2 Direkte Lösungsverfahren für lineare Gleichungen

Größe: px
Ab Seite anzeigen:

Download "2 Direkte Lösungsverfahren für lineare Gleichungen"

Transkript

1 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2 ) Operationen lösbar. Entsprechend ist für eine invertierbare obere Dreiecksmatrix R R N N das LGS Rx = y in O(N 2 ) Operationen lösbar. (2.2) Wenn eine Matrix A R N N eine LR-Zerlegung A = LR mit einer normierten untere Dreiecksmatrix L und einer invertierbaren obere Dreiecksmatrix R besitzt, dann ist A invertierbar und das LGS Ax = b ist mit O(N 2 ) Operationen lösbar. (2.3) Eine Matrix A R N N besitzt genau dann eine LR-Zerlegung von A, wenn alle Hauptuntermatrizen A[1 : n, 1 : n] invertierbar sind. Die LR-Zerlegung ist eindeutig und lässt sich mit O(N 3 ) Operationen berechnen. (2.5) Eine Matrix A R N N heißt strikt diagonal-dominant, falls A[n,n] > N A[n, k]. k=1 k n Sie heißt positiv definit, wenn x T Ax > 0 für x R N, x 0. In beiden Fällen existiert eine LR-Zerlegung. (2.6) Sei A R N N symmetrisch und positiv definit. Dann existiert genau eine Cholesky-Zerlegung A = LL T mit einer unteren Dreiecksmatrix L. Software: C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 6

2 2 Direkte Lösungsverfahren für lineare Gleichungen (2.7) a) Eine bijektive Abbildung π : {1,...,N} {1,...,N} heißt Permutation. b) Sie ist eindeutig durch einen Permutationsvektor p R N mit p[n] = π(n) bestimmt. c) Die zugehörige Permutationsmatrix ist P = (e π(1) e π(n) ) R N N. (2.8) Sei A R N N invertierbar. Dann existiert eine Permutationsmatrix P, so dass PA eine LR-Zerlegung PA = LR besitzt, so dass L[m,n] 1 gilt. (2.9) a) Zu v R N und k n mit v[k] 2 + v[n] 2 > 0 existiert eine Givens-Rotation G R N N mit ( ) ( ) G[k,k] G[k,n] c s =, c G[n, k] G[n, n] s c 2 + s 2 = 1, und G[j][j] = 1 für j k,n und G[i][j] = 0 sonst, so dass für w = Gv gilt: w[n] = 0. Für v[n] > v[k] setze τ = v[k] v[n], s = 1+τ 1 v[n], c = sτ, sonst setze τ = 2 v[k], c = 1+τ 1, s = cτ. 2 b) Zu v R N, v 0, existiert eine Householder-Spiegelung H = I N 2 w T w ww T R N N mit w R N, w[1] = 1, sodass Hv = σe 1 mit σ R. Falls v[1] > 0, setze σ = v 2, sonst setze σ = v 2. Dann definierte w = 1 v[1] σ (v σe1 ). Rotationen und Spiegelungen Q sind orthogonale Matrizen, d.h. Q T Q = I N, Q 1 = Q T, Q 2 = 1 und κ 2 (Q) = 1. (2.10)Zu A R K N existiert eine QR-Zerlegung A = QR mit einer orthogonalen Matrix Q R K K und eine oberen Dreiecksmatrixmatrix R R M N. C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 7

3 LR-Zerlegung (ohne Vektorisierung) N = size(a,1); for n=1:n-1 % Berechnung der n-ten Spalte von L for m=n+1:n A(m,n) = A(m,n)/A(n,n); % keine Berechnung der n-ten Zeile von R erforderlich % Berechnung der Restmatrix for m=n+1:n for k=n+1:n A(m,k) = A(m,k) - A(m,n) * A(n,k); C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 8

4 LR-Zerlegung N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N)*x(n+1:N))/A(n,n); C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 9

5 Cholesky-Zerlegung N = size(a,1); for n=1:n A(n:N,n) = A(n:N,n) - A(n:N,1:n-1) * A(n,1:n-1) ; A(n:N,n) = A(n:N,n) / sqrt(a(n,n)); x = b; for n=1:n x(n) = (x(n) - A(n,1:n-1) * x(1:n-1))/ A(n,n); for n=n:-1:1 x(n) = (x(n) - A(n+1:N,n) * x(n+1:n))/ A(n,n); C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 10

6 LR-Zerlegung mit Pivotsuche N = size(a,1); p = (1:N) ; for n = 1:N-1 [r,m] = max(abs(a(n:n,n))); m = m+n-1; if abs(a(m,n))<eps error( *** ERROR *** LR-Zerlegung existiert nicht ); if (m ~= n) A([n m],:) = A([m n],:); p([n m]) = p([m n]); A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n)*A(n,n+1:N); x = b(p); for n=2:n x(n) = x(n) - A(n,1:n-1)*x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N)*x(n+1:N))/A(n,n); C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 11

7 Berechnung der Householder-Vektoren function [v,beta] = householder(y) N = length(y); s = y(2:n) * y(2:n); if N == 1 s = 0; v = [1;y(2:N)]; if s == 0 beta = 0; else mu = sqrt(y(1)^2 + s); if y(1) <= 0 v(1) = y(1) - mu; else v(1) = -s/(y(1) + mu); beta = 2*v(1)^2/(s + v(1)^2); v = v / v(1); return; C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 12

8 QR-Zerlegung [M,N] = size(a); for m = 1:min(N,M-1) [v,beta] = householder(a(m:m,m)); if beta ~= 0 w = beta * v * A(m:M,m:N); A(m:M,m:N) = A(m:M,m:N) - v * w; A(m+1:M,m) = v(2:m-m+1); for m = 1:min(N,M-1) v = [1;A(m+1:M,m)]; beta = 2 / (v * v); if beta ~= 2 b(m:m) = b(m:m) - beta*(v *b(m:m)) * v; for n=min(n,m):-1:1 x(n) = (b(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); C. Wieners: Einführung in die Numerische Mathematik für Studierende der Fachrichtung Informatik und Ingenieurwissenschaften 13

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end;

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end; LR-Zerlegung N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n)

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n N } n=1,...,n.

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen Sei A R invertierbar und b R. Löse Ax = b genau und effizient. Die LR-Zerlegung Wir berechnen eine Zerlegung A = LR mit L, R R und den folgen Eigenschaften:

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010 Prof. Dr. O. Junge, P. Koltai, K. Tichmann Zentrum Mathematik - M3 Technische Universität München EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2 Tutorübungen T6 (Schur-Komplement) (a) Es sei

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

QR-Zerlegung mit Householder-Transformationen

QR-Zerlegung mit Householder-Transformationen 1/ QR-Zerlegung mit Householder-Transformationen Numerische Mathematik 1 WS 011/1 Orthogonales Eliminieren / Sei x R n ein Vektor x = 0. Ziel: Ein orthogonales H R n;n bestimmen, sodass Hx = kxke 1 ; ein

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308, 10 308 ] {0} [10 308,10 308

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

4 Direkte Verfahren für spezielle Systeme

4 Direkte Verfahren für spezielle Systeme Numerische Mathematik 150 4 Direkte Verfahren für spezielle Systeme 4.1 Die Cholesky-Zerlegung Satz 4.1 Es sei A = [a i,j ] R n n [C n n ] symmetrisch [Hermitesch]. Dann sind die folgenden Aussagen äquivalent:

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Florian Weingarten. Prof. Krieg sagt ich kann mir selbst aussuchen womit wir anfangen. Ich wähle Analysis.

Florian Weingarten. Prof. Krieg sagt ich kann mir selbst aussuchen womit wir anfangen. Ich wähle Analysis. Florian Weingarten Prüfungsprotokoll zur mündlichen Prüfung im Anwendungsfach Mathematik für den Diplom Studiengang Informatik an der RWTH-Aachen Prüfungsinhalt: Analysis IV (Funktionentheorie), Lineare

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 204 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel Inverse Matrizen Definition Sei A eine quadratische Matrix vom yp (n,n) Existiert zu A eine Matrix X gleichen yps mit AX = XA = E (E: (n,n) Einheitsmatrix), so nennt man X die zu A inverse Matrix, oder

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II)

Klausur zur Mathematik II (Modul: Lineare Algebra II) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum

Mehr

Einführung in die. Kryptographie WS 2016/ Lösungsblatt

Einführung in die. Kryptographie WS 2016/ Lösungsblatt Technische Universität Darmstadt Fachgebiet Theoretische Informatik Prof. Johannes Buchmann Thomas Wunderer Einführung in die Kryptographie WS 6/ 7. Lösungsblatt 8..6 Ankündigungen Arithmetik modulo n

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Quadratische Matrizen Inverse und Determinante

Quadratische Matrizen Inverse und Determinante Kapitel 2 Quadratische Matrizen Inverse und Determinante In diesem Abschnitt sei A M(n, n) stets eine quadratische n n Matrix. Für nicht-quadratische Matrizen ergeben die folgenden Betrachtungen keinen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011 Choleskyzerlegung Julia Hoeboer 13 Mai 2011 Inhalt: LDM T Zerlegung LDL T Zerlegung Cholesky Zerlegung Person Berechnung Gaxpy Algorithmus Effektivität LDM T Zerlegung LDM T Zerlegung lässt sich aus LR

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme 2. Direkte Verfahren zur Lösung linearer Gleichungssysteme 1 Einleitung (1) Eine zentrale Rolle bei numerischen Berechnungen spielen lineare Gleichungssysteme Es sind die am häufigsten auftretenden numerischen

Mehr

Übungen. Mathematik für Studierende der Biologie und des Lehramtes Chemie

Übungen. Mathematik für Studierende der Biologie und des Lehramtes Chemie Übungen Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 7..7 (Stand: 7..7, 3:47 Uhr) Blatt : Ausgabe:..7, Abgabe: 7..7, Übungen: 4..7, 7..7,

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/ Mathematik für Betriebswirte I (Lineare Algebra). Klausur Wintersemester 20/204 06.02.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:... Vorname:... Matrikelnummer: Studienfach:... Name des

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

8 Polynominterpolation

8 Polynominterpolation 8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr