OPERATIONS-RESEARCH (OR)

Größe: px
Ab Seite anzeigen:

Download "OPERATIONS-RESEARCH (OR)"

Transkript

1 OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen: Unternehmensforschung, Optimalplanung, Management Science, Decision Analysis, Quantitative Analysis for Business. Unternehmensbereiche, in denen OR-Problemstellungen auftreten: Produktionsplanung, Logistik, Lagerhaltung, Gerätewartung, Projektplanung und abwicklung usw. Zu optimierende wirtschaftlichen Größen: Kosten, Gewinne, Zeitaufwand, Arbeitsaufwand und Verbrauch von Ressourcen jeglicher Art. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 1

2 Die mathematischen Methoden und Modelle Viele Methoden stellen reine mathematische Disziplinen dar und lassen apriori keinen Bezug zum unternehmerischen Anwendungsbereich erkennen. Dazu zählen vor allem die lineare Optimierung, die nichtlineare Optimierung, die ganzzahlige Optimierung, die Spieltheorie, die Simulation, die Graphentheorie und die Netzplantechnik. Andere Methoden wie z.b. die Warteschlangentheorie und die Lagerhaltungstheorie tragen in ihren Bezeichnungen noch das konkrete Anwendungsgebiet, in dem sie entstanden sind. Von den genannten OR-Gebieten werden in dieser Vorlesung die Grundlagen der folgenden behandelt werden, sofern dies zeitlich möglich ist: Lineare Optimierung Ganzahlige Optimierung Nichtlineare Optimierung Transportaufgaben Lagerhaltungsmodelle Warteschlangenmodelle Netzplantechnik E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 2

3 I. Lineare Optimierung 1. Das Standardproblem der linearen Optimierung 2. Beispiele mit graphischer Darstellung 3. Das Standard-LOP mit Nebenbedingungen in Gleichungsform 4. Lösungen und Basislösungen von Ax + y = b, Basistausch 5. Basistausch bei vorzeichenbeschränkten Variablen 6. Die Berücksichtigung der Zielfunktion beim Basistausch 7. Der Simplex-Algorithmus 8. Die Algorithmische Durchführung 9. Die 2-Phasenmethode 10. Variablen ohne Vorzeichenbeschränkung 11. Dualität 12. Dualität bei gemischten Nebenbedingungen und freien Variablen 13. Weitere Sätze zur Dualität 14. Komplexität E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 3

4 I. Lineare Optimierung 1. Das Standardproblem der linearen Optimierung Gegeben a) Eine lineare Funktion, die sogenannte Zielfunktion F(x 1,x 2,...,x n ) = c 1 x 1 + c 2 x c n x n wobei die Koeffizienten c i beliebige relle Zahlen sind. b) Nebenbedingungen, bestehend aus m Ungleichungen a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b a m1 x 1 + a m2 x a mn x n b m, wobei für die rechten Seiten b i 0 gilt und die a ij beliebig sind, und Vorzeichenbeschränkungen x j 0 für j = 1,2,...,n. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 4

5 Gesucht Werte der Variablen x 1, x 2,..., x n, welche die Nebenbedingungen (Ungleichungen und Vorzeichenbeschränkungen) erfüllen und für welche die Zielfunktion einen maximalen Wert annimmt. Aufgabenstellung in Vektor- und Matrix-Schreibweise Maximiere F = c T x unter Ax b und x 0 wobei b 0 gilt. Bezeichnungen Menge der zulässigen Punkte: alle Vektoren x mit Ax b und x 0 nicht zulässige Punkte: alle Vektoren x, für die eine der Nebenbedingungen nicht erfüllt ist Lösungen des LOPs oder optimale Lösungen: zulässige Punkte x*, für die F(x*) F(x) für alle zulässigen x gilt E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 5

6 Bemerkungen x =(0, 0,..., 0) ist immer ein zulässiger Punkt des Standard-LOP, weil damit Ax = 0 gilt und 0 b vorausgesetzt wurde Ein Lineares Optimierungs-Problem (LOP) kann auch in anderer Form auftreten, z.b. - mit Minimierung von F statt Maximierung - oder mit Ax = b statt Ax b - oder ohne die Vorzeichenbeschränkungen x 0 - oder ohne die Voraussetzung b 0 u.s.w Jedes LOP kann mit mehr oder weniger Aufwand auf das Standard- LOP zurückgeführt werden. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 6

7 2. Beispiele mit graphischer Darstellung Beispiel 1 Maximiere F(x 1, x 2 ) = 5 x x 2 unter 6x 1 + 3x x 1 - x 2 6 -x 1 + 4x 2 8 und x 1, x 2 0 Dimensionen, Vektor- und Matrixkomponenten für dieses Beispiel: m=3, n=2; x T = (x 1, x 2 ), c T = (c 1, c 2 ) = (5, 4) a 11 a b 1 12 A = a 21 a 22 = 4-1 b = b 2 = 6 a 31 a b 3 8 E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 7

8 5x 1 + 4x 2 = x 2 6x 1 + 3x 2 = 12 5x 1 + 4x 2 = 4 - x 1 + 4x 2 = 8 5x 1 + 4x 2 =0 Menge der 4x 1 - x 2 = 6 zulässigen Punkte 0 x 1 An der graphischen Darstellung liest man ab: a) Die Menge der zulässigen Punkte ist konvex und beschränkt b) Die optimale Lösung wird in einer Ecke angenommen E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 8

9 Beispiel 2 Maximiere F(x 1, x 2 ) = 5 x x 2 unter 4x 1-20x 2 6 -x 1 + 4x 2 8 und x 1, x 2 0 Dimensionen, Vektor- und Matrixkomponenten für dieses Beispiel: m=2, n=2; x T = (x 1, x 2 ), c T = (c 1, c 2 ) = (5, 4) a 11 a b 1 6 A = = b = = a 21 a b 2 8 E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 9

10 x 2 5x 1 + 4x 2 = 40 5x 1 + 4x 2 = 4 - x 1 + 4x 2 = 8 5x 1 + 4x 2 =0 Menge der zulässigen Punkte 4x 1-20x 2 = 6 0 x 1 An der graphischen Darstellung liest man ab: a) Die Menge der zulässigen Punkte ist konvex und unbeschränkt. b) Die Zielfunktion ist unbeschränkt. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 10

11 Beispiel 3 Maximiere F(x 1, x 2 ) = - 5 x 1 + 5x 2 unter 4x 1-20x 2 6 -x 1 + 4x 2 8 und x 1, x 2 0 Dimensionen, Vektor- und Matrixkomponenten für dieses Beispiel: m=2, n=2; x T = (x 1, x 2 ), c T = (c 1, c 2 ) = (-5, 5) a 11 a b 1 6 A = = b = = a 21 a b 2 8 E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 11

12 x 2 - x 1 + 4x 2 = 8-5x 1 + 5x 2 = 10 Menge der zulässigen Punkte 4x 1-20x 2 = 6-5x 1 + 5x 2 = 0 0 x 1 An der graphischen Darstellung liest man ab: a) Die Menge der zulässigen Punkte ist konvex und unbeschränkt. b) Die Zielfunktion ist beschränkt. Die optimale Lösung wird in einer Ecke angenommen. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 12

13 Fazit aus den 3 Beispielen Die Menge der zulässigen Punkte eines LOP ist eine konvexe Menge, die beschränkt oder unbeschränkt sein kann. Auch wenn die Menge der zulässigen Punkte unbeschränkt ist, kann die Zielfunktion trotzdem beschränkt sein und damit das LOP eine optimale Lösung besitzen. Falls das LOP eine einzige optimale Lösung besitzt, dann ist dies ein Eckpunkt. Besitzt das LOP mehrere optimale Lösungen, dann ist mindestens eine davon eine Ecke und die Menge aller optimalen Lösungen ist eine konvexe Menge. Ansatz für einen Algorithmus zur Bestimmung einer optimalen Lösung: Berechne alle Eckpunkte (z.b. als Schnittpunkte von je zwei Geraden) und suche die Ecke mit dem größten Wert der Zielfunktion aus. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 13

14 3. Das Standard-LOP mit Gleichungen als Nebenbedingungen Beispiel mit Ungleichungen als Nebenbedingungen (m=3, n=2) 6x 1 + 3x x 1 - x 2 6 -x 1 + 4x 2 8 und x 1, x 2 0 Jedem 2-dimensionalen Punkt x T = (x 1, x 2 ), der diese Nebenbedingungen erfüllt, entspricht ein 5-dimensionaler Punkt x T = (x 1, x 2, x 3, x 4, x 5 ) der die folgenden Nebenbedingungen erfüllt 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 und x 1, x 2, x 3, x 4, x 5 0 und umgekehrt. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 14

15 Folgerung: Das LOP Maximiere F(x 1, x 2 ) = 5 x x 2 unter 6x 1 + 3x x 1 - x 2 6 -x 1 + 4x 2 8 mit x 1, x 2 0 ist gleichwertig mit dem LOP Maximiere F(x 1, x 2 ) = 5 x x 2 unter 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 mit x 1, x 2, x 3, x 4, x 5 0 Unterscheide Problemvariablen x 1, x 2 und Schlupfvariablen x 3, x 4, x 5. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 15

16 Matrix-Schreibweise und allgemeine Betrachtung LOP mit Ungleichungen: Maximiere F = c T x unter Ax b und x 0 wobei b 0 gilt. LOP mit Gleichungen: Maximiere F = c T x unter Ax + y = b, x 0 und y 0 wobei b 0 gilt, und y die Komponenten y T = (y 1, y 2,..., y m ) = (x n+1, x n+2,..., x n+m ) hat. Die beiden LO-Probleme sind gleichwertig. Das ergibt sich daraus, dass aus der Aussage Ax b die Aussage y = b - Ax 0 folgt und umgekehrt. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 16

17 4. Lösungen und Basislösungen von Ax + y = b, Basistausch Betrachte die Nebenbedingungen unseres Beispiels in der Form: 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 Das ist ein System mit 3 Gleichungen für 5 Unbekannte. Man sagt, das System sei in einer kanonischen Form, da die Matrix A = die kanonische Basis des 3-dimensionalen Raums enthält. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 17

18 Hinsichtlich der Lösungen des Systems stellen wir fest: Es gibt 2 Freiheitsgrade, z.b. kann man x 1 und x 2 beliebig vorgeben, dann sind x 3, x 4 und x 5 eindeutig bestimmt. Der Spezialfall x 1=0 und x 2=0 Dann ist x T = (0, 0, 12, 6, 8) eine Lösung des Gleichungssystems. Sie heißt Basislösung, x 3, x 4 und x 5 heißen Basisvariablen. Unter dem Gesichtspunkt der Suche nach Lösungen des Gleichungssystems mit vorzeichenbeschränkten Variablen x i 0 ist x T auch eine zulässige Basislösung. Man stellt auch fest, dass x T der Ecke (x 1, x 2 ) = (0, 0) in der graphischen Darstellung entspricht. Verallgemeinernd kann man den Satz formulieren: Eine zulässige Basislösungen der Nebenbedingungen des Standard-LOPs in Gleichungsform entspricht einer Ecke der zulässigen Punktmenge. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 18

19 Bestimmung einer weiteren Basislösungen Ausgangssituation: 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 Wir führen folgende Operationen durch: Division der 1. Zeile durch 3 Addition der neuen 1. Zeile zur 2. Zeile Subtraktion des 4-fachen der neuen 1. Zeile von der 3. Zeile Das Ergebnis ist eine neue kanonische Form der Nebenbedingungen: 2x 1 + x / 3 x 3 = 4 6x / 3 x 3 + x 4 = 10-9x 1-4 / 3 x 3 + x 5 = -8 mit der Basislösung x T = (0, 4, 0, 10, -8) E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 19

20 Die Umrechnung der kanonischen Form 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 in die neue kanonische Form 2x 1 + x / 3 x 3 = 4 6x / 3 x 3 + x 4 = 10-9x 1-4 / 3 x 3 + x 5 = -8 heißt Basistausch der Variablen x 3 gegen x 2. Der Koeffizient a 12 =3 heißt Pivotelement des Basistauschs. Bemerkungen zur Basislösung nach dem Basistausch - Die Basislösung x T = (0, 4, 0, 10, -8) ist nicht zulässig, denn die x 5 -Komponente ist negativ. - (x 1, x 2 ) = (0, 4) ist keine Ecke der zulässigen Punktmenge sondern der Schnittpunkt zweier Geraden, außerhalb der zulässigen Punktmenge. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 20

21 Basistausch x 5 gegen x 2 Ausgangssituation: 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 Wähle als Pivotelement a 32 = 4 Division der 3. Zeile durch 4 Addition der neuen 3. Zeile zur 2. Zeile Subtraktion des 3-fachen der neuen 3. Zeile von der 1. Zeile Die neue kanonische Form ist 27 / 4 x 1 + x 3-3 / 4 x 5 = 6 15 / 4 x 1 + x / 4 x 5 = 8-1 / 4 x 1 + x / 4 x 5 = 2 Die neue Basislösung x T = (0, 2, 6, 8, 0) ist zulässig und entspricht der Ecke (x 1, x 2 ) = (0, 2) der zulässigen Punktemenge. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 21

22 Wieviel Basislösungen bzw. wieviel kanonische Formen gibt es? Antwort mit Hilfe der Kombinatorik: Jede kanonische Form entspricht einer Auswahl von 3 (Basisvariablen) bzw. von 2 (Nichtbasisvaribalen) aus 5 (Variablen). ( 5 3) = ( 5 2) = 5!/(3!*2!) = 10 Bemerkungen: - Nicht jede kombinatorische Auswahl ergibt eine neue Basislösung. - Alle Basislösungen können mit der Methode des Basistauschs gefunden werden. Ansatz für einen Algorithmus zur Bestimmung einer optimalen Lösung: Berechne alle Basislösungen und bestimme diejenige, die den größten Zielfunktionswert besitzt und zulässig ist. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 22

23 5. Die Berücksichtigung der Vorzeichenbeschränkungen beim Basistausch Ausgehend von der Anfangssituation 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 fassen wir die Ergebnisse noch einmal unter Berücksichtigung der Vorzeichenbeschränkungen x i 0 zusammen. Pivotelement a 12 = 3 ergab (0, 4, 0, 10, -8), -> nicht zulässig Pivotelement a 32 = 4 ergab (0, 2, 6, 8, 0), -> zulässig Pivotelement a 22 = -1 ergibt -6 auf der rechten Seite -> nicht zulässig Folgerung: Es gibt in Spalte 2 nur ein geeignetes Pivotelement (a 32 =4), das beim Basistausch auf eine neue zulässige Basislösung führt. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 23

24 Untersuchung der ersten Spalte von 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 Pivotelement a 31 = -1 Pivotelement a 11 =6 Pivotelement a 21 =4 -> nicht zulässig -> nicht zulässig -> zulässig Folgerung: Es gibt auch in Spalte1 nur ein geeignetes Pivotelement (a 21 =4). Eigenschaften der geeigneten Pivotelemente in beiden Spalten: a) sie sind positiv b1) Quotient b 2 /a 21 = 6 / 4 = 1,5 ist kleiner als b 1 /a 11 = 12 / 6 = 2 b2) Quotient b 3 /a 32 = 8 / 4 = 2 ist kleiner als b 1 /a 12 = 12 / 3 = 4 E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 24

25 Um sicher zu stellen, dass beim Basistausch mit vorzeichenbeschränkten Variablen wieder eine zulässige Basislösung entsteht, ist also das folgende, allgemeine Kriterium für die Wahl eines Pivotelements zu berücksichtigen: - Wähle eine Spalte j, die wenigstens ein a ij > 0 enthält, als Pivotspalte - Berechne in dieser Spalte j die Quotienten b i /a ij für alle positiven a ij - Wähle als Pivotzeile i diejenige, in der b i /a ij am kleinsten ist E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 25

26 6. Die Berücksichtigung der Zielfunktion beim Basistausch Im Beispiel lautet die Zielfunktion: Maximiere F(x 1, x 2 ) = 5x 1 + 4x 2 Gleichwertige Forderung ist: Maximiere F unter 5x 1 + 4x 2 - F = 0. F ist eine weitere Variable in einer zusätzlichen Nebenbedingung kanonische Form des Standard-LOPs: Maximiere F unter 6x 1 + 3x 2 + x 3 = 12 4x 1 - x 2 + x 4 = 6 -x 1 + 4x 2 + x 5 = 8 5x 1 + 4x 2 - F = 0 und x 1, x 2,..., x 5 0 x T =(0, 0, 12, 6, 8) mit Zielfunktionswert F = 0 ist zulässige Basislösung. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 26

27 Jede zulässige Lösung mit x 1 > 0 oder x 2 > 0 führt zu einer Vergrößerung des Zielfunktionswerts, da die Zielfunktionskoeffizienten c 1 =5 und c 2 =4 positiv sind: F neu = 0 + 5x 1 neu > 0 falls x 1 > 0 neue Basisvariable wird. F neu = 0 + 4x 2 neu > 0 falls x 2 > 0 neue Basisvariable wird. Wir wählen x 1 als neue Basisvariable, d.h. j=1 als Pivotspalte. Pivotelement wird dann a 21 = 4: 4.50 x 2 + x x 4 = 3 x x x 4 = x x 4 + x 5 = x x 4 - F = -7.5 neue Basislösung: x T =(1.5, 0, 3, 0, 9.5), neuer Zielfunktionswert: F=7.5 Beachte: Bei der Umformung zur neuen kanonischen Form wird die Nebenbedingung mit der Zielfunktionsvariablen F wie die anderen umgerechnet. Bei einem Basistausch mit x 2 ist wiederum eine Vergrößerung der Zielfunkton zu erwarten, bei einem Basistausch mit x 4 allerdings nicht. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 27

28 Basistasuch mit x 2, Pivotelement a 12 = 4.5 x x x 4 = x x x 4 = x x 4 + x 5 = x x 4 - F = Basislösung x T =(1.666, 0.666, 0, 0, 7.0), Zielfunktionswert F=11.0 Basistausch mit x 4. Pivotelement a 34 = 1.5 x x x 5 = x x x 5 = x 3 + x x 5 = x x 5 - F = Basislösung x T =(0.888, 2.222, 0, 4.666, 0), Zielfunktionswert F= Verfahrensende, da keine Vergrößerung der Zielfunktion mehr möglich ist. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 28

29 7. Der Simplex-Algorithmus Ausgehend von der kanonischen Form des Standard-LOPs erzeugt der Simplexalgorithmus weitere kanonische Formen mittels Basistausch wie bisher am Beispiel beschrieben. Es soll hier auf den Ablauf, die Korrektheit und dieterminierung des Algorithmus für das allgemeine Standard-LOP eingegangen werden. Jede auftretende kanonische Form kann man wie folgt schreiben: Dabei ist A BN x N + x B = b B mit b B 0 c N T x N - F = f N die Indexmenge der n nicht-basisvariablen B die Indexmenge der m Basisvariblen N B = {1, 2,..., n + m}, N B = A BN eine mxn -Matrix, c N ein Vektor mit n Komponenten (x N, x B ) mit x N = 0 und x B = b B die zugehörige Basislösung F = -f der zugehörige Zielfunktionswert E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 29

30 A BN x N + x B = b B mit b B 0 c N T x N - F = f Ablauf des Algorithmus: 0. Initialisierung: N = {1,2,..,n}, B = {n+1,..., n+m}, A BN = A, b B = b, c N = c, f = 0 1. Auswahl eines Index j N: Falls alle c j 0: ENDE, die zugehörige Basislösung ist optimal. Anderenfalls wählen wir einen Index j mit c j > 0, weiter bei 2 2. Auswahl eines Index i B: Falls alle a ij 0: ENDE, die Zielfunktion ist unbeschränkt. Anderenfalls wähle einen Index i B mit a ij > 0 und minimalem Quotienten b i /a ij, weiter bei 3 3. Führe den Basistausch i gegen j durch, weiter bei 1. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 30

31 Zur Korrektheit des Algorithmus 1. Angenommen der Algorithmus endet weil alle c j 0. Wir haben dann in der kanonischen Form: c N T x N - F = f mit c N 0 Für eine beliebige zulässige Lösung x N 0, x B 0 gilt deshalb F = -f + c N T x N = -f + c k x k -f k N Das heißt die Basislösung x N = 0, x B = b B ist optimale Lösung des LOP. 2. Angenommen der Algorithmus endet weil in einer Spalte der kanonischen Form, in der es ein c j > 0 gibt, a ij 0 für alle i B ist,. Wir bezeichnen diese Spalte mit a j. Für jeden Wert x j > 0 gilt dann x B = b B - x j a j 0 Das heißt alle Punkte (x N, x B ) mit x k = 0 für k N außer x j >0 und x B = b B - x j a j erfüllen die Vorzeichenbedingungen. Sie erfüllen sogar alle Nebenbedingungen, denn es gilt auch: A BN x N + x B = x j a j + b B - x j a j = b B E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 31

32 Für die Zielfunktion dieser zulässigen Lösungen erhält man aber: F = -f + c N T x N = -f + c j x j für x j, da c j > 0. Die Zielfunktion ist also unbeschränkt. Zur Terminierung des Algorithmus Der Simplexalgorithmus terminiert auf jeden Fall, wenn sich bei jedem Basistausch die Zielfunktion tatsächlich vergrößert, denn es gibt nur endlich viele Basislösungen, die sich dann nicht wiederholen können. Der Algorithmus endet also entweder mit Kriterium 1 oder 2. Falls sich die Zielfunktion nicht vergrößert, was der Fall ist, wenn entartete Ecken auftreten, kann es zur Wiederholung von Basislösungen beim Basisaustausch kommen. Der Simplex-Algorithmus terminiert aber auch in diesem Fall, wenn folgende Regel zur Wahl des Pivotelements eingehalten wird: Wähle unter den Spalten mit c j >0 diejenige mit dem kleinsten Index j als Pivotspalte und, falls der minimale Quotient b j /a ij in mehreren Zeilen auftritt, diejenige mit dem kleinsten Index i als Pivotzeile. E. Oswald/H. Weber, FHW, OR SS06, Teil1, Seite 32

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr

Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr Operations Research für Wirtschaftsinformatiker Vorlesungsskript von Richard Mohr Fachhochschule Esslingen, SS 2005 INHALTSVERZEICHNIS i Inhaltsverzeichnis Lineare Optimierung. Graphische Lösung des linearen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Mathematische Optimierung. Volker John

Mathematische Optimierung. Volker John Mathematische Optimierung Volker John Sommersemester 2007 Inhaltsverzeichnis 1 Einführung 3 I Lineare Optimierung 6 1 Grundlagen 7 2 Geometrische Deutung des Linearen Programms 10 3 Basislösungen eines

Mehr

Mathematische Planungsverfahren

Mathematische Planungsverfahren Mathematische Planungsverfahren Stefan Etschberger Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 12 April 2005 Organisatorisches Literatur Starke Orientierung an Hauke/Opitz:

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe

Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010. Prof. Dr. S. Dempe Skript zur Vorlesung Optimierung linearer Modelle Gültig ab Sommersemester 2010 Prof. Dr. S. Dempe Inhaltsverzeichnis Kapitel 0. Einleitung 5 0.1. Historische Entwicklung 5 0.2. Begriff des Operations

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support

0. Einleitung. 0.1. Der Begriff Operations Research / Decision Support 0. Einleitung 0.1. Der Begriff Operations Research / Decision Support Es werden Methoden zur Entscheidungsunterstützung (Decision Support, DS) vorgestellt. Durch Problemanalyse, daraus formulierte mathematische

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Einführung in die Mathematische Optimierung

Einführung in die Mathematische Optimierung Einführung in die Mathematische Optimierung Rainer E. Burkard Technische Universität Graz Institut für Mathematik Steyrergasse 30 A-800 Graz, Austria burkard@opt.math.tu-graz.ac.at 2 Inhaltsverzeichnis

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Mathematische Optimierung

Mathematische Optimierung Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg 2.1 Weinbauer Müller kann maximal 30 Hektar Rebfläche bewirtschaften. Er möchte Gutedel-

Mehr

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de)

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de) Lineare Optimierung Vorlesung von Prof Christiane Tammer Author : Georg Kuschk (Quelle : wwwrikutide) 11 August 2006 Inhaltsverzeichnis 1 Einleitung, Beispiele 2 2 Das allgemeine lineare Optimierungsproblem

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Einführung in das Operations Research

Einführung in das Operations Research S. Nickel, O. Stein, K.-H. Waldmann Einführung in das Operations Research Skript zur Vorlesung am Karlsruher Institut für Technologie Vorläufige Version, Stand: 11. März 2011 Inhaltsverzeichnis 1 Kernkonzepte

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Vorlesungsmitschrift Operations Research I und II

Vorlesungsmitschrift Operations Research I und II Vorlesungsmitschrift Operations Research I und II Bemerkung: Dies ist eine Überarbeitung der beiden Skripte [1] und [2] zu den oben genannten Vorlesungen von Prof. Sebastian, ergänzt um Anmerkungen, die

Mehr

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen

Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen be/ji/3(2) 2-1 2 im Kontext der OR-Optimierungsmodelle Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen Standardform: - Planungsziel min bzw. min Z(x) = c 1 x 1 + c 2 x 2 + + c n x n Z(x)

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Algorithmische Anwendungen

Algorithmische Anwendungen Lineare Programmierung Studiengang: Allgemeine Informatik 7.Semester Gruppe: A blau Sibel Cilek 3835 Daniela Zielke 36577..6 Inhaltsverzeichnis Einleitung...3. Was ist lineare Optimierung?... 3. Anwendungsbeispiele...

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen

Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen Einführung in die Lineare Programmierung Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 30. Juli 2008 Inhaltsverzeichnis 1 Lineare Programme 3 1.1 Die kanonische Form..........................

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

Lineare Programmierung

Lineare Programmierung Seminar: Intelligente Algorithmen Stefan Kopp, Alfred Kranstedt, Nadine Leßmann Lineare Programmierung Frank Schönmann WS 2003/04 Inhaltsverzeichnis 1 Motivation 3 2 Lineare Programmierung (LP) 4 2.1 Einführendes

Mehr

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker

MATTHIAS GERDTS. Optimierung für Wirtschaftsinformatiker MATTHIAS GERDTS Optimierung für Wirtschaftsinformatiker Address of the Author: Matthias Gerdts Schwerpunkt Optimierung und Approximation Department Mathematik Universität Hamburg D-2146 Hamburg E-Mail:

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Optimierung I Wintersemester 1996/97

Optimierung I Wintersemester 1996/97 Optimierung I Wintersemester 1996/97 Florian arre Institut für Angewandte Mathematik und Statistik Universität Würzburg, Am Hubland D 97074 Würzburg 8 November 2000 Inhalt 1 Lineare Optimierung: Definition

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Spieltheoretische Modellierung. Nullsummenspiele

Spieltheoretische Modellierung. Nullsummenspiele Spieltheoretische Modellierung Nullsummenspiele Definition 2.1 Unter einem Zweipersonen-Nullsummenspiel in Normalformdarstellung versteht man ein Tripel (X, Y, K), bestehend aus ) einer nichtleeren Menge

Mehr

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte)

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte) Dr. Jörg Kalcsics 11.0.008 Diplomprüfung (Wiederholungsprüfung gem. NPO) Operations Research I WS 007/008 ( Punkte) Vorbemerkung: Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner. Beginnen

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung Mi 10-12, C118, Sand Dr. Stephanie Reifferscheid Universität Tübingen, WSI 12. Oktober 2011 Dr. Stephanie Reifferscheid Diskrete Optimierung 12. Oktober 2011 1 / 17 Technisches Erreichbarkeit

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie1 Aufgabe 1.1 Summen Schon bei der Behandlung linearer Gleichungen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau

Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Optimierung für Nichtmathematiker (für Master) Vorlesung: Christoph Helmberg Übung: Anja Lau Ziele: Einführung in richtige Einordnung von Optimierungsproblemen Modellierungstechniken praktische Umsetzung

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr