4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2"

Transkript

1 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer Elemente sehr gross sein so gross, dass eine vollständige Untersuchung praktisch unmöglich ist). Von den Elementen dieser Grundgesamtheit hier also den Studierenden) interessiert uns ein Merkmal Zufallsgrösse) X, zum Beispiel das Alter. Weil jedoch das Überprüfen des Alters von jedem Studierenden zu aufwendig ist, entnehmen wir eine zufällige Stichprobe vom Umfang n n sehr klein gegenüber N), untersuchen diese und schliessen damit auf die Grundgesamtheit. Eine solche Zufallsstichprobe vom Umfang n ist eine Folge von unabhängigen, identisch verteilten Zufallsgrössen X,X 2,...,X n ), wobei X i die Merkmalsausprägung des i-ten E- lementes in der Stichprobe bezeichnet. Identisch verteilt bedeutet insbesondere, dass die Erwartungswerte und die Varianzen der X i übereinstimmen, das heisst, EX i ) = µ und VarX i ) = σ 2 für alle i. Wird eine Stichprobe gezogen, so nehmen X,...,X n die konkreten Werte x,...,x n an. Wir interessieren uns nun für das durchschnittliche Alter der Studierenden, das heisst für den Erwartungswert µ = EX) = N x + +x N ). wobei x i das Alter des i-ten Studierenden ist. Diese unbekannte Zahl wollen wir schätzen mit Hilfe des arithmetischen Mittels X der Stichprobe dies ist eine sogenannte Schätzfunktion oder Schätzer) ˆµ = X = n X + +X n ). Erhalten wir beispielsweise die konkrete Stichprobe 20, 22, 9, 20, 24), dann ist das arithmetische Mittel davon x = 2. Dieser Wert hängt jedoch von der gewählten Stichprobe ab. Daher dürfen wir nicht davon ausgehen, dass er die gesuchte Zahl µ genau trifft. Wir erwarten jedoch von einer guten Schätzfunktion, dass die Schätzwerte wenigstens im Mittel richtig sind. Und tatsächlich gilt mit Satz 4.4) ) Eˆµ) = E n X + +X n ) = n Für die Varianz erhalten wir EX )+ +EX n ) Varˆµ) = n 2 VarX )+ +VarX n ) ) = n 2nσ2 = σ2 n. ) = nµ = µ. n Mit wachsendem n wird die Streuung also immer kleiner. Analog wählen wir die empirische Varianz s 2 als Schätzfunktion für die Varianz σ 2, ˆσ 2 = s 2 = n X i ˆµ) 2 = n Xi 2 n n n n ˆµ2. i= Auch hier erwarten wir, dass wenigstens der Erwartungswert von ˆσ 2 mit der Varianz σ 2 übereinstimmt. Wir rechnen dies nach. Wegen Satz 4. gilt i= EX 2 i ) = VarX i)+ex i )) 2 = σ 2 +µ 2 Eˆµ 2 ) = Varˆµ)+Eˆµ)) 2 = σ2 n +µ2.

2 42 Damit folgt Eˆσ 2 ) = = n n n EXi 2 ) n n Eˆµ2 ) n σ 2 +µ 2 ) n σ 2 n n +µ2) i= i= = n nσ2 +nµ 2 σ 2 nµ 2 ) = σ 2. Genau aus diesem Grund haben wir in Kapitel in der Definition für die empirische Varianz durch n dividiert und nicht durch die naheliegendere Zahl n! Würden wir die empirische Varianz mit dem Faktor n definieren, nämlich als s 2 = n n X i ˆµ) 2 = n n s2, i= dann würden wir damit die Varianz σ 2 systematisch unterschätzen, denn E s 2 ) = n n Es2 ) = σ 2 σ2 n.

3 43 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5. Die Binomialverteilung Für die Binomialverteilung brauchen wir Kenntnisse über Kombinatorik, insbesondere über die Binomialkoeffizienten. Binomialkoeffizienten Wieviele verschiedene Arten gibt es, n Elemente anzuordnen? Beispiel Gegeben seien die drei Buchstaben L, E, A. Satz 5. Es gibt n! verschiedene Arten, n Elemente anzuordnen. Jede Anordnung heisst Permutation der n Elemente. Es gibt also n! Permutationen von n Elementen. Dabei gilt n! = n n ) 2 für n und 0! =. Wieviele verschiedene Möglichkeiten gibt es, aus n Elementen k auszuwählen und diese anzuordnen? Beispiel Gegeben seien die fünf Buchstaben B, A, S, E, L. Satz 5.2 Es gibt n n ) n k+) = n! n k)! Möglichkeiten, aus n Elementen k auszuwählen und diese anzuordnen. Wieviele verschiedene Möglichkeiten gibt es, aus n Elementen k auszuwählen? Wir wählen also wieder aus n Elementen k aus, aber die Anordnung dieser k ausgewählten Elemente spielt keine Rolle. Offensichtlich gibt es nun weniger Möglichkeiten. Wir müssen durch die Anzahl der Anordnungsmöglichkeiten dividieren.

4 44 Beispiel Gegeben seien wieder die fünf Buchstaben B, A, S, E, L. Satz 5.3 Es gibt n n ) n k+) k k ) = n! k!n k)! Möglichkeiten, aus n Elementen k auszuwählen. Der Ausdruck ) n = k n! k!n k)! heisst Binomialkoeffizient. Die Binomialkoeffizienten kommen in den Binomischen Formeln vor. Es gilt a+b) 0 = a+b) = a+b a+b) 2 = a 2 +2ab+b 2 a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3 a+b) 4 = a 4 +4a 3 b+a 2 b 2 +4ab 3 +b 4. a+b) n = n k=0 ) n a n k b k k Bernoulli-Experimente Definition Ein Zufallsexperiment mit genau zwei möglichen Ausgängen heisst Bernoulli- Experiment. Die beiden Ausgänge können oft als Erfolg E) und Misserfolg M) interpretiert werden. Beispiel Beim Wurf eines Würfels wollen wir nur wissen, ob die Augenzahl 2 geworfen wird oder nicht. Es gilt also PErfolg) =. Definition Eine Bernoulli-Kette ist eine Folge von gleichen Bernoulli-Experimenten. Wird ein Bernoulli-Experiment n-mal hintereinander ausgeführt, so spricht man von einer Bernoulli- Kette der Länge n.

5 45 Beispiel Wir werfen einen Würfel viermal hintereinander. Erfolg sei wieder der Wurf der Augenzahl 2. Bei jedem einzelnen Wurf gilt also PErfolg) =. Bei vier Würfen können zwischen 0 und 4 Erfolge eintreten. Wie gross sind die Wahrscheinlichkeiten dafür? k = Erfolg: k = 2 Erfolge: In der folgenden Tabelle sind alle Wahrscheinlichkeiten zusammengestellt: k = Anzahl Erfolge Binomialkoeffizient Pk-mal Erfolg) ) 4 = 0 ) 4 = 4 ) 4 = 2 ) 4 = 4 3 ) 4 = 4 ) ) ,4823 ) 0 ) ) ,3858 ) ) 4 2 ) 5 2 0,57 2 ) ) 4 3 ) 5 0,054 3 ) ) 4 4 0,0008 4

6 4 Allgemein gilt also P 4 k) = Pk-mal Erfolg) = 4 k ) ) k ) 5 4 k. Binomialverteilung Definiert man im vorhergehenden Beispiel die Zufallsgrösse X = Anzahl der Erfolge), so nimmt X die Werte x k = k = 0,,2,3 oder 4 an und für die zugehörigen Wahrscheinlichkeiten gilt p k = PX = k) = P 4 k). Diese Wahrscheinlichkeitsverteilung ist ein Beispiel einer Binomialverteilung. Graphisch sieht sie so aus: Definition Gegeben sei eine Bernoulli-Kette der Länge n, wobei Erfolg im einzelnen Experiment mit der Wahrscheinlichkeit p eintritt. Sei X die Anzahl Erfolge in den n Experimenten. Dann ist die Wahrscheinlichkeit von k Erfolgen gleich PX = k) = P n k) = n k ) p k p) n k. Man nennt die Zufallsgrösse X binomialverteilt und ihre Wahrscheinlichkeitsverteilung Binomialverteilung mit den Parametern n, p. Weiter ist die Wahrscheinlichkeit, in n gleichen Bernoulli-Experimenten höchstens l Erfolge zu haben, gleich l P n k l) = P n 0)+P n )+ +P n l) = P n k). Für die Berechnung der Wahrscheinlichkeiten P n k) und P n k l) können die Tabellen in den Formelsammlungen benutzt werden. Beispiele. Ein Würfel wird 0-mal geworfen. Erfolg sei das Werfen der Augenzahl 2. k=0 P7-mal Erfolg) =

7 47 Phöchstens 2-mal Erfolg) = Pmindestens 3-mal Erfolg) = P4 k 8) = P7-mal Misserfolg) = Wegen P n 0)+P n )+ +P n n) = eine bestimmte Anzahl von Erfolgen tritt ja mit Sicherheit ein), gilt also P n k l) = Pk l ). In den Tabellen sind die Binomialverteilungen nur für Wahrscheinlichkeiten 0, 5 aufgeführt. Ist die Wahrscheinlichkeit eines Erfolgs gleich p > 0, 5, so muss mit der Wahrscheinlichkeit des Misserfolgs q = p < 0,5 gerechnet werden. 2. Eine Münze wird 5-mal geworfen, also ist n = 5 und p = p = 2. P9-mal Kopf) = Wegen p = p ist bei diesem Beispiel die Binomialverteilung symmetrisch um die Werte k = 7 und 8: Erwartungswert und Varianz Mit welcher Anzahl von Erfolgen können wir beim i-ten Experiment in unserer Bernoulli- Kette rechnen? Wie gross ist die Varianz? Um diese Fragen zu beantworten, schreiben wir die binomialverteilte) Zufallsgrösse X als Summe X = X + + X n von unabhängigen und identisch verteilten) Zufallsgrössen X i, wobei X i gleich ist, falls der Erfolg im i-ten Experiment eingetreten ist, und 0 sonst. Für den Erwartungswert und die Varianz von X i gilt damit EX i ) = p + p) 0 = p VarX i ) = p p) 2 + p)0 p) 2 = p p)+p 2 ) p) = p p).

8 48 Mit Satz 4.4 folgt EX) = EX + +X n ) = EX )+ +EX n ) = np VarX) = VarX + +X n ) = VarX )+ +VarX n ) = np p). Satz 5.4 Es gilt EX) = np VarX) = np p). Beispiele. Im ersten Beispiel von vorher 0-maliger Wurf eines Würfels) erhalten wir Durchschnittlich können wir also mit,7 Erfolgen bei 0 Würfen rechnen. 2. Im zweiten Beispiel von vorher 5-maliger Wurf einer Münze) erhalten wir EX) = 5 2 = 7,5 VarX) = = 3,75 = σ = VarX),94. In diesem Beispiel ist die Binomialverteilung also symmetrisch um den Erwartungswert. 5.2 Die Poissonverteilung In den Jahren gab es im Kanton Basel-Stadt durchschnittlich 2 Verkehrsunfälle wegen Bedienung des Telefons während der Fahrt. Mit welcher Wahrscheinlichkeit wird es im Jahr 205 genau 5 Verkehrsunfälle mit derselben Ursache geben? Pro Woche erhält eine Person durchschnittlich 2 Werbeanrufe. Mit welcher Wahrscheinlichkeit erhält diese Person in dieser Woche 5 Werbeanrufe? Die gesuchte Wahrscheinlichkeit ist für beide Fragen dieselbe. In beiden Situationen kennen wir die durchschnittliche Anzahl von Erfolgen pro Zeiteinheit. Wir haben jedoch keine Kenntnis über die Anzahl der Experimente Anzahl Autofahrten, bzw. Anzahl Telefonanrufe). Wir können aber davon ausgehen, dass n gross ist. Wir kennen auch die Wahrscheinlichkeit p des Erfolgs im einzelnen Experiment nicht. Doch wir nehmen an, dass p klein ist. Man nennt solche Situationen seltene Ereignisse. Die bekannte durchschnittliche Anzahl von Erfolgen bezeichnet man mit λ. Die Wahrscheinlichkeit Pk), dass in einer bestimmten Zeiteinheitoder Längeneinheit, Flächeneinheit, usw.) genau k Erfolge eintreten, ist gegeben durch Pk) = λk k! e λ.

9 49 Für die beiden Beispiele finden wir also die Wahrscheinlichkeit Definition Eine Zufallsgrösse X, die jeden der Werte k = 0,,2,... mit den Wahrscheinlichkeiten PX = k) = Pk) = λk k! e λ annehmen kann, heisst poissonverteilt mit dem Parameter λ. Die zugehörige Verteilung heisst Poissonverteilung. Für die beiden Beispiele sieht die Verteilung so aus: k Pk) 0 0, , , , , , , , , , , , , Nicht überraschend ist im Beispiel Pk) am grössten für k = λ = 2, die durchschnittliche Anzahl von Erfolgen. Wir werden unten gleich nachweisen, dass λ der Erwartungswert ist. Allerdings ist hier P) genau so gross wie P2). Es gilt allgemein Pλ ) = Pλ), falls λ eine ganze Zahl ist, denn Erwartungswert und Varianz Für den Erwartungswert berechnen wir µ = EX) = Pk) k = k=0 k=0 λ k k! e λ k = e λ k=0 kλ k k!.

10 50 Da der erste Summand k = 0) null ist, folgt µ = e λ k= kλ k k! = e λ k= λ k k )! = λe λ k= λ k k )!. Die letzte Summe ist nichts anderes als +λ+ λ2 2! + λ3 3! + = e λ, also erhalten wir µ = λe λ e λ = λ. Die Varianz kann ähnlich berechnet werden. Satz 5.5 Es gilt EX) = λ VarX) = λ. Vergleich mit der Binomialverteilung Ist bei einer Binomialverteilung die Anzahl n der Bernoulli-Experimente gross und gleichzeitig die Wahrscheinlichkeit p des Erfolgs im Einzelexperiment sehr klein, dann kann die Poissonverteilung mit dem Parameter λ = np als Näherung für die Binomialverteilung benutzt werden. Tatsächlich ist diese Näherung normalerweise bereits für n 0 und p 0, ausreichend genau. Beispiel Eine Maschine stellt Artikel her. Aus Erfahrung weiss man, dass darunter 5% defekte Artikel sind. Die Artikel werden in Kisten zu je 00 Stück verpackt. Wie gross ist die Wahrscheinlichkeit, dass in einer zufällig ausgewählten Kiste genau defekte Artikel sind?. Exakte Berechnung mit der Binomialverteilung: 2. Näherung mit der Poissonverteilung: Weitere Beispiele von Poissonverteilungen: Anzahl Erdbeben pro Jahr in Basel Anzahl rote Blutkörperchen in einem Zählfenster d.h. pro Flächeneinheit) Anzahl Schnecken in 500 Kopfsalaten Anzahl Tore pro Fussballspiel in der Champions League

11 5 Die Normalverteilung Wir werfen eine Münze und Erfolg sei der Wurf von Kopf. Welcher Anteil von 00 Würfen führt zu mehr als 54 und weniger als Erfolgen? Diese Frage kann mit Hilfe einer Binomialverteilung beantwortet werden, P k 0) = 0 k=55 P 00 k) = 0 k=55 ) 00 k ) 00 k 0,5. k 2) 2 Der Anteil ist also etwa,5%. Die Zufallsgrösse X = Anzahl Erfolge ist hier diskret wir können die Anzahl Erfolge abzählen). Wie können wir aber beispielsweise die Frage beantworten, welcher Anteil der 8-jährigen Kinder im Schulhaus BrunnmattBS) zwischen 30 und 35 cm gross sind? Die Körpergrössen durchlaufen ein kontinuierliches Intervallund werden nur durch Runden auf mm diskretisiert). Zur Beantwortung dieser und ähnlicher Fragen brauchen wir die Normalverteilung. Darüber hinaus können wir die Normalverteilung als Näherung für die Binomialverteilung benutzen. Denn die benötigten Wahrscheinlichkeiten P 00 k) im ersten Beispiel oben finden wir nicht in den Tabellen. Und mit dem Taschenrechner dauert die Berechnung auch viel zu lange.. Approximation der Binomialverteilung Wir beginnen mit einem Beispiel, wobei dies zu Vergleichszwecken so gewählt ist, dass wir die zugehörige Binomialverteilung auch in den Tabellen finden. Wir werfen eine Münze 20-mal und Erfolg sei wieder der Wurf von Kopf. Es ist also n = 20 und p = p = 2. Die Binomialverteilung rot) sieht so aus: Eingezeichnet in blau ist auch der Graph der Funktion fk) = 2πnpq e k np)2 2npq, wobei q = p. Mit den Grössen µ = np und σ = npq lässt sich diese Funktion übersichtlicher schreiben als fk) = σ 2π e 2 k µ σ ) 2.

12 52 Wie gross ist nun die Wahrscheinlichkeit, mit 20 Würfen zwischen 2- und 5-mal Erfolg zu erzielen? Die Binomialverteilung mit Hilfe der Tabellen) liefert P 20 2 k 5) = P 20 k 5) P 20 k ) = 0,994 0,748 = 0,24. Die Abbildung zeigt den passenden Ausschnitt aus dem Balkendiagramm. Die roten Rechtecke habendie Breite unddiehöhe P 20 k). Die gesuchte Wahrscheinlichkeit ist also gleich dem Flächeninhalt der vier roten Rechtecke. Diese rote Fläche können wir nun durch das Integral über fk) mit den Grenzen,5 und 5,5 approximieren. Da 2 für die Mitte des ersten Rechtecks und 5 für die Mitte des letzten Rechtecks steht, müssen wir die Grenzen um je 0,5 erweitern. Für die Differenz gilt dann 5,5,5 = 4, was korrekt den 4 Breiten der Rechtecke entspricht. Wir erhalten 5,5,5 ft)dt 0,244 Die Approximation einer Binomialverteilung durch das Integral über ft) ist umso besser, je grösser n ist. Für kleine n können wir ja die Binomialverteilung von Hand oder mit den Tabellen berechnen. Für grosse n benutzen wir die Approximation mit dem Integral. Allerdings haben wir nun ein neues Problem, denn dieses Integral ist nicht so leicht zu berechnen. Das heisst, entweder verwenden wir dafür ein Computeralgebrasystem oder wir benutzen wieder Tabellen. Dazu aber später mehr. Bemerkenswert ist, dass die Approximation durch das Integral über ft) auch dann gut ist, wenn die Binomialverteilung nicht symmetrisch um den Erwartungswert ist. Die Situation für n = 20, p = 0,2 und µ = 4 sieht so aus:

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 205 Binomialverteilung Hans Walser: Modul 205, Binomialverteilung ii Inhalt Die Qual der Wahl: Binomialkoeffizienten.... Ordnung muss sein....2 Auswählen

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

6.2 Approximation der Binomialverteilung

6.2 Approximation der Binomialverteilung 56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

11. Approximation der Binomialverteilung durch die Normalverteilung

11. Approximation der Binomialverteilung durch die Normalverteilung 7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) n heisst für uns n gross Literatur Kapitel 7 * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Beispiel 7.5.1: Es werden drei ideale Münzen geworfen, und der Gewinn sei X := Anzahl von W. In Beispiel 7.4.1 hatten wir dazu eine Wahrscheinlichkeitverteilung ermittelt: X

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch Kapitel 4 Diskrete Verteilungen 4.1 Bernoulli-Verteilung Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch È Üµ ½ für Ü ¼ für Ü ½ ¼ sonst Die Bernoulli-Verteilung

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 07. Januar 2015 Klausuranmeldung Prüflinge müssen sich bis spätestens 14 Tage vor

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung!

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Normalverteilung!

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Beziehungen zwischen Verteilungen

Beziehungen zwischen Verteilungen Kapitel 5 Beziehungen zwischen Verteilungen In diesem Kapitel wollen wir Beziehungen zwischen Verteilungen betrachten, die wir z.t. schon bei den einzelnen Verteilungen betrachtet haben. So wissen Sie

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr