Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Größe: px
Ab Seite anzeigen:

Download "Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können."

Transkript

1 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition Ist ein Normalbereich in R 2, bzw. R 3, dann nennt man f(x,y)dydx = f(x,y,z)dzdydx = b o(x) x=ay=u(x) b o(x) x=ay=u(x) z=ũ(x,y) f(x,y)dydx bzw. õ(x,y) f(x,y,z)dzdydx das oppelintegral, bzw. reifachintegral über. Wie schon nach dem 1. Beispiel auf Seite 140 bemerkt, erhält man durch Integration von f(x,y) = 1, bzw. f(x,y,z) = 1 den Flächeninhalt, bzw. das Volumen von. Satz 11.1 Für einen Normalbereich gilt 1 = Flächeninhalt, bzw. Volumen von Beispiel Sei = {(x,y) 0 x 1,x 2 y x}. 1. Wir berechnen den Flächeninhalt von. Nach Satz 11.1 ist er gleich 1dydx = 1 x 0 x 2 dydx = 1 0 (x x 2 )dx = xdx 0 x 2 dx. ie rechte Seite ist nun genau das, was wir aus der Schule kennen. Wir finden den Flächeninhalt = 1 6.

2 Wir berechnen das oppelintegral von f(x,y) = xy über Koordinatentransformationen Oft sind Integrale über Normalbereiche schwierig zu berechnen, da die unteren und oberen Grenzen u(x) und o(x) nach dem Einsetzen in die Stammfunktionen zu komplizierten Integranden führen. In diesen Fällen kann der Wechsel zu einem anderen Koordinatensystem hilfreich sein. as heisst, man wechselt zu Polar-, Zylinder oder Kugelkoordinaten. Polarkoordinaten (r, ϕ) ie Polarkoordinaten bilden ein Koordinatensystem von R 2. ie Umrechnung lautet für r 0 und ϕ [0,2π). x = r cosϕ y = r sinϕ Zylinderkoordinaten (r, ϕ, z) ie Zylinderkoordinaten ergänzen die Polarkoordinaten um die z-koordinate zu einem Koordinatensystem von R 3. ie Umrechnung ist dementsprechend für r 0, ϕ [0,2π) und z R. x = r cosϕ y = r sinϕ z = z

3 144 Kugelkoordinaten (r, ϕ, ϑ) ie Kugelkoordinaten sind ein Koordinatensystem von R 3. ie Umrechnung lautet x = r cosϕsinϑ y = r sinϕsinϑ z = r cosϑ für r 0, ϕ [0,2π) und ϑ [0,π]. Ebenfalls üblich ist es, anstatt des Winkels ϑ den Winkel ϑ = π 2 ϑ zu benutzen, wobei dann ϑ [ π 2, π 2 ] ist und sinϑ (bzw. cosϑ) in den Umrechnungsformeln durch cos ϑ (bzw. sin ϑ) zu ersetzen sind. Integriert man nun über eine Funktion und wechselt das Koordinatensystem, dann braucht es im Integral bezüglich der neuen Koordinaten einen Korrekturfaktor. Satz 11.2 Sei R 2, bzw. R 3 ein Bereich im kartesischen Koordinatensystem. Für eine Funktion f : R gelten die folgenden Transformationsformeln. Integration in Polarkoordinaten: f(x,y)dxdy = f(rcosϕ,rsinϕ)rdϕdr r ϕ Integration in Zylinderkoordinaten: f(x,y,z)dxdydz = f(rcosϕ,rsinϕ,z)rdzdϕdr r ϕ z Integration in Kugelkoordinaten: f(x,y,z)dxdydz = r ϕ ϑ f(rcosϕsinϑ,rsinϕsinϑ,rcosϑ)r 2 sinϑdϑdϕdr Woher kommt beispielsweise der Korrekturfaktor r bei der Integration in Polarkoordinaten? Bei der Integration in kartesischen Koordinaten unterteilt man den Integrationsbereich in kleine Rechtecke mit Seitenlängen x und y. as heisst, man summiert über Rechtecke mit Flächeninhalt x y, bzw. integriert über infinitesimal kleine Rechtecke mit Flächeninhalt dxdy. Bei der Integration in Polarkoordinaten wird der Bereich in kleine Ringteilflächen unterteilt, deren Flächeninhalt ungefähr r r ϕ ist. ies führt zu r drdϕ im Integral.

4 145 ie Korrekturfaktoren in den anderen beiden Fällen sind analog erklärbar. Allgemeiner kann eine beliebige Koordinatentransformation durchgeführt werden (ähnlich der Substitution bei einem Integral einer reellen Funktion). er Korrekturfaktor berechnet sich dann durch die sogenannte Jacobideterminante. Beispiele 1. Sei R 2 der Kreisring mit Aussenkreisradius 2 und Innenkreisradius 1 und sei f(x,y) = x(x 2 +y 2 ). 2. as Volumen V des Zylinders vom Radius R und der Höhe h ist gegeben durch V = R 2π h r=0ϕ=0z=0 R 1 r dzdϕdr = 2πh rdr = πr 2 h. r= Flächenintegrale as bestimmte Integral über einem Intervall haben wir verallgemeinert zu einem Wegintegral über einer Kurve. Ähnlich können wir das Bereichsintegral über einem Rechteck verallgemeinern zu einem Flächenintegral über einer Fläche. Eine Kurve ist das Bild einer Abbildung (Parametrisierung) in einer Variablen t. Eine Fläche ist das Bild einer Abbildung (Parametrisierung) in zwei Variablen u und v. Beispiele von Flächen sind die Kugeloberfläche (Sphäre), die Oberfläche eines Zylinders, die Oberfläche eines Kegels oder der Graph einer Funktion f(x,y) : R.

5 146 efinition Eine Teilmenge F R 3 heisst Fläche, wenn es eine (stückweise) stetig differenzierbare Abbildung x(u, v) x : B R 2 R 3, (u,v) x(u,v) = y(u, v) z(u, v) mit x(b) = F gibt. ie Fläche heisst regulär, wenn x u (u,v) x v (u,v) 0 für alle (u,v) B (bis auf endlich viele Ausnahmen). ie Vektoren x u (u,v) und x v (u,v) sind Tangentenvektoren an die Fläche F im Punkt x(u,v). ie Bedingung x u x v = x u (u,v) x v (u,v) 0 bedeutet, dass sie linear unabhängig sind. er Vektor x u x v steht senkrecht zu x u und x v, das heisst senkrecht auf der Fläche F. ank den Zusätzen stückweise und bis auf endlich viele Ausnahmen in der efinition können auch zusammengesetzte Flächenstücke(wie zum Beispiel die Oberfläche des Zylinders, zusammengesetzt aus Mantel, Boden und eckel) als reguläre Fläche betrachtet werden. Beispiele 1. ie Kugeloberfläche F vom Radius 2 ist eine reguläre Fläche parametrisiert durch 2cosϕsinϑ x : [0,2π] [0,π] F, x(ϕ,ϑ) = 2sinϕsinϑ 2cosϑ 2. er Graph der Funktion f(x,y) = 8 x 2 y 2 ist eine reguläre Fläche parametrisiert durch Es gilt u x : R 2 Graph(f), x(u,v) = v. 8 u 2 v 2

6 147 Wir definieren nun Flächenintegrale für Funktionen f und Vektorfelder F analog zu den Wegintegralen. ie Rolle des Geschwindigkeitsvektors x(t) bei denwegintegralen übernimmt nun der Vektor x u x v bei den Flächenintegralen. efinition Sei F R 3 eine reguläre Fläche parametrisiert durch x(u,v) für (u,v) B. Sei f(x, y, z) : F R eine stetige Funktion. as Flächenintegral von f über F ist definiert durch f ds = f( x(u,v)) x u x v dudv F B Sei F(x,y,z) : F R 3 ein stetiges Vektorfeld. as Flächenintegral von F über F ist definiert durch F ds = F( x(u,v)) ( x u x v )dudv F B Beim Wegintegral haben wir durch C ds die Länge der Kurve C erhalten. Analog ist nun ds = Flächeninhalt der Fläche F F Ist F das Geschwindigkeitsfeld einer strömenden Flüssigkeit, dann ist F F d S die Flüssigkeitsmenge, dieprozeiteinheitdieflächef durchströmt. enn x u x v istderflächeninhalt des Parallelogramms, auf dem x u x v senkrecht steht. Pro Zeiteinheit durchströmt ein Parallelepiped dieses Parallelogramm. as Volumen dieses Parallelepipeds ist gegeben durch det(f( x(u,v)), x u, x v ) = F( x(u,v)) ( x u x v ). Summieren wir über infinitesimal kleine Parallelogramme, führt dies zum Flächenintegral F F d S, welches deshalb auch Fluss von F durch F in Richtung x u x v genannt wird. Beispiel Sei f(x,y,z) = x 2 +y 2 +2z und F = {(x,y,z) x 2 +y 2 = 1, 0 z 1} die Mantelfläche des Zylinders vom Radius 1 und der Höhe 1. iese Fläche kann parametrisiert werden durch cosϕ x(ϕ,z) = sinϕ für (ϕ,z) [0,2π) [0,1]. z

7 148 Für das Flächenintegral erhalten wir 11.4 Integralsätze In diesem letzten Abschnitt werden die Integralsätze von Green, Gauß und Stokes kurz vorgestellt. Für konkrete Berechnungen sind diese Sätze sehr nützlich. er ivergenzsatz von Gauß er ivergenzsatz von Gauß führt das Flächenintegral F F d S eines Vektorfeldes F auf ein reifachintegral zurück. ( uv ) efinition Sei F(x,y,z) = ein Vektorfeld auf R 3. ie ivergenz von F ist w definiert durch divf = u x + v y + w z. Analog ist die ivergenz eines Vektorfeldes F(x,y) = ( u v) definiert durch divf = u x + v y. Symbolisch kann man die ivergenz mit Hilfe des Skalarprodukts divf = F schreiben. ie ivergenz ist also eine reellwertige Funktion, divf : R. Sei F das Geschwindigkeitsfeld einer strömenden Flüssigkeit. ie ivergenz gibt an, ob an einer Stelle (x, y, z) Flüssigkeit ensteht oder verloren geht oder ob Gleichgewicht besteht. Es gilt divf > 0 = Quelle: Es fliesst mehr ab als zu. divf < 0 = Senke: Es fliesst mehr zu als ab. divf = 0 = Quellenfrei: Es fliesst genauso viel zu wie ab. Wir nennen einen Bereich R 3 regulär, falls eine geschlossene, reguläre Oberfläche F hat. Typische Beispiele sind Kugel, Zylinder, Kegel oder ein Quader. Satz 11.3 (ivergenzsatz von Gauß) Sei R 3 regulär und seine Oberfläche F so parametrisiert, dass der Normalenvektor x u x v nach aussen zeigt. Sei F ein stetig differenzierbares Vektorfeld auf. ann gilt divf dv = F ds. F

8 149 Ist also beispielsweise das Flächenintegral auf der rechten Seite schwierig zu berechnen, so kann stattdessen das eventuell einfachere Bereichsintegral auf der linken Seite berechnet werden. Beispiele 1. Sei die Kugel vom Radius 1 und F(x,y,z) = ( 00 1 ). Mit dem Satz von Gauß folgt, dass der Fluss durch die gesamte Kugeloberfläche nach aussen gleich Null ist. ( xy ) 2. Sei wieder die Kugel vom Radius 1 und F(x,y,z) =. Wir benutzen, dass das Volumen der Kugel gleich 4 3 π ist. z er Fluss durch die gesamte Kugeloberfläche beträgt also 4π. er Satz von Stokes Beim Satz von Stokes gehen wir von einer regulären Fläche F R 3 aus, die zwei Seiten hat und deren Rand eine (einfache, reguläre) geschlossene Kurve ist. Ist x(u, v) eine Parametrisierung von F, dann muss die Randkurve C F so parametrisiert werden: Satz 11.4 (Satz von Stokes) Sei F ein stetig differenzierbares Vektorfeld auf der Fläche F. ann gilt rotf ds = F d s. F C F Anstelle des Flächenintegrals von rot F können wir also das Wegintegral von F über den Rand von F berechnen. Insbesondere ist das Flächenintegral von rot F für alle Flächen mit derselben Randkurve gleich.

9 150 er Satz von Green er Satz von Green entspricht dem Satz von Stokes in der Ebene. Wir betrachten einen Bereich R 2, der von einer (einfachen, regulären) geschlossenen Kurve C berandet ist. Wir parametrisieren die Randkurve C so, dass der Bereich zu unserer Linken ist, wenn wir C durchlaufen. Satz 11.5 (Satz von Green) Sei F(x,y) = ( u v) ein stetig differenzierbares Vektorfeld auf. ann gilt ( v x u ) dxdy = F d s. y C Wir können also ein oppelintegral mit Hilfe eines eventuell einfacheren Wegintegrals berechnen. Beispiel Sei R 2 der Einheitskreis und F(x,y) = ( y x ). Wie im Beispiel können wir für jeden wie oben beschriebenen Bereich R 2 den Flächeninhalt berechnen. Satz 11.6 Flächeninhalt() = 1 ( ) y d s 2 x C Schliesslich erhalten wir aus dem Satz von Green den ivergenzsatz von Gauß in der Ebene. Sei R 2 wie oben und x(t) eine Parametrisierung der geschlossenen Randkurve C von. Senkrecht zum Geschwindigkeitsvektor x(t) ) = steht der Normalenvektor n(t) = 1 ( y ) (t) x(t) x (t) ( x (t) y (t) der Länge 1. Für ein Vektorfeld F wie im Satz von Green gilt nun divf dxdy = (F n)ds. C

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Höhere Mathematik Vorlesung 4

Höhere Mathematik Vorlesung 4 Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

8.2 Integralrechnung für mehrere Variable

8.2 Integralrechnung für mehrere Variable 8.2 Integralrechnung für mehrere Variable Der bisher behandelte Begriff des Integrals einer Funktion mit einer einzigen Variablen lässt sich auf mehrere Arten verallgemeinern. Zunächst führt die Erweiterung

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

16 Oberflächenintegrale

16 Oberflächenintegrale 16 Oberflächenintegrale Nachdem wir im vergangenen Abschnitt gesehen haben, wie man das Volumen eines dreidimensionalen Körpers z.b. das Volumen einer Kugel) mit Hilfe der Integralrechnung bestimmen kann,

Mehr

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik Höhere Mathematik 3 Prof. Dr. Norbert Knarr F Mathematik Wintersemester 23/4 2. Integration von Funktionen in drei Variablen 2.. Integration über Flächenstücke im Raum 2... Denition. Es sei D R 2 eine

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 76 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 12.11.28 2 / 76 Wiederholung Glatte Flächen Wiederholung Vektorprodukt Definition Flächeninhalt

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt 2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt { } T p S = X R 3 es gibt ein ε > 0 und eine glatte parametrisierte Kurve c : ( ε,ε) S mit c(0)

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Felder und Wellen WS 2017/2018

Felder und Wellen WS 2017/2018 Felder und Wellen WS 17/18 Musterlösung zum 1. Tutorium 1. Aufgabe (*) Zur Einleitung etwas Grundsätzliches über Flächen-, Volumen-, und Linienintegrale. Die Integration ist am einfachsten, wenn das gewählte

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Der allgemeine Satz von Stokes...

Der allgemeine Satz von Stokes... Der allgemeine Satz von Stokes...... in der Sprache der Differentialformen. dω Differentialformen... sind - vereinfacht gesagt - orientierte Differentiale. k-form im R n a i1,...,i k (x) dx i1... dx ik,

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung

Mehr

Mathematische Methoden

Mathematische Methoden Institut für Theoretische Physik der Universität zu Köln http://www.thp.uni-koeln.de/~berg/so/ http://www.thp.uni-koeln.de/~af/ Johannes Berg Andrej Fischer Abgabe: Montag,. Juni Mathematische Methoden.

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten Inhaltsverzeichnis 6 Integralrechnung 6. Einführung.............................................. 6. Unbestimmte Integrale........................................ 6.. Unbestimmte Integrale der rundfunktionen.......................

Mehr

6.2 Extremwertaufgaben mit Nebenbedingung

6.2 Extremwertaufgaben mit Nebenbedingung 6.. Extremwertaufgaben mit Nebenbedingung 87 6. Extremwertaufgaben mit Nebenbedingung Betrachten wir jetzt eine differenzierbare Funktion f:u R n R U offen in R n. Ist n = 3 und U eine glatte Fläche, dann

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

Übungen zu Höhere Analysis und elementare Differentialgeometrie, WS 2015

Übungen zu Höhere Analysis und elementare Differentialgeometrie, WS 2015 Übungen zu Höhere Analysis und elementare ifferentialgeometrie, WS 215 Ulisse Stefanelli 27. Januar 216 1 Wiederholung 1. Berechnen Sie die folgenden unbestimmten Integrale dx (arctan x) 3 (log x) 2 (2

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Musterlösungen Serie 6

Musterlösungen Serie 6 D-MAVT D-MATL Analysis II FS 1 Prof. Dr. P. Biran Musterlösungen Serie 6 1. Frage 1 [Analysis Prüfung Winter1] Ein Vektorfeld v(x,y,z) mit Definitionsbereich erfüllediv( v) =. Was folgt? Es gibt eine Funktionf(x,y,z)

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

6.5. Satz von Gauss 107

6.5. Satz von Gauss 107 6.5. Satz von Gauss 7 6.5 Satz von Gauss nter einem Vektorfeld F, definiert auf einer offenen Teilmenge D R n, versteht man eine Zuordnung, die jedem Punkt p D einen Vektor F(p) R n zuordnet. Das Vektorfeld

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/1 Montag 3.11 $Id: transform.tex,v 1.5 9/11/3 16:9: hk Exp $ Koordinatentransformationen. ie Transformationsformel In der letzten Sitzung hatten wir die Transformationsformel

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Integralsatz von Gauss und Greensche Formeln

Integralsatz von Gauss und Greensche Formeln Integralsatz von Gauss und Nicola Schweiger LM München Haslach am 13.12.2012 Nicola Schweiger Integralsatz von Gauss und 1/12 Integralsatz von Gauss Sei R n ein beschränktes Gebiet mit stückweise glattem

Mehr

mach bau famo immo tema enan umw Bestimmen Sie Divergenz und Rotation der folgenden Vektorfelder. x + y x c. f ( x) = x x xyz

mach bau famo immo tema enan umw Bestimmen Sie Divergenz und Rotation der folgenden Vektorfelder. x + y x c. f ( x) = x x xyz 1 H ö h e r e M a t h e m a t i k 3 W S 0 3 / 0 4 P r o f P ö s c h e l 1 6. 1 0. 0 3 G 1. Bestimmen Sie Divergenz und Rotation der folgenden Vektorfelder. x + y x y a. f ( x) = y + z b. f ( x) = y x c.

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr