [Int] tree2list Nil = [] tree2list (Leaf n) = [n] tree2list (Node n l r) = tree2list l ++ [n] ++ tree2list r Die Verwendung der (++)-Funktion verursacht wieder einen quadratischen Berechnungsaufwand.

17 Eine effiziente tree2list-funktion Hier benutzen wir die gleiche Technik wie bei der rev-funktion, indem wir eine Art Akkumulator für Zwischenergebnisse einbauen: data Tree = Nil Leaf Int Node Int Tree Tree tree2list' :: Tree -> [Int] tree2list' t = tree2liste' t [] tree2liste' :: Tree -> [Int] -> [Int] tree2liste' Nil ns = ns tree2liste' (Leaf n) ns = n:ns tree2liste' (Node n l r) ns = (tree2liste' l (n:(tree2liste' r ns)))

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Iduktio ud Rekursio Teil II WS 2009/200 Prof. Dr. Margarita Espoda Prof. Dr. Margarita Espoda Iduktio über Bäue Defiitio: a) Ei eizeler Blatt-Kote ist ei Bau o b) Falls t, t 2,,t Bäue sid, da ist

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

Einführung in die funktionale Programmierung

Einführung in die funktionale Programmierung Einführung in die funktionale Programmierung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 26. Oktober 2006 Haskell - Einführung Syntax Typen Auswertung Programmierung

Mehr

WS 2011/2012. Robert Giegerich Dezember 2013

WS 2011/2012. Robert Giegerich Dezember 2013 WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 robert@techfak.uni-bielefeld.de Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für

Mehr

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil IVb WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil IVb WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I Lambda-Kalkül Teil IVb WS 2012/2013 λ-kalkül-parser Hilfsfunktionen: Die break-funktion ist eine Funktion höherer Ordnung, die eine Liste beim ersten Vorkommen einer Bedingung in zwei Listen spaltet.

Mehr

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6)) 1 - Korrektur 2 - Abstrakte Datentypen für arithmetische Ausdrücke Der Datentyp Wir beginnen zunächst mit dem algebraischen Datentyp für Ausdrücke. Hierfür definieren wir einen Konstruktor Number für Zahlen,

Mehr

Einführung in die Funktionale Programmierung mit Haskell

Einführung in die Funktionale Programmierung mit Haskell Einführung in die Funktionale Programmierung mit Haskell Rekursion LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 25. April 2013 Planung Achtung: Nächste

Mehr

Funktionales Programmieren (Praktische Informatik 3)

Funktionales Programmieren (Praktische Informatik 3) Funktionales Programmieren (Praktische Informatik 3) Berthold Hoffmann Studiengang Informatik Universität Bremen Winter 03/04 Vorlesung vom 19.01.2004: Effiziente Funktionale Programme Vorlesung vom 19.01.2004:

Mehr

Funktionale Programmierung ALP I. λ Kalkül. Teil 2 WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül. Teil 2 WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül Teil 2 WS 2012/2013 Lokale Variablennamen Haskell: let x = exp1 in exp2 Lambda: λ exp1. exp2 Einfache Regel: Der Geltungsbereich eines Lambda-Ausdrucks erstreckt sich soweit wie möglich

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für diese Woche Programmieren

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil III SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil III SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I Lambda-Kalkül Teil III SS 2011 Parser Hilfsfunktionen: Die break-funktion ist eine Funktion Höherer Ordnung, die eine Liste beim ersten Vorkommen einer Bedingung in zwei Listen spaltet. break ::

Mehr

Grundlagen der Programmierung 2 (1.B)

Grundlagen der Programmierung 2 (1.B) Grundlagen der Programmierung 2 (1.B) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 20. April 2011 Aufrufhierarchie und Rekursive Definitionen f, g, f i seien Haskell-definierte

Mehr

Typdeklarationen. Es gibt in Haskell bereits primitive Typen:

Typdeklarationen. Es gibt in Haskell bereits primitive Typen: Typdeklarationen Es gibt in bereits primitive Typen: Integer: ganze Zahlen, z.b. 1289736781236 Int: ganze Zahlen mit Computerarithmetik, z.b. 123 Double: Fließkommazahlen, z.b. 3.14159 String: Zeichenketten,

Mehr

Musterlösung zur 2. Aufgabe der 4. Übung

Musterlösung zur 2. Aufgabe der 4. Übung Musterlösung zur 2. Aufgabe der 4. Übung Da viele von Euch anscheinend noch Probleme mit dem Entfalten haben, gibt es für diese Aufgabe eine Beispiellösung von uns. Als erstes wollen wir uns noch einmal

Mehr

Objektorientierte Programmierung (ZQ1u2B)

Objektorientierte Programmierung (ZQ1u2B) Objektorientierte Programmierung (ZQ1u2B) Woche 4 Rekursion Christopher Scho lzel Technische Hochschule Mittelhessen 4. November 2015 Inhalt Rekursion Lineare Rekursion Verzweigte Rekursion Verschränkte

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,

Mehr

Programmieren in Haskell Einstieg in Haskell

Programmieren in Haskell Einstieg in Haskell Programmieren in Haskell Einstieg in Haskell Peter Steffen Universität Bielefeld Technische Fakultät 24.10.2008 1 Programmieren in Haskell Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke

Mehr

Programmierung und Modellierung mit Haskell

Programmierung und Modellierung mit Haskell Rekursion Terminierung Rekursionsarten Induktion Programmierung und Modellierung mit Haskell Rekursion, Terminierung, Induktion Martin Hofmann Steffen Jost LFE Theoretische Informatik, Institut für Informatik,

Mehr

Mathematische Rekursion

Mathematische Rekursion Rekursion Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die Funktion erscheint in ihrer eigenen Definition. Mathematische Rekursion o Viele mathematische

Mehr

Crashkurs Haskell Mentoring WiSe 2016/17. Anja Wolffgramm Freie Universität Berlin

Crashkurs Haskell Mentoring WiSe 2016/17. Anja Wolffgramm Freie Universität Berlin Crashkurs Haskell Mentoring WiSe 2016/17 Anja Wolffgramm Freie Universität Berlin 02/11/2016 , Inhalt Kommandozeile Haskell installieren & starten Ein 1. Haskell-Programm Funktionsdefinition Primitive

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als Kapitel 4 Bäume 4.1 Bäume, Datenstrukturen und Algorithmen Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als eine Menge von Knoten und eine Menge von zugehörigen

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Programmieren 1 C Überblick

Programmieren 1 C Überblick Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen

Mehr

Fallstudie: Nim Spiel

Fallstudie: Nim Spiel Fallstudie: Nim Spiel Angeblich chinesischen Ursprungs (Jianshizi) Interessant für Spieltheorie: vollständig analysierbar Frühzeitig computerisiert 1939 Nimatron (Weltausstellung New York) 1951 Nimrod

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

VL06: Haskell (Funktionen höherer Ordnung, Currying)

VL06: Haskell (Funktionen höherer Ordnung, Currying) VL06: Haskell (Funktionen höherer Ordnung, Currying) IFM 5.3 Spezielle Methoden der Programmierung Carsten Gips, FH Bielefeld 18.05.2015 Wiederholung Wiederholung Wie können Sie die ersten n Elemente einer

Mehr

Folgen und Funktionen in der Mathematik

Folgen und Funktionen in der Mathematik Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird

Mehr

Grundlagen der Programmierung 2 (1.B)

Grundlagen der Programmierung 2 (1.B) Grundlagen der Programmierung 2 (1.B) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 27. April 2012 Beispiel: Aufrufhierarchie quadrat x = x*x quadratsumme x y = (quadrat

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für s Wochenende Programmieren

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

Einführung in Haskell

Einführung in Haskell Einführung in Haskell Axel Stronzik 21. April 2008 1 / 43 Inhaltsverzeichnis 1 Allgemeines 2 / 43 Inhaltsverzeichnis 1 Allgemeines 2 Funktions- und Typdefinitionen 2 / 43 Inhaltsverzeichnis 1 Allgemeines

Mehr

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I µ-rekursive Funktionen WS 2012/2013 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert

Mehr

Beispiel: Fibonacci-Zahlen

Beispiel: Fibonacci-Zahlen Beispiel: Fibonacci-Zahlen Fibonacci Zahlen in der Natur Unendliche Reihe: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Fibonacci-Kaninchen: Pinienzapfen Blumenkohl L. P. Fibonacci (1170-1250) G. Zachmann Informatik

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Dr. Michael Savorić Hohenstaufen-Gymnasium (HSG) Kaiserslautern Version 20120622 Überblick Wichtige Eigenschaften Einführungsbeispiele Listenerzeugung und Beispiel

Mehr

Master-Veranstaltung Funktionale Programmierung. Effizienz. Wintersemester 2007/2008 Kim Kirchbach (Inf6310) Mirco Schenkel (Inf6311)

Master-Veranstaltung Funktionale Programmierung. Effizienz. Wintersemester 2007/2008 Kim Kirchbach (Inf6310) Mirco Schenkel (Inf6311) Master-Veranstaltung Funktionale Programmierung Effizienz Wintersemester 2007/2008 Kim Kirchbach (Inf6310) Mirco Schenkel (Inf6311) Inhalt Lazy Evaluation Komplexität Parameterakkumulation Tupling Speicherplatz

Mehr

Speicher und Adressraum

Speicher und Adressraum Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode

Mehr

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16

C++ Teil 4. Sven Groß. 30. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 16 C++ Teil 4 Sven Groß IGPM, RWTH Aachen 30. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 4 30. Apr 2015 1 / 16 Themen der letzten Vorlesung Funktionen: Definition und Aufruf Wert- und Referenzparameter,

Mehr

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung. Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag

Mehr

Effizienz in Haskell

Effizienz in Haskell Informatikseminar WS03/04 Oliver Lohmann mi4430 1 Gliederung Allgemeine Definition von Effizienz Lazy Evaluation Asymptotische Analyse Parameter Akkumulation Tupling Speicherplatz kontrollieren Allgemeine

Mehr

INFORMATIK FÜR BIOLOGEN

INFORMATIK FÜR BIOLOGEN Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration Programmieren lernen mit Groovy Rekursion Seite 1 Rekursion Rekursion Ursprung lat. recurrere ~ zurücklaufen rekursive Definition Definition mit Bezug auf sich selbst Beispiel Fakultätsfunktion n! 0! =

Mehr

2.4 Rekursion versus Iteration

2.4 Rekursion versus Iteration 2.4 Rekursion versus Iteration Beispiel Fakultätsfunktion (factorial): Spezifikation (= applikatives Programm): fact n = if n

Mehr

Beispiel: Fibonacci-Zahlen

Beispiel: Fibonacci-Zahlen Beispiel: Fibonacci-Zahlen Unendliche Reihe: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Fibonacci-Kaninchen: L. P. Fibonacci (1170-1250) G. Zachmann Informatik 1 - WS 05/06 Rekursion 23 Fibonacci Zahlen in der

Mehr

WS 2013/2014. Robert Giegerich. 11. Dezember 2013

WS 2013/2014. Robert Giegerich. 11. Dezember 2013 WS 2013/2014 Robert AG Praktische Informatik 11. Dezember 2013 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man höherer Ordnung.

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1 Kapitel 3: Eine einfache Programmiersprache Programmieren in Haskell 1 Datentypen, Datentypdefinitionen data Instrument = Oboe HonkyTonkPiano Cello VoiceAahs data Musik = Note Ton Dauer Pause Dauer Musik

Mehr

Die Korrektheit von Mergesort

Die Korrektheit von Mergesort Die Korrektheit von Mergesort Christoph Lüth 11. November 2002 Definition von Mergesort Die Funktion Mergesort ist wie folgt definiert: msort :: [Int]-> [Int] msort xs length xs

Mehr

Rekursion. L. Piepmeyer: Funktionale Programmierung - Rekursion

Rekursion. L. Piepmeyer: Funktionale Programmierung - Rekursion Rekursion 1 Iterative und rekursive Methoden Summe von 1 bis n berechnen: iterativ rekursiv public int sum(int n){ int result = 0; for(int i=1; i

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Wieviel Vorfahren? Grundlagen der Programmierung 2. Beispiel: Aufrufhierarchie. Aufrufhierarchie und Rekursive Definitionen. Haskell: Auswertung

Wieviel Vorfahren? Grundlagen der Programmierung 2. Beispiel: Aufrufhierarchie. Aufrufhierarchie und Rekursive Definitionen. Haskell: Auswertung Wieviel Vorfahren? Grundlagen der Programmierung 2 Haskell: Auswertung Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017..................... Oma-M Opa-M Oma-V Opa-V Mutter ich Vater Aufgabe: Wieviele

Mehr

Workshop Einführung in die Sprache Haskell

Workshop Einführung in die Sprache Haskell Workshop Einführung in die Sprache Haskell Nils Rexin, Marcellus Siegburg und Alexander Bau Fakultät für Informatik, Mathematik und Naturwissenschaften Hochschule für Technik, Wirtschaft und Kultur Leipzig

Mehr

Liste: beliebig lange, geordnete Sequenz von Termen. Kopf ist erstes Listenelement, Schwanz die restliche Liste

Liste: beliebig lange, geordnete Sequenz von Termen. Kopf ist erstes Listenelement, Schwanz die restliche Liste Listen Liste: beliebig lange, geordnete Sequenz von Termen.(Kopf, Schwanz) Kopf ist erstes Listenelement, Schwanz die restliche Liste leere Liste [] Ende der Liste wird durch [] gekennzeichnet Beispiel:

Mehr

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float).

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). Haskell Funktionen Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). circlearea :: Float -> Float circlearea radius = 2 * pi * radius^2 Definieren

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I Rev. 2766 1 [33] Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [33] Fahrplan Teil

Mehr

Inhalt Kapitel 2: Rekursion

Inhalt Kapitel 2: Rekursion Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 3

Algorithmen und Datenstrukturen 1 Kapitel 3 Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann

Mehr

Großübung zu Einführung in die Programmierung

Großübung zu Einführung in die Programmierung Großübung zu Einführung in die Programmierung Daniel Bimschas, M.Sc. Institut für Telematik, Universität zu Lübeck https://www.itm.uni-luebeck.de/people/bimschas Inhalt 1. Besprechung Übung 4 Iteration

Mehr

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren

Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die

Mehr

Funktionale Programmierung

Funktionale Programmierung Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 2 Teil II Typen mit Werten und Ausdruck, sogar listenweise 3 Haskell Programme Programm Module ein

Mehr

Listen und Listenfunktionen. Grundlagen der Programmierung 2 A (Listen) Listen und Listenfunktionen. Listen? Haskell: Listen

Listen und Listenfunktionen. Grundlagen der Programmierung 2 A (Listen) Listen und Listenfunktionen. Listen? Haskell: Listen Listen und Listenfunktionen Grundlagen der Programmierung 2 A (Listen) Haskell: Listen Prof. Dr. Manfred Schmidt-Schauß Listen modellieren Folgen von gleichartigen, gleichgetypten Objekten. Ausdruck im

Mehr

Grundlagen der Programmierung 2 (2.A)

Grundlagen der Programmierung 2 (2.A) Grundlagen der Programmierung 2 (2.A) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 5. Mai 2011 Listen und Listenfunktionen Listen modellieren Folgen von gleichartigen,

Mehr

Algorithmen und Datenstrukturen"

Algorithmen und Datenstrukturen Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel, Lars Noschinski, Dr. Jasmin Blanchette Wintersemester 2013/14 Abschlussklausur 21. Februar 2014 Einführung

Mehr

Grundlagen der Programmierung 2 A (Listen)

Grundlagen der Programmierung 2 A (Listen) Grundlagen der Programmierung 2 A (Listen) Haskell: Listen Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Listen und Listenfunktionen Listen modellieren Folgen von gleichartigen, gleichgetypten Objekten.

Mehr

Algorithmen und Datenstrukturen"

Algorithmen und Datenstrukturen Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen

Mehr

Fragen. f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))?

Fragen. f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))? Fragen f [ ] = [ ] f (x : y : ys) = x y : f ys f (x : xs) = f (x : x : xs) Wozu evaluiert f [1, 2, 3] (Abkürzung für f (1 : 2 : 3 : [ ]))? Wozu evaluiert [f [ ], f [ ]]? Weiteres Beispiel: f [ ] y = [

Mehr

Unendliche Listen und Bäume

Unendliche Listen und Bäume Funktionale Programmierung Unendliche Listen und Bäume Helga Karafiat, Steffen Rüther Übersicht Grundlage: Lazy Evaluation Konstruktion von unendlichen Strukturen Verwendung von unendlichen Listen Unendliche

Mehr

Zweite Möglichkeit: Ausgabe direkt auf dem Bildschirm durchführen:

Zweite Möglichkeit: Ausgabe direkt auf dem Bildschirm durchführen: Ein- und Ausgabe Zweite Möglichkeit: Ausgabe direkt auf dem Bildschirm durchführen: fun p r i n t T r e e printa t = c a s e t o f Leaf a => ( p r i n t Leaf ; printa a ) Node ( l, a, r ) => ( p r i n

Mehr

Klausur Programmierung WS 2002/03

Klausur Programmierung WS 2002/03 Klausur Programmierung WS 2002/03 Prof. Dr. Gert Smolka, Dipl. Inf. Thorsten Brunklaus 14. Dezember 2002 Leo Schlau 45 Vor- und Nachname Sitz-Nr. 4711 007 Matrikelnummer Code Bitte öffnen Sie das Klausurheft

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren 11 Rekursion Jun.-Prof. Dr.-Ing. Anne Koziolek Version 1.1 ARBEITSGRUPPE ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING (ARE) INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

Mehr

Typklassen. Natascha Widder

Typklassen. Natascha Widder Typklassen Natascha Widder 19.11.2007 Motivation Typklassen fassen Typen mit ähnlichen Operatoren zusammen ermöglichen überladenen Funktionen Definition Typklassen Deklarationsschema class Name Platzhalter

Mehr

Zahlen in Haskell Kapitel 3

Zahlen in Haskell Kapitel 3 Einführung in die Funktionale Programmiersprache Haskell Zahlen in Haskell Kapitel 3 FH Wedel IT-Seminar: WS 2003/04 Dozent: Prof. Dr. Schmidt Autor: Timo Wlecke (wi3309) Vortrag am: 04.11.2003 - Kapitel

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Peano-Zahlen, Listen, Bäume Rekursive Funktionen strukturelle

Mehr

Teil 4: Rekursion und Listen

Teil 4: Rekursion und Listen Einführung in das Programmieren Prolog Sommersemester 2006 Teil 4: Rekursion und Listen Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln,

Mehr

Lösung: InfA - Übungsblatt 07

Lösung: InfA - Übungsblatt 07 Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,

Mehr

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül HASKELL KAPITEL 2.1 Notationen: Currying und das Lambda-Kalkül Bisheriges (Ende VL-Teil 1) weite :: (Float,Float) ->Float weite (v0, phi) = (square(v0)/9.81) * sin(2 * phi) (10, 30 ) smaller ::(Integer,

Mehr

ROHRE FUER HOHE TEMPERATUREN ASTM A 106

ROHRE FUER HOHE TEMPERATUREN ASTM A 106 ROHRE FUER HOHE TEMPERATUREN ASTM A 106 1/8 10,300 1,240 0,280 10 1/8 10,300 1,450 0,320 30 1/8 10,300 1,730 0,370 STD 40 1/8 10,300 2,410 0,470 XS 80 1/4 13,700 1,650 0,490 10 1/4 13,700 1,850 0,540 30

Mehr

Informatik-Seminar Thema 6: Bäume

Informatik-Seminar Thema 6: Bäume Informatik-Seminar 2003 - Thema 6: Bäume Robin Brandt 14. November 2003 1 Robin Brandt Informatik-Seminar 2003 - Thema 6: Bäume Übersicht Definition Eigenschaften Operationen Idee Beispiel Datendefinition

Mehr

Datenstruktur Baum und Rekursion Software Entwicklung 1

Datenstruktur Baum und Rekursion Software Entwicklung 1 Datenstruktur Baum und Rekursion Software Entwicklung 1 Annette Bieniusa, Mathias Weber, Peter Zeller 1 Datenstruktur Baum Bäume gehören zu den wichtigsten in der Informatik auftretenden Datenstrukturen.

Mehr

Grundlagen der Programmierung 2 B

Grundlagen der Programmierung 2 B Grundlagen der Programmierung 2 B Haskell: Listen-Komprehensionen Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Listenausdrücke, Listen-Komprehensionen Analog zu Mengenausdrücken, aber Reihenfolge

Mehr

Programmieren in Haskell. Abstrakte Datentypen

Programmieren in Haskell. Abstrakte Datentypen Programmieren in Haskell Abstrakte Datentypen Einführung Man unterscheidet zwei Arten von Datentypen: konkrete Datentypen: beziehen sich auf eine konkrete Repräsentation in der Sprache. Beispiele: Listen,

Mehr

Tutoraufgabe 1 (Datenstrukturen in Haskell):

Tutoraufgabe 1 (Datenstrukturen in Haskell): Prof. aa Dr. J. Giesl Programmierung WS12/13 M. Brockschmidt, F. Emmes, C. Otto, T. Ströder Allgemeine Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus der gleichen Kleingruppenübung (Tutorium)

Mehr

Funktionale Programmierung Mehr funktionale Muster

Funktionale Programmierung Mehr funktionale Muster Mehr funktionale Muster Prof. Dr. Oliver Braun Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 07.12.2017 06:56 Inhaltsverzeichnis Pattern Matching..................................

Mehr

Praktische Informatik I Der Imperative Kern Rekursive Funktionen

Praktische Informatik I Der Imperative Kern Rekursive Funktionen Praktische Informatik I Der Imperative Kern Rekursive Funktionen Prof. Dr. Stefan Edelkamp Institut für Künstliche Intelligenz Technologie-Zentrum für Informatik und Informationstechnik (TZI) Am Fallturm

Mehr

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1

Übergang von funktionaler zu OOP. Algorithmen und Datenstrukturen II 1 Übergang von funktionaler zu OOP Algorithmen und Datenstrukturen II 1 Imperative vs. funktionale Programmierung Plakativ lassen sich folgende Aussagen treffen: funktional: imperativ: Berechnung von Werten

Mehr