1 Mengen und Aussagen

Größe: px
Ab Seite anzeigen:

Download "1 Mengen und Aussagen"

Transkript

1 $Id: mengen.tex,v.3 200/0/3 2:37:54 hk Exp hk $ Mengen und Aussagen In der letzten Sitzung hatten wir den Begriff einer Menge eingeführt und einige Rechenoperationen für Mengen eingeführt Vereinigung M N Alle x in M oder N Durchschnitt M N Alle x in M und N Komplement M\N Alle x in M nicht in N Wir wollen jetzt einige Eigenschaften unserer bisher eingeführten Begriffe festhalten, und beginnen mit einem Satz über die Teilmengenbeziehung. Wir verwenden das etwas kürzere Wort Inklusion als das übliche Synonym für Teilmengenbeziehung. Lemma. (Grundeigenschaften der Inklusion) Seien A, B, C drei Mengen. Dann gelten: (a) Die Inklusion ist transitiv, d.h. sind A B und B C, so ist auch A C. (b) Es ist A B A A B. (c) Genau dann ist A = B wenn A B und B A gelten. Beweis: (a) Für jedes Element x A gilt wegen A B zunächst auch x B und wegen B C ist schließlich x C. Dies zeigt A C. (b) Jedes Element des Durchschnitts A B ist definitionsgemäß auch ein Element von A, es gilt also A B A. Ebenso ist jedes Element von A auch ein Element von A B und wir haben A A B. (c) Wir müssen zeigen das aus A = B die beiden Bedingungen A B und B A folgen, und dass umgekehrt aus A B und B A auch A = B folgt. = Dies ist klar. = Die Bedingung A B bedeutet das jedes Element von A ein Element von B ist und B A sagt das umgekehrt jedes Element von B auch ein Element von A ist. Damit haben A und B genau dieselben Elemente, und sind somit dieselbe Menge. Inhaltlich sind alle Aussagen des Lemmas von vornherein klar 2-

2 C B A A B C A B A A B und wir wollen dieses Lemma hauptsächlich als Anlass für einige Bemerkungen verwenden. Die Aussagen der Mathematik werden als sogenannte Sätze formuliert und in einem aufgeschriebenen Text werden sie dann oftmals numeriert und in irgendeiner Form hervorgehoben dargestellt. Dabei ist der Name Satz hier ein Oberbegriff, je nach Bedeutung der Aussage werden verschiedene Namen verwendet. In der Literatur finden Sie die folgenden Bezeichnungen: Satz Aussage mit einer mitteilenswerten, eigenständigen Bedeutung. Hauptsatz Ein besonders wichtiger Satz. Theorem Je nach Autor entweder ein Synonym für Satz oder für Hauptsatz. Lemma Wie ein Satz aber mit Bedeutung hauptsächlich innerhalb der Theorie. Proposition Je nach Autor entweder ein Synonym für Satz oder für Lemma. Koroller Eine unmittelbare Folgerung aus einem Satz oder Lemma, oftmals ein besonders hervorgehobener Spezialfall. Wir werden die Namen Satz, Lemma und Korollar verwenden. Einfache Aussagen werden oftmals nicht extra als Satz formuliert sondern nur im laufenden Text erwähnt, die Aussagen in Lemma wären ein Kandidat für solch eine Behandlung. Besonders selbstverständliche Aussagen werden sogar nirgends festgehalten, beispielsweise werden wir so etwas wie A B = B A für Mengen A, B verwenden auch ohne es irgendwo explizit zu bennennen. Wir kommen jetzt zum Inhalt von Lemma, und wollen zunächst die Verwendung von Variablen erläutern. Im normalen Sprachgebrauch ist eine Variable eine Größe deren Wert sich im Laufe der Zeit ändert, aber in der Mathematik wird das Wort Variable in einem etwas anderen Sinne verwendet. Nehmen wir etwa die Variablen A, B, C im Lemma. Diese wurden mit Seien A, B, C drei Mengen eingeführt, und dies meint das wir uns drei Mengen nehmen und diesen die Namen A, B, C geben. Diese Mengen ändern sich dann im folgenden nicht, die Werte von A, B, C sind nicht etwas variables und es ist beispielsweise völlig sinnlos so etwas wie Sei A := {, 2, 3} sagen zu wollen. Variablen in der Mathematik sind nur Namen für mathematische Objekte und keine sich ändernden Größen, die Namensgebung Variable kommt daher das 2-2

3 etwa unsere Variablen A, B, C Namen für völlig beliebige Mengen sind, die Variabilität liegt in den potentiell möglichen Werten für A, B, C aber eben nicht im gewählten Wert selbst. Dagegen ist etwa die leere Menge keine Variable, da diese eine ganz spezifische Menge bezeichnet. Es gibt einige, wenige Ausnahmen zum oben gesagten. Beispielsweise ist in der Mengenbeschreibung {2x x N} das Symbol x eine echte Variable, man spricht hier auch von einer formalen Variablen. Derartige Variablen treten immer nur in gebundener Form auf, beispielsweise gibt es das x nur innerhalb der beiden geschweiften Klammern, Ausdrücke wie etwa 2x {2x x N} haben keinerlei Sinn, das es außerhalb der Klammern eben kein x gibt. Eine andere vertraute Situation in der formale Variablen vorkommen, ist die Integrationsvariable beim bestimmten Integral b f(x) dx, das x kommt hier nur im a Integral gebunden vor, Formeln wie x 2 = x dx sind weder wahr noch falsch sondern 0 nur unsinnig. Kommen wir zum Beweis des Lemmas. Mathematik ist keine empirische Wissenschaft, mathematische Aussagen können nicht durch Beobachtungen oder Daten belegt werden. Das einzige Kriterium zur Wahrheit mathematischer Aussagen ist der Beweis. Ein Beweis ist dabei mehr als nur eine überzeugende Begründung des behaupteten Sachverhalts, sondern eine wirklich vollständige, logische Herleitung. Beweise im mathematischen Sinne sind für reale Objekte und Tatsachen nicht möglich, dass sie in der Mathematik durchgeführt werden können, liegt letztlich daran das alle Begriffe exakt definiert sind. Beweise sind für die Mathematik keine optionale Zugabe, sondern das was Mathematik ausmacht. Das heißt natürlich nicht, das wir in dieser Vorlesung alles vollständig beweisen werden, hierfür wird die zur Verfügung stehende Zeit leider nicht ausreichen. Wir schauen uns jetzt den Beweis von Teil (a) des Lemmas an. Vorausgesetzt sind einmal die für alle Teile des Lemma gültige Voraussetzung Seien A, B, C drei Mengen und weiter A B sowie B C. Zu zeigen ist, dass auch A C gilt. Das einzige zur Verfügung stehende Hilfsmittel ist die Definition der Teilmengenbeziehung, und A C bedeutet, dass jedes Element von A auch ein Element von C ist. Wir müssen uns also ein Element x von A nehmen und einsehen das dieses auch ein Element von C ist. Da A eine Teilmenge von B ist, ist zunächst x B und da B auch eine Teilmenge von C ist, ist x auch ein Element von C. Damit ist dann A C bewiesen. Der Beweis von Teil (b) folgt denselben Prinzipien, und soll hier nicht wiederholt werden. Der letzte Teil (c) des Lemmas bietet ein neues Detail. Die Formulierung Genau dann ist A = B wenn A B und B A gelten, bedeutet das zum einen aus A = B die Aussage A B und B A folgt und zum anderen, umgekehrt aus A B und B A auch A = B folgt. In dieser Formulierung sind also zwei Behauptungen versteckt, und diese werden dann auch beide bewiesen. In dem mit = gekennzeichneten Teil wird die Implikation von links nach rechts bewiesen, d.h. das aus A = B auch A B und B A folgen. In diesem konkreten Beispiel ist hier nichts zu tun, da wir bereits 2-3

4 bemerkt hatten das jede Menge eine Teilmenge von sich selbst ist. Im zweiten Beweisteil mit = wird dann die andere Implikation, also von rechts nach links bewiesen. Dies soll an allgemeinen Bemerkungen erst einmal genügen. Man kann jetzt fortfahren und diverse Lemmata über das Rechnen mit Mengen beweisen, etwa Formeln wie A B = B A, (A B) C = A (B C) und vieles mehr. Wir wollen hier nur eine solche Formel vorstellen, da diese eine der häufigeren Fehlerquellen ist. Lemma.2 (De Morgansche Regeln für Mengen) Seien A, B, C drei Mengen. Dann gelten die beiden Gleichungen A\(B C) = (A\B) (A\C) und A\(B C) = (A\B) (A\C). Beweis: Dies ist eine Übungsaufgabe. Sie sollten sich dies ruhig einmal klarmachen, auch wenn es keine Aufgabe auf einem der Übungsblätter ist. Damit haben wir erst einmal genug über Mengen gesagt, und kommen jetzt zum zweiten Thema dieses Kapitels, der sogenannten Aussagenlogik. Unter einer Aussage verstehen wir einen sprachlichen Ausdruck der einen eindeutigen Wahrheitsgehalt hat, also entweder wahr oder falsch ist. Streng genommen sind wir hier eigentlich nur an mathematischen Aussagen interessiert, dies meint Aussagen die nur von mathematischen Objekten handeln. In der Logik betrachtet man auch allgemeinere Aussagen, dies führt aber schnell zu zusätzlichen Komplikationen, die für uns keine Rolle spielen. Beispiele derartiger (mathematischer) Aussagen sind: = = 44 (Dies ist zwar falsch, aber trotzdem eine Aussage). Die 5-te Nachkommastelle von π ist 9. Alle diese Ausdrücke sind definitiv, und ohne jeden Verhandlungsspielraum jeweils wahr oder falsch. In einer Hinsicht sind wir dagegen recht großzügig, es ist nicht nötig zu wissen ob eine mathematische Aussage nun wahr oder falsch ist, es kommt nur darauf an, daß sie eines von beiden ist. Beispiele solcher zweifelsfrei mathematischen Aussagen, deren Wahrheitsgehalt wir zur Zeit nicht kennen sind: Die te Nachkommastelle von π ist eine 7. Es gibt beliebig große natürliche Zahlen n so, dass unter den ersten n Nachkommastellen von π die 7 genauso oft wie die 3 vorkommt. Diese beiden Aussagen sind sicherlich entweder wahr oder falsch. Bei der ersten Aussage ist es eher unwahrscheinlich das irgendjemand diese Dezimalstelle von π einmal 2-4

5 ausgerechnet hat. Im Prinzip kann man durchaus entscheiden ob die Aussage wahr oder falsch ist, es gibt sogar einen Algorithmus der beliebige Dezimalstellen von π berechnen kann ohne dabei die vorhergehenden Stellen berechnen zu müssen. Auch die zweite Aussage ist entweder wahr oder falsch, wir wissen nur nicht was zutrifft, wir können wir uns sogar ziemlich sicher sein, das man das nie wissen wird. Trotzdem handelt es sich um eine mathematische Aussage in unserem Sinn, denn entweder wahr oder falsch ist sie allemal, auch wenn wir nicht wissen welche dieser beiden Möglichkeiten nun zutrifft. Es gibt verschiedene Konstruktionen aus bereits gegebenen Aussagen A, B neue Aussagen zusammenzusetzen. Diese werden gelegentlich als aussagenlogische Junktoren bezeichnet. Der einfachste dieser Junktoren ist die Verneinung. Ist A eine Aussage, so ist die Verneinung von A die Aussage A, die genau dann wahr ist wenn A falsch ist. Ebenfalls ohne Überraschungen ist die Konjuktion, oder simpler die und, Aussage. Bei dieser sind zwei Aussagen A, B gegeben, und man bildet die neue Aussage A B, gesprochen als A und B, die genau dann wahr ist wenn beide Aussagen A und B wahr sind. Diese Festlegungen sollten nicht besonders überraschend sein. Der nächste unserer Junktoren wird nun die Disjunktion, beziehungsweise oder Aussage, sein. Hier gibt es ein kleines Detail zu beachten, die Bedeutung der Disjunktion weicht gelegentlich etwas von der sonst üblichen Verwendung dieses Wortes ab. Sind A, B wieder zwei Aussagen, so ist die Disjunktion A B, gesprochen als A oder B, genau dann wahr wenn eine der beiden Aussagen A, B wahr ist. Hierbei ist immer der Fall erlaubt, dass sogar beide Aussagen A, B wahr sind. Wir hatten bereits früher bemerkt, dass diese Verwendung des Wortes oder etwas von der Umgangssprache abweicht. Der Deutlichkeit halber können wir Konjunktion und Disjunktion in Form sogenanter Wahrheitstabellen beschreiben. Die Tabellen für Konjunktion und Disjunktion haben dabei die folgende Form: A A A B: B 0 A B: B In diesen Tabellen schreiben wir 0 für falsch und für wahr. Dies soll nicht etwa bedeuten, dass die Zahlen 0 und irgendetwas mit wahr und falsch zu tun haben, es handelt sich nur um Symbole für diese Begriffe. Alternativ könnten wir auch f und w anstelle von 0 und schreiben. Mit den logischen Junktoren kann man rechnen. Wir wollen hier eine der Rechenregeln für logische Junktoren hervorheben, die sogenannten de Morganschen Regeln für Aussagen. Diese behandeln die Verneinung von und beziehungsweise von oder aussagen. Da es sich hier um logische Tatsachen und nicht um mathematischen Aussagen handelt, wollen wir diese Formeln nicht als mathematische Sätze bezeichnen. Die de Morganschen Regeln besagen (A B) = ( A) ( B) und (A B) = ( A) ( B) 2-5

6 für alle Aussagen A und B. Wir wollen uns die de Morgansche Regel für die Disjunktion einmal klarmachen, die andere Regel kann man sich dann analog überlegen. Die einzige Möglichkeit das die Disjunktion A B falsch ist, ist wenn A und B gleichzeitig beide falsch sind, wenn also ( A) ( B) wahr ist. Dies bedeutet (A B) = ( A) ( B). Als eine alternative Begründung kann man sich auch die Wahrheitstafeln anschauen (A B) : ( A) ( B) : Wir kommen jetzt zu einem weiteren logischen Junktor, der auch schon komplizierter ist, der sogenannten Implikation. Sind A, B zwei Aussagen, so ist die Aussage A B, gesprochen als aus A folgt B oder A impliziert B, wahr wenn mit A auch B stets wahr ist. In Form einer Wahrheitstafel soll diese Festlegung gerade A B: A B bedeuten. Beachte das die Implikation A B insbesondere immer dann wahr ist wenn die Voraussetzung A der Implikation falsch ist. Anders gesagt soll aus einer falschen Aussage jede beliebige andere Aussage folgen. Dies erscheint zunächst als eine etwas merkwürdige Festlegung, aber dieser Eindruck sollte bei näherer Betrachtung verfliegen. Umgangssprachlich würde man eine Aussage der Form Wenn morgen das Hörsaalgebäude einstürzt, so fällt die Vorlesung aus, als wahr betrachten unabhängig davon ob das Gebäude morgen noch steht, selbst dann wenn die Vorlesung trotz eines in bestem Zustand befindlichen Hörsaals ausfällt. Ein weiterer Grund für die angegebene Interpretation der Implikation, der für die Mathematik auch erheblich schwerwiegender ist, sind Aussagen in denen Variablen vorkommen. Steht x beispielsweise für eine reelle Zahl, so sollte die Aussage x 2 = 4 = 2 x 2 immer wahr sein, unabhängig davon welchen konkreten Wert x jetzt hat, also auch wenn etwa x = 3 oder x = 0 ist. Um eine Implikation A B zu beweisen, kann man immer annehmen das die Aussage A wahr ist, denn andernfalls gilt die Implikation sowieso. Als ein Beispiel denken wir uns zwei reelle Zahlen x, y gegeben, und wollen die Implikation x 2 = y 2 = x = y x = y beweisen. Dann können wir wie gesagt annehmen, dass überhaupt x 2 = y 2 gilt, und es folgt (x + y) (x y) = x 2 y 2 = 0, also x + y = 0 oder x y = 0 da ein Produkt nur Null sein kann, wenn einer der Faktoren Null ist. Dies ergibt weiter x = y oder x = y. 2-6

7 was ist jetzt die Verneinung der Implikation A B? Diese ist genau dann wahr wenn A B falsch ist, und hierfür gibt es nur eine einzige Möglichkeit, A muss wahr sein und B muss falsch sein. Als Formel bedeutet dies (A B) = A ( B). Verwenden wir jetzt noch die offensichtliche Tatsache, dass für jede Aussage X stets X = X ist, so erhalten wir mit den de Morganschen Regeln A B = (A B) = (A ( B)) = ( A) ( B) = ( A) B. Insbesondere scheint die Implikation damit auf derselben inhaltlichen Stufe wie und und oder zu stehen, was Sie zumindest irritieren sollte. Dieser Eindruck täuscht auch in gewisser Weise, denn der hier verwendete Implikationsbegriff ist rein formaler Natur. Es kommt für die Wahrheit von A B nur auf den Wahrheitswert der Aussagen A und B an, nicht aber auf die inhaltliche Bedeutung dieser Aussagen. Diesen Implikationsbegriff sollte man nicht mit dem inhaltlichen Folgerungsbegriff verwechseln, dass also eine Aussage B durch logisches Schließen aus einer Aussage A folgt. Bei letzterem kommt es tatsächlich auf die Bedeutung von A und B an. Um eine Implikation zu beweisen, verwendet man dagegen in aller Regel eine inhaltliche Argumentation, wie bereits bemerkt wird A als wahr angenommen und dann auf B geschlossen. Wir führen jetzt eine weitere Schreibweise für mathematische Aussagen ein. Diese haben sehr oft die Form Für alle Elemente x eine gegebenen Menge M gilt eine Aussage A(x), eine sogenannte Allaussage, oder Es gibt ein Element x der Menge M für das A(x) gilt, eine sogenannte Existenzaussage. Man schreibt (x M) : A(x) für Für alle x M gilt A(x). Das Symbol ist ein sogenannter Allquantor. Entsprechend schreibt sich eine Existenzaussage als (x M) : A(x) für Es existiert ein x M mit A(x), und hier nennt man einen Existenzquantor. Beispielsweise übersetzt sich die Aussage Für jede reelle Zahl x existiert eine natürliche Zahl n, die echt größer als x ist als Formel in (x R) (n N) : n > x. Ein solcher Ausdruck mit mehreren Quantoren ist dabei immer von links nach rechts zu lesen, ein Ändern der Quantorenreihenfolge ändert auch die Bedeutung der Aussage. Beispielsweise bedeutet (n N) (x R) : n > x, dass es eine natürliche Zahl n gibt, die echt größer als überhaupt alle reellen Zahlen ist, was natürlich falsch ist. Quantoren desselben Typs kann man vertauschen, und daher werden sie meist in zusammengefasster Form notiert, man schreibt beispielsweise (x, y R) : y > x > 0 y 2 > x 2 für (x R) (y R) : y > x > 0 y 2 > x

$Id: reell.tex,v /10/27 12:59:28 hk Exp $ Axiome genannt, bei den reellen Zahlen haben wir dann die

$Id: reell.tex,v /10/27 12:59:28 hk Exp $ Axiome genannt, bei den reellen Zahlen haben wir dann die $Id: reell.tex,v 1.44 2017/10/27 12:59:28 hk Exp $ 1 Die reellen Zahlen Wir wollen diese Vorlesung mit den reellen Zahlen beginnen, diese sind die normalen Zahlen und man kann sie sich etwa als alle abbrechenden

Mehr

$Id: reell.tex,v /10/28 14:16:56 hk Exp hk $ Axiome genannt, bei den reellen Zahlen haben wir dann die

$Id: reell.tex,v /10/28 14:16:56 hk Exp hk $ Axiome genannt, bei den reellen Zahlen haben wir dann die $Id: reell.tex,v 1.14 2013/10/28 14:16:56 hk Exp hk $ 1 Die reellen Zahlen Wir wollen diese Vorlesung mit den reellen Zahlen beginnen, diese sind die normalen Zahlen und man kann sie sich etwa als alle

Mehr

$Id: reell.tex,v /10/30 10:58:10 hk Exp $

$Id: reell.tex,v /10/30 10:58:10 hk Exp $ $Id: reell.tex,v 1.46 2017/10/30 10:58:10 hk Exp $ 1 Die reellen Zahlen 1.2 Aussagen und Mengen Wir beschäftigen uns gerade mit den verschiedenen Methoden zur Beschreibung von Mengen. 5. Als nächstes Beispiel

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

Eine Menge fasst also einige bereits vorhandene Objekte zu einem neuen Ganzen zusammen. Wir werden nur Mengen betrachten, deren Elemente allesamt

Eine Menge fasst also einige bereits vorhandene Objekte zu einem neuen Ganzen zusammen. Wir werden nur Mengen betrachten, deren Elemente allesamt Inhaltsverzeichnis Mengen und Aussagen.......................... 2 Die Beweismethoden........................... 6 3 Funktionen................................ 22 4 Die reellen Zahlen............................

Mehr

3 Mengen und Abbildungen

3 Mengen und Abbildungen $Id: mengen.tex,v 1.2 2008/11/07 08:11:14 hk Exp hk $ 3 Mengen und Abbildungen 3.1 Mengen Eine Menge fasst eine Gesamtheit mathematischer Objekte zu einem neuen Objekt zusammen. Die klassische informelle

Mehr

1 Die reellen Zahlen. 1.2 Aussagen und Mengen. Mathematik für Physiker I, WS 2013/2014 Montag 4.11

1 Die reellen Zahlen. 1.2 Aussagen und Mengen. Mathematik für Physiker I, WS 2013/2014 Montag 4.11 $Id: reell.tex,v 1.18 2013/11/04 12:13:45 hk Exp hk $ 1 Die reellen Zahlen 1.2 Aussagen und Mengen Wir sind gerade damit beschäftigt den Mengenbegriff zu diskutieren und am Ende der letzten Sitzung hatten

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

1.2 Klassen und Mengen

1.2 Klassen und Mengen 14 1.2 Klassen und Mengen Als undefinierten Grundbegriff verwenden wir den Begriff der Klasse. Dieser ist allgemeiner als der Mengenbegriff und wird in der Algebra zur Definition sogenannter Kategorien

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches

Mehr

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1.

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 22 Kapitel 1 Aussagen und Mengen 1.1 Aussagen Wir definieren eine Aussage A als einen Satz, der entweder wahr w) oder falsch f) also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 2 ist eine

Mehr

2008W. Vorlesung im 2008W Institut für Algebra Johannes Kepler Universität Linz

2008W. Vorlesung im 2008W  Institut für Algebra Johannes Kepler Universität Linz Logik Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://wwwalgebrauni-linzacat/students/win/ml Inhalt Logik Logik Aussagen Die mathematische Logik verwendet mathematische Methoden,

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

$Id: funktion.tex,v /11/09 17:37:49 hk Exp $ $Id: reell.tex,v /11/09 17:38:03 hk Exp hk $

$Id: funktion.tex,v /11/09 17:37:49 hk Exp $ $Id: reell.tex,v /11/09 17:38:03 hk Exp hk $ $Id: funktion.te,v.5 00//09 7:37:49 hk Ep $ $Id: reell.te,v.3 00//09 7:38:03 hk Ep hk $ 3 Funktionen In der letzten Sitzung hatten wir injektive, surjektive und bijektive Funktionen definiert, und zwar

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete, Abbildungen, Aussagenlogik Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/32 Überblick Alphabete

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

Über das Lesen mathematischer Texte Teil 2: Definition, Satz, Beweis

Über das Lesen mathematischer Texte Teil 2: Definition, Satz, Beweis Über das Lesen mathematischer Texte Teil 2: Definition, Satz, Beweis Hagen Knaf Prof. Dr. H. Knaf, Mathematisches Beweisen 1 Struktur mathematischer Texte Ein mathematischer Text enthält neben dem fortlaufenden

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $

$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $ $Id: gruppen.tex,v 1.12 2012/04/19 12:20:27 hk Exp $ 2 Gruppen 2.1 Isomorphe Gruppen In der letzten Sitzung hatten unter anderen den Begriff einer Gruppe eingeführt und auch schon einige Beispiele von

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Logik und Beweismethoden I

Logik und Beweismethoden I Logik und Beweismethoden I Anita Ullrich WS2017/18 Inhaltsverzeichnis 1 Klassische Aussagenlogik 2 1.1 Aussagen und Wahrheitswerte.................................... 2 1.2 Operatoren..............................................

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT Dirix Workbooks, Seefeld am Pilsensee Autor: Martin Dirix ISBN 978-3-7347-7405-8 1.

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge.

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge. Folgen Eine Folge stellt man sich am einfachsten als eine Aneinanderreihung von Zahlen (oder Elementen irgendeiner anderen Menge) vor, die immer weiter geht Etwa,,,,,, oder,,, 8,,,, oder 0,,,,,,,, In vielen

Mehr

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1 Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

1 Grundregeln der Logik Version

1 Grundregeln der Logik Version Um Mathematik betreiben zu können, müssen wir in der Lage sein, Sachverhalte präzise zu beschreiben und mitzuteilen. Dies tun wir in Form von mathematischen Aussagen. Im Unterschied zur Umgangssprache

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr