Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke"

Transkript

1 Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft zur Netzwerkanalyse

2 Inhalt Zerlegungen von Graphen Clusteranalyse Einführung Komplexität Greedy-Algorithmus 2 Henning Meyerhenke:

3 Schlagwort BIG Data Irregulär strukturierte Daten wachsen mit enormer Geschwindigkeit: Facebook: 800M+ Mitglieder (+50% innerhalb eines Jahres), durchschnittlich 130 Freunde, 1G+ neue Inhalte pro Tag Twitter: 1G Tweets pro Woche Web-Graph Finanztransaktionen 3 Henning Meyerhenke:

4 Clusteranalyse Auch Community Detection genannt Teile Knoten in Gruppen (oder Cluster oder Communitys) derart ein, dass Knoten derselben Gruppe zueinander ähnlich sind Knoten verschiedener Gruppen zueinander unähnlich sind 4 Henning Meyerhenke:

5 Clusteranalyse Auch Community Detection genannt Teile Knoten in Gruppen (oder Cluster oder Communitys) derart ein, dass Knoten derselben Gruppe zueinander ähnlich sind Knoten verschiedener Gruppen zueinander unähnlich sind Anwendungen: Komplexitätsreduktion Klassifikation von Genen, Interaktion von Genen Verteiltes Speichern/Berechnen von Daten Visualisierung 4 Henning Meyerhenke:

6 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? 5 Henning Meyerhenke:

7 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? Populäre Zielfunktion (wenn auch mit Nachteilen): Modularität (engl. modularity) Man betrachtet die Differenz aus zwei Verhältnissen, dem Anteil der tatsächlichen Intra-Cluster-Kanten und dem erwarteten Anteil dieser Kanten in einem Zufallsgraphen mit gleicher Gradfolge q(c) = C C ( ( ) ) E(C) m v C deg(v) 2 2m 5 Henning Meyerhenke:

8 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? Populäre Zielfunktion (wenn auch mit Nachteilen): Modularität (engl. modularity) Man betrachtet die Differenz aus zwei Verhältnissen, dem Anteil der tatsächlichen Intra-Cluster-Kanten und dem erwarteten Anteil dieser Kanten in einem Zufallsgraphen mit gleicher Gradfolge q(c) = C C ( ( ) ) E(C) m v C deg(v) 2 2m Formel kann aus Darstellung auf Übungszettel hergeleitet werden Modularität hat einige bekannte Nachteile, z. B. das Auflösungsproblem (kann man durch ein Gewichtungsschema beseitigen) 5 Henning Meyerhenke:

9 Inhalt Zerlegungen von Graphen Clusteranalyse Einführung Komplexität Greedy-Algorithmus 6 Henning Meyerhenke:

10 Modularität Komplexität Optimierung bzgl. Modularität ist streng N P-schwer (N P-Schwere gilt aber auch für die meisten anderen interessanten Zielfunktionen auch) Problem 1: MODULARITY Gegeben ein Graph G und eine Zahl K, gibt es eine Clusterung C von G, für die q(c) K gilt? 7 Henning Meyerhenke:

11 Modularität Komplexität Optimierung bzgl. Modularität ist streng N P-schwer (N P-Schwere gilt aber auch für die meisten anderen interessanten Zielfunktionen auch) Problem 1: MODULARITY Gegeben ein Graph G und eine Zahl K, gibt es eine Clusterung C von G, für die q(c) K gilt? Problem 2: 3-PARTITION Seien 3k positive ganze Zahlen a 1,..., a 3k derart gegeben, dass 3k i=1 a i = kb und b/4 < a i < b/2 für eine ganze Zahl b und alle i = 1,..., 3k. Gibt es eine Partition dieser Zahlen in k Mengen derart, dass die Zahlen in jeder Menge in der Summe b ergeben? 7 Henning Meyerhenke:

12 Komplexitätsbeweis Vorüberlegungen zur Reduktion 3-PARTITION ist streng N P-vollständig, d.h. das Problem bleibt auch bei unärer Kodierung N P-vollständig Daraus folgt, dass kein Algorithmus das Problem entscheiden kann in einer Zeit, die polynomiell in der Summe der Eingabewerte ist (es sei denn, P = N P) Daher braucht unsere Transformation in der Reduktion auch nur pseudo-polynomiell zu sein 8 Henning Meyerhenke:

13 Komplexitätsbeweis Hilfsresultate Lemma In einer Clusterung von G(A) mit maximaler Modularität wird keine der Cliquen H 1,..., H k geteilt. Lemma In einer Clusterung von G(A) mit maximaler Modularität enthält jeder Cluster höchstens eine der Cliquen H 1,..., H k. Lemma In einer Clusterung von G(A) mit maximaler Modularität besteht kein Cluster ausschließlich aus Element-Knoten. 9 Henning Meyerhenke:

14 Komplexitätsbeweis Hauptteil (1) Theorem (Brandes et al., IEEE TKDE 2008) MODULARITY ist streng N P-vollständig. Beweis. In Polynomialzeit lässt sich prüfen, ob q(c) K (A) MODULARITY N P Zum Beweis der Vollständigkeit: Transformation wie an Tafel beschrieben Aus A = {a 1,..., a 3k } wird (G(A), K (A)) 10 Henning Meyerhenke:

15 Komplexitätsbeweis Hauptteil (1) Theorem (Brandes et al., IEEE TKDE 2008) MODULARITY ist streng N P-vollständig. Beweis. In Polynomialzeit lässt sich prüfen, ob q(c) K (A) MODULARITY N P Zum Beweis der Vollständigkeit: Transformation wie an Tafel beschrieben Aus A = {a 1,..., a 3k } wird (G(A), K (A)) Notation: Sei deg(c i ) = v Ci deg(v) (manchmal auch als Volumen oder vol(c i ) bezeichnet) 10 Henning Meyerhenke:

16 Komplexitätsbeweis Hauptteil (2) Beweis. Bestimmung von K (A): Betrachte Clusterung in G(A) mit genau k Clique-Clustern Da jede solche Clusterung genau (k 1)a Inter-Cluster-Kanten hat: E(C) m (k 1)a 2(k 1)a = = 1 m m ka(a + 1) = 1 2k 2 k(a + 1) C C Clusterung C = (C 1,..., C k ) mit maximaler Modularität muss deg(c 1 ) deg(c k ) 2 minimieren. Erfordert Aufteilung der Element-Knoten zwischen den Clustern, die so gleichmäßig wie möglich bzgl. der Summe der Knotengrade pro Cluster ist 11 Henning Meyerhenke:

17 Komplexitätsbeweis Hauptteil (3) Beweis. Optimalfall: Jeder Cluster erhält Element-Knoten, die sich zu b = 1/k a aufsummieren Summe der Knotengrade der Element-Knoten in jedem Cliquen-Cluster gleich k 1/k a = a deg(c i ) = a 2 + a für jeden Cliquen-Cluster C i, i = 1,..., k deg(c 1 ) deg(c k ) 2 k(a 2 + a) = ka 2 (a + 1) 2 Gleichheit gilt nur, wenn eine Zuweisung von b an jeden Cluster möglich ist Fortsetzung an der Tafel 12 Henning Meyerhenke:

18 Inhalt Zerlegungen von Graphen Clusteranalyse Einführung Komplexität Greedy-Algorithmus 13 Henning Meyerhenke:

19 Komplexitätsbeweis Hauptteil (3) Clustering ist schwierig was nun? 14 Henning Meyerhenke:

20 Komplexitätsbeweis Hauptteil (3) Clustering ist schwierig was nun? Komplexität erfordert Approximation oder Heuristik für nicht-triviale Instanzen Heuristik in Übung: Spektrale Relaxierung Nun: Hierarchische Methode mit Greedy-Ansatz Literaturhinweis Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre: Fast unfolding of communities in large networks. J. Stat. Mech. (2008) P doi: / /2008/10/p Henning Meyerhenke:

21 Die Louvain-Methode Start: Jeder Knoten ist sein eigener Cluster Danach: Zwei Phasen, die sich wiederholen: Phase 1, lokale Verbesserung: Für jeden Knoten lokal entscheiden, ob ein Wechsel in die Community des Nachbarn eine Verbesserung der Modularität ergibt. Wechsel in Community mit höchster positiver Verbesserung. Wiederholt, bis keine Verbesserung möglich. 15 Henning Meyerhenke:

22 Die Louvain-Methode Start: Jeder Knoten ist sein eigener Cluster Danach: Zwei Phasen, die sich wiederholen: Phase 1, lokale Verbesserung: Für jeden Knoten lokal entscheiden, ob ein Wechsel in die Community des Nachbarn eine Verbesserung der Modularität ergibt. Wechsel in Community mit höchster positiver Verbesserung. Wiederholt, bis keine Verbesserung möglich. Phase 2, Schrumpfen des Graphen: Kontraktion der Communitys zu einem einzelnen Knoten. Aktualisierung der Knoten- und Kantengewichte: Schleifen erhalten Gewicht aller alten Intra-Cluster-Kanten, die übrigen Kanten erhalten das Gewicht der alten Kanten zwischen den zugehörigen Communitys 15 Henning Meyerhenke:

23 Zusammenfassung Clustering (= Community Detection) ist ein wichtiges, aber auch schwieriges Problem der Netzwerkanalyse In der Praxis setzt man häufig Heuristiken ein Zwei Heuristiken vorgestellt: Spektrale Relaxierung Agglomeration mit gieriger lokaler Verbesserung (Louvain-Methode) 16 Henning Meyerhenke:

24 Zusammenfassung Clustering (= Community Detection) ist ein wichtiges, aber auch schwieriges Problem der Netzwerkanalyse In der Praxis setzt man häufig Heuristiken ein Zwei Heuristiken vorgestellt: Spektrale Relaxierung Agglomeration mit gieriger lokaler Verbesserung (Louvain-Methode) Es existieren zahlreiche Abwandlungen Immer noch aktiver Forschungsbereich Heute von besonderem Interesse: Einbezug von Semantik 16 Henning Meyerhenke:

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 11, 18.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG 195 Bildsegmentierung! Aufgabe: Bestimme inhaltlich zusammenhängende, homogene Bereiche eines Bildes! Weit verbreitetes Problem in der Bildverarbeitung! Viele

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Clusteranalyse für Netzwerke

Clusteranalyse für Netzwerke Alexandra Rebecca Klages Clusteranalyse für Netzwerke PETER LANG Internationaler Verlag der Wissenschaften Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 7 2.1 Netzwerktheorie 7 2.1.1 Definitionen 7 2.1.2

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig. 3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:

Mehr

NETZWERKANALYSE Clusteranalyse

NETZWERKANALYSE Clusteranalyse NETZWERKANALYSE Clusteranalyse 188 Clusteranalyse in Graphen Hier: Clusteranalyse = Clustering = Community Detection Bestimmung natürlicher Gruppen im Graphen Strukturierung des Chaos [http://espin086.files.wordpress.com/

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 29. Januar 2013 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 5. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 05.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Maximum and Minimum Satisfiability Problem

Maximum and Minimum Satisfiability Problem and Lehrstuhl für Wissensverarbeitung und Informationssysteme Universität Potsdam 25. Januar 2006 Agenda 1 2 3 I Erfüllbarkeitsproblem der Aussagenlogik : Aussagenlogische Formel auf Erfüllbarkeit prüfen

Mehr

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken

Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Lokalisierung von inneren und äußeren Grenzen in Sensornetzwerken Seminararbeit: Algorithmen für Sensornetzwerke Thomas Gramer 1 Thomas Gramer: KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie WS 2008/2009 Vorlesung: Dr. Felix Brandt, Dr. Jan Johannsen Übung: Markus Brill, Felix Fischer Institut für Informatik LMU München Organisatorisches Vorlesung Donnerstag,

Mehr

Komplexitätstheorie. Vorlesung im Sommersemester 2009

Komplexitätstheorie. Vorlesung im Sommersemester 2009 Komplexitätstheorie Vorlesung im Sommersemester 2009 Organisatorisches Zeit und Ort: Di 17-19 und Do 15-17 MZH 7250 Vortragender: Prof. Carsten Lutz Raum 3090 Tel. (218)-64431 clu@informatik.uni-bremen.de

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl lisa.kohl@kit.edu mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Master Informatik Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg

Mehr

Topological Fisheye Views for Visualizing Large Graphs

Topological Fisheye Views for Visualizing Large Graphs Topological Fisheye Views for Visualizing Large Graphs Emden R. Gansner, Yehuda Koren, Stephen C. North Stefan Altmayer 11. Dezember 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 3..2 INSTITUT FÜR THEORETISCHE KIT 7..2 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik INSTITUT FÜR

Mehr

Graphentheorie. Vorkurs Informatik WS 2016/2017. Dennis Aumiller

Graphentheorie. Vorkurs Informatik WS 2016/2017. Dennis Aumiller Vorkurs Informatik WS 2016/2017 Dennis Aumiller Aumiller@stud.uni-heidelberg.de 14.10.2016 Über das Thema Wo alles begann Leider keine gesonderte Vorlesung dafür oft als Teilthema in anderen Vorlesungen

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 4: Suchverfahren Informierte Suche 1/132 INFORMIERTE SUCHSTRATEGIEN (ISS) Benutzt neben der Definition des Problems auch problemspezifisches Wissen. Findet Lösungen effizienter

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Diskrete Strukturen Endterm

Diskrete Strukturen Endterm Technische Universität München Winter 201/16 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, C. Uphoff Lösung HA-Lösung LÖSUNG Diskrete Strukturen Endterm Beachten Sie: Soweit nicht anders angegeben,

Mehr

4.Tutorium Multivariate Verfahren

4.Tutorium Multivariate Verfahren 4.Tutorium Multivariate Verfahren - Clusteranalyse - Hannah Busen: 01.06.2015 und 08.06.2015 Nicole Schüller: 02.06.2015 und 09.06.2015 Institut für Statistik, LMU München 1 / 17 Gliederung 1 Idee der

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Hierarchische Zeichnungen 6. Vorlesung Sommersemester 2015 (basierend auf Folien von Marcus Krug, KIT) 2 Beispiel E-Mail-Graph zwischen Einrichtungen der Fak. für Informatik,

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr