2. Gesundheitsfinanzierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Gesundheitsfinanzierung"

Transkript

1 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145

2 2.1 Grundmodell der Versicherung Literatur: Schulenburg und Greiner 2007, Kapitel II Krankenversicherung ist nur eine Möglichkeit der Gesundheitsfinanzierung Private Krankenversicherung Öffentliche Krankenversicherung (Sozialversicherung) Öffentliche Gesundheitsfinanzierung könnte auch aus Steuermitteln erfolgen (Nationaler Gesundheitsdienst) Ein vollständiger Verzicht auf Krankenversicherung ist auch denkbar Warum fragen Individuen Krankenversicherung nach was ist das Versicherungsmotiv? 146

3 Versicherungsmotiv Risikoaversion (Standardmodell der Versicherung): Hohes Risiko ohne Versicherung, d.h. große Schwankungen des Einkommens in Abhängigkeit von der (zufälligen) Gesundheit Versicherung bietet gegen Zahlung eines Beitrags Risikopooling (Schwankungen im Kollektiv geringer als einzeln) Zugang (Nyman 2003): Manche Gesundheitsleistungen sind so teuer, dass sie von den meisten im Bedarfsfalle nicht bezahlt werden können Krankenversicherung ermöglicht Zugang zu dieser Leistung, wenn die Krankheit hinreichend selten auftritt 147

4 Versicherungsmotiv Zugang zu Gesundheit Beispiel in Anlehnung an Santerre und Neun 2010, S. 154f. Lebertransplantation kostet Euro Ohne Versicherung für die meisten nicht bezahlbar Kreditaufnahme schwierig, da Rückzahlung unsicher 1 von Personen benötigt Transplantation Kosten sind gedeckt, wenn Beitrag pro Person Durch Einkommenstransfer sind vorher nicht finanzierbare Leistungen nun erhältlich 148

5 Versicherungsmotiv Risikoaversion Es gebe zwei Zustände der Welt: Zustand 1 (gut): das Individuum ist gesund Zustand 2 (schlecht): das Individuum ist krank Die wichtigsten Bestandteile der Gesundheitslotterie sind in folgender Tabelle zusammengefasst: Zustand Einkommen Wahrscheinlichkeit

6 Wichtige Annahmen Das Individuum verfügt über ein Bruttoeinkommen von y > 0 Das Individuum wird mit Wahrscheinlichkeit π 2 (0,1) krank und bleibt mit Wahrscheinlichkeit π1 = 1 π 2 gesund Für den Moment unterstellen wir, dass diese Wahrscheinlichkeiten unbeeinflussbar sind (Verallgemeinerung in 2.3) Der Verlust aus Krankheit L (0, y) kann in monetären Einheiten ausgedrückt werden. Sie können sich darunter die Kosten für medizinische Behandlung vorstellen Die Höhe der Krankheitskosten sind vom Individuum nicht beeinflussbar (Verallgemeinerung in 2.3) 150

7 Wichtige Annahmen Wir werden immer unterstellen, dass die Erwartungsnutzentheorie angewendet werden kann (Unabhängigkeitsaxiom) Dann können wir die Gesundheitslotterie mit dem sogenannten Erwartungsnutzen bewerten Der Erwartungsnutzen ist wobei u( y ) die Einkommens-Nutzenfunktion ist Gegeben die Unsicherheit würde eine risikoaverse Person eine Versicherung erwerben wollen 151

8 Risikoaversion impliziert die Konkavität von u u( y) y 152

9 Der Erwartungsnutzen der Gesundheitslotterie u( y1) u( y) u( y) u( y2) y2 y1 y 153

10 Das Sicherheitsäquivalent zur Gesundheitslotterie u( y1) u( y) u( y) u( y2) y2 y1 y 154

11 Risikoprämie u( y1) u( y) u( y) u( y2) y2 y1 y 155

12 Präferenz für Sicherheit u( y1) u( y) u( y) u( y2) y2 y1 y 156

13 Zusammenhang der einzelnen Maße Die folgenden Aussagen sind äquivalent: Das Individuum ist risikoavers Die Einkommens-Nutzenfunktion ist Das Sicherheitsäquivalent ist als das erwartete Einkommen Die Risikoprämie ist Der Erwartungsnutzen des erwarteten Einkommens ist als der Erwartungsnutzen 157

14 Beispiel Es gebe zwei Zustände der Welt, wobei Zustand 1 mit WS π 1 = 0,2 und Zustand 2 mit der verbleibenden WS π 2 = 0,8 eintritt. Das Einkommen in den jeweiligen Zuständen sei y 1 = 1000 und y 2 = 125. Die Einkommens-Nutzenfunktion ist gegeben durch u( y) y y 3 1/3 = =. Berechnen Sie: Erwartetes Einkommen, Erwartungsnutzen, Sicherheitsäquivalent und Risikoprämie. 158

15 Beispiel erwartetes Einkommen Zustand Einkommen Wahrscheinlichkeit 1 y 1 = 1000 π 1 = 0,2 2 y 2 = 125 π 2 = 0,8 Das erwartete Einkommen ergibt sich durch Summation der mit den Wahrscheinlichkeiten gewichteten Einkommensniveaus: 159

16 Beispiel Erwartungsnutzen Zustand Einkommen Wahrscheinlichkeit 1 y 1 = 1000 π 1 = 0,2 2 y 2 = 125 π 2 = 0,8 Der Erwartungsnutzen ergibt sich durch Summation der mit den Wahrscheinlichkeiten gewichteten Nutzenniveaus der Zustände: 160

17 Beispiel Sicherheitsäquivalent und Risikoprämie Das Sicherheitsäquivalent ist das sichere Einkommen, das einer Person denselben Erwartungsnutzen stiftet wie die Lotterie: Die Risikoprämie ist der Betrag erwartetes Einkommen, den ein Individuum bereit ist aufzugeben, um von der Lotterie in eine Situation mit Sicherheit zu wechseln: 161

18 Versicherungsverträge Die Versicherungsdeckung eines Versicherungsvertrages wird mit q bezeichnet. Wir nehmen an, dass Die Gesamtprämie für die Deckung q wird mit P bezeichnet. Wir werden uns auf lineare Verträge beschränken, das heißt auf Verträge, deren Gesamtprämie sich wie folgt bestimmt p 0 heißt Versicherungsprämie (pro Einheit Deckung) 162

19 Versicherugsdeckung und Einkommen Kauft ein Individuum eine Versicherung, dann tut es dies exante, das heißt, bevor sich die Unsicherheit aufgelöst hat (sonst bräuchte man ja keine Versicherung mehr) Einkommen in beiden Zuständen sinkt um Gesamtprämie Einkommen im guten Zustand ist Einkommen im schlechten Zustand ist 163

20 Optimale Versicherungsnachfrage 1/4 Das Individuum maximiert seinen Erwartungsnutzen über die Wahl der Versicherungsdeckung q: Bedingung erster Ordnung ergibt sich durch ableiten nach q: Die Konkavität von u stellt sicher, dass die Bedingung zweiter Ordnung erfüllt ist, wir also ein Maximum bestimmt haben Beschränken wir uns auf innere Lösungen * 0 < q L 164

21 Optimale Versicherungsnachfrage 2/4 Umformen der Bedingung erster Ordnung liefert: Links: Kosten einer Einheit mehr Versicherungsdeckung gemessen in Nutzeneinheiten (Kosten entstehen ex-ante, also bevor man weiß in welchem Zustand man diese zu tragen hat) Rechts: Nutzen einer Einheit mehr Versicherungsdeckung (Nutzen entsteht nur in Zustand 2, also nur mit WS π) 165

22 Optimale Versicherungsnachfrage 3/4 Die Optimalbedinung kann umgeformt werden zu: Verhältnis von SchadensWS und Prämie ist wichtig: Eine Prämie heißt aktuarisch fair genau dann, wenn Sie heißt aktuarisch unfair, falls 166

23 Optimale Versicherungsnachfrage 4/4 Die optimale Versicherungsdeckung ist charakterisiert durch: Für faire Prämien ist Bei unfairen Prämien ist 167

24 Beispiel Die Einkommens-Nutzenfunktion sei u( y) = ln y. Die Wahrscheinlichkeit zu erkranken sei π = 0.5. In diesem Fall benötigt das Individuum Gesundheitsleistungen, die insgesamt L = 9 Geldeinheiten (GE) kosten. In der Ausgangssituation beträgt das Einkommen 12 GE. Versicherung kann zur Prämie p = 0.75 erworben werden. a) Bestimmen Sie die optimale Versicherungsdeckung b) Wie groß ist der Gewinn der Versicherung c) Was ändert sich, wenn die Prämie aktuarisch fair ist? d) Wie verändern sich Ihre Antworten, wenn die Einkommens- Nutzenfunktion durch u( y) = y gegeben ist? 168

25 Beispiel Erwartungsnutzen und Deckung 169

26 Beispiel Erwartetes Einkommen und Gewinn 170

27 Erwartungsnutzen und Deckung bei fairer Prämie 171

28 Gleiche Grafik aber faire Prämie 172

29 Berechnung der optimalen Versicherungsnachfrage Einkommen in gutem Zustand der Welt Einkommen in schlechtem Zustand der Welt Erwarungsnutzen als Funktion der Deckung Nun maximieren wir den Erwartungsnutzen durch die optimale Wahl der Versicherungsdeckung nach q ableiten! 173

30 Berechnung der optimalen Versicherungsnachfrage Bedingung erster Ordnung: 174

31 Optimale Versicherungsnachfrage und Prämie 175

32 Was ändert sich, wenn u( y) = y? Erwartungsnutzen ist nun nicht mehr durch rote Linie gekennzeichnet (das war für u( y) = ln y), sondern durch die blaue Linie. Das heißt, der Erwartungsnutzen entspricht dem erwarteten Einkommen. Bei unfairer Prämie ist also der Verzicht auf Versicherung optimal. 176

33 Was ändert sich, wenn u( y) = y und warum? Die Einkommens-Nutzenfunktion ist nicht mehr konkav sondern linear Individuum ist risikoneutral Wenn Individuum jedoch Risiko egal ist, dann gibt es hier kein Versicherungsmotiv mehr Bei unfairer Prämie sinkt deshalb der Erwartungsnutzen in der nachgefragten Deckung (überall) Bei fairer Prämie ist das Individuum zwischen allen möglichen Deckungssummen indifferent 177

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Vorlesung 3: Risikoaversion

Vorlesung 3: Risikoaversion Vorlesung 3: Risikoaversion Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 3 (FS 11) Risikoaversion 1 / 21 1. Modellrahmen In diesem Kapitel betrachten wir nur monetäre

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / PD Achim Wambach, D.Phil. Versicherungsmärkte WS 2000 / 2001 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Informationsökonomik: Anwendung Versicherungsmarkt

Informationsökonomik: Anwendung Versicherungsmarkt Informationsökonomik: Anwendung Versicherungsmarkt Tone Arnold Universität des Saarlandes 13. Dezember 2007 Tone Arnold (Universität des Saarlandes) Informationsökonomik: Anwendung Versicherungsmarkt 13.

Mehr

Aufgabe 1.3. Teil a) Teil b)

Aufgabe 1.3. Teil a) Teil b) Informationsökonomik: Anreize, Verträge, Institutionen L ösung Blatt 1 FT 2012 Aufgabe 1.3 Faire Prämie Versicherungen können nicht beobachten, welchen Typen sie vor sich haben, daher werden sie den Erwartungswert

Mehr

Exkurs: Medizinische Tests und private Versicherungsmärkte

Exkurs: Medizinische Tests und private Versicherungsmärkte Kapitel 3 Exkurs: Medizinische Tests und private Versicherungsmärkte Aufgrund des medizinischen Fortschritts wird es immer mehr möglich, durch vergleichsweise billige frühzeitige Tests Informationen über

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Umverteilung als Versicherung

Umverteilung als Versicherung Umverteilung als Versicherung Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität

Mehr

Asymmetrische Informationen Musterlösung Aufgabe 7.3 und 7.5

Asymmetrische Informationen Musterlösung Aufgabe 7.3 und 7.5 1 A 7.3 Erläutern Sie mögliche Probleme asymmetrischer Informationsverteilung auf a) einem Kreditmarkt. b) einem Versicherungsmarkt. c) dem Arbeitsmarkt. Lösungsskizze (ACHTUNG: Mit Hilfe der Stichpunkte

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Adverse Selektion Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität Heidelberg

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09 Mikroökonomie 1 Prof. Dr. Dennis A. V. Dittrich Universität Erfurt Wintersemester 08/09 Prof. Dittrich (Universität Erfurt) 1. Vorlesung 2008 Winter 1 / 41 Informationen zur Lehrveranstaltung Webseite

Mehr

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21042009 Xin Wang Nutzentheorie 2.1 Einführung Die Nutzentheorie hat viele Anwendungen inbesondere in den Wirtschaftswissenschaften.In diesem

Mehr

GESUNDHEITSÖKONOMIK I

GESUNDHEITSÖKONOMIK I GESUNDHEITSÖKONOMIK I Christoph Strupat Universität Duisburg-Essen Wintersemester 2013/2014 Literatur: BZK, Kapitel 5; Gravelle und Rees (Kapitel 17 B, 17 E, 19 B, 19 F) und weitere Aufsätze Christoph

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe

Mehr

A) Erklären Sie das absatzpolitische Instrument der Bündelung und geben Sie ein Beispiel. (10 Punkte)

A) Erklären Sie das absatzpolitische Instrument der Bündelung und geben Sie ein Beispiel. (10 Punkte) Lösungsskizze Klausur Marktversagen vom 20. September 2010 (die nachfolgend angeführten Seitenangaben beziehen sich auf die aktuellste Version der pdfs der KE 1 und KE 4 auf dem Server) Aufgabe 1 A) Erklären

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 18 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 18 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Risiko in den Wirtschaftswissenschaften

Risiko in den Wirtschaftswissenschaften Risiko in den Wirtschaftswissenschaften Referat zum Seminar Soziologie des Risikos Sommersemester 2013 Matr. Nr.: 3878408 Übersicht! Aktuelles politisches Geschehen! Definition Risiko! Zins! Zinstheorien!

Mehr

EV = (0, 2)(125) + (0, 3)(100) + (0, 5)(50) = 80.

EV = (0, 2)(125) + (0, 3)(100) + (0, 5)(50) = 80. Mikroökonomie I Übungsaufgaben Erwartungsnutzen 1. Warum ist die Varianz ein besseres Maß der Variabilität als die Spannweite? Die Spannweite ist der Unterschied zwischen dem höchsten möglichen Ergebnis

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

11.AsymmetrischeInformation

11.AsymmetrischeInformation .AsymmetrischeInformation Informationistnurwichtig,wenneineEntscheidungssituationdurcheinunsicheresUmfeld charakterisiertist.istesvielleichtso,daßauchdieunsicherheitselbstzueinereinschränkung derfunktionsfähigkeitvonmärktenführt?diesistinder

Mehr

Schützen Sie sich vor grossen finanziellen Sorgen!

Schützen Sie sich vor grossen finanziellen Sorgen! Plötzlich erwerbsunfähig? Schützen Sie sich vor grossen finanziellen Sorgen! Ihr Hab und Gut haben Sie bestimmt bestens versichert. Und wie steht es um die Sicherheit von Ihnen und Ihrer Familie? Was passiert

Mehr

Bei einem solchen Versicherungsvertrag wollen die guten Risiken keine Volldeckung haben. Sie streben stattdessen den Punkt F an.

Bei einem solchen Versicherungsvertrag wollen die guten Risiken keine Volldeckung haben. Sie streben stattdessen den Punkt F an. Neue Institutionenökonomik, ufgabe 11 und 12 Seite 1 ufgabe 11 Von Zeit zu Zeit wird die Forderung erhoben, dass private Krankenversicherer eine einheitliche Krankenversicherungsprämie für Frauen und Männer

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

Die Renteninformation Alles klar! Oder doch nicht?

Die Renteninformation Alles klar! Oder doch nicht? Die Renteninformation Alles klar! Oder doch nicht? Veröffentlichung von Ulrich Watermann Schmitzbüchel 32a D 51491 Overath Tel: 02204 / 768733 Fax: 02204 / 768845 Mail: uw@watermann vorsorgekonzepte.de

Mehr

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter III. Theorie und Politik der Öffentlichen Ausgaben A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter 1 A. Wohlfahrtsstaat Der Ursprung des Wohlfahrtsstaats Wichtige Programme in Deutschland Finanzierung

Mehr

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Mikroökonomik Unsicherheit Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven und Nutzenfunktionen

Mehr

Financial Leverage. und die unendliche Rendite des Eigenkapitals und ihr Risiko

Financial Leverage. und die unendliche Rendite des Eigenkapitals und ihr Risiko Financial Leverage und die unendliche Rendite des Eigenkapitals und ihr Risiko Gliederung 1. Der Leverage-Effekt 2. Die Leverage-Chance 3. Die Leverage-Gefahr 4. Das Leverage-Risiko 5. Schlussfolgerungen

Mehr

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at]

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at] Rhetorik und Argumentationstheorie 1 [frederik.gierlinger@univie.ac.at] Ablauf der Veranstaltung Termine 1-6 Erarbeitung diverser Grundbegriffe Termine 7-12 Besprechung von philosophischen Aufsätzen Termin

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise:

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Name: Matrikelnummer: Bank I/II (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur und auf jeden Bogen. Als Hilfsmittel ist

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Wirtschaftswissenschaftliches Forum

Wirtschaftswissenschaftliches Forum Wirtschaftswissenschaftliches Forum Prof. Dr. Dr. Andreas Löffler Universität Paderborn Investitionsneutrale Steuersysteme unter Unsicherheit Investitionsneutrale Steuersysteme unter Unsicherheit Wirtschaftswiss.

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Aufgabenblatt 5: Intertemporale Entscheidungsaspekte

Aufgabenblatt 5: Intertemporale Entscheidungsaspekte Aufgabenblatt 5: Intertemporale Entscheidungsaspekte Lösungsskizze Bitten beachten Sie, dass diese Lösungsskizze lediglich als Hilfestellung zur eigenständigen Lösung der Aufgaben gedacht ist. Sie erhebt

Mehr

Lösungshinweise zu Übungsblatt 2

Lösungshinweise zu Übungsblatt 2 Lösungshinweise zu Übungsblatt 2 Aufgabe 1: Unsicherheit Gegeben sei ein Individuum mit streng monoton steigender und konkaver von Neumann- Morgenstern Nutzenfunktion. a) Erklären Sie anhand einer geeigneten

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Gesundheitsökonomie 2 1. Einführung

Ernst-Moritz-Arndt-Universität Greifswald Gesundheitsökonomie 2 1. Einführung Gesundheitsökonomie 2 1 Einführung Thema: Struktur und Steuerung im (deutschen) Gesundheitswesen Gesundheitspolitische Ziele (Auswahl) Wirtschaftlichkeit aus gesamtwirtschaftlicher Perspektive der Erbringung

Mehr

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht?

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Christoph Ziems 1. Einleitung... 3 2. Versicherung und Versicherungsmarkt... 4 2.1. Definition Versicherung...

Mehr

Skript zur Vorlesung Soziale Sicherung (WS 2009) Teil 4

Skript zur Vorlesung Soziale Sicherung (WS 2009) Teil 4 Skript zur Vorlesung Soziale Sicherung (WS 2009) Teil 4 4.2 Adverse Selektion auf Versicherungsmärkten Ausgangssituation ohne Versicherung: zwei Zustände: W 1 und W 2 ohne Versicherung: W 1 = W 0 W 2 =

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

8. Übung zur Makroökonomischen Theorie

8. Übung zur Makroökonomischen Theorie 8. Übung zur Makroökonomischen Theorie Aufgabe 22 Welche Funktionen des Geldes kennen Sie? Funktionen des Geldes Zahlungsmittel Medium um Tauschvorgänge durchzuführen Recheneinheit Generell sind zwei Formen

Mehr

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten Grundlagen der Versicherungs- und Sozialversicherungsökonomik Entscheidungstheorie bei Sicherheit (z. B. trad. Mikroökonomik, lineare Programmierung etc. bei Risiko (Unsicherheit und Ungewissheit Risiko:

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

News Aktuelles aus Politik, Wirtschaft und Recht 04.10.11 Franchise Verlag Fuchs AG

News Aktuelles aus Politik, Wirtschaft und Recht 04.10.11 Franchise Verlag Fuchs AG News Aktuelles aus Politik, Wirtschaft und Recht 04.10.11 Franchise Immer noch grosses Sparpotenzial Die Grundversicherungsprämien steigen nächstes Jahr um durchschnittlich 2,2 Prozent, so wenig wie schon

Mehr

11. Rent-Seeking 117

11. Rent-Seeking 117 117 Definitionen Gewinnstreben: Vorhandene Ressourcen werden so eingesetzt, dass Einkommen entsteht und die Differenz aus Einkommen und Kosten maximal wird. Rent-Seeking: Vorhandene Ressourcen werden eingesetzt,

Mehr

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit . Entscheidungen unter Unsicherheit I. Grundlagen. Entscheidungen unter Unsicherheit Elemente des Entscheidungsproblems eines Wirtschaftssubekts: Der Entscheidungsträger kann zwischen verschiedenen Aktionen

Mehr

Stop-LossPlus Eine innovative Versicherungslösung

Stop-LossPlus Eine innovative Versicherungslösung Stop-LossPlus Eine innovative Versicherungslösung Innovativ versichert, bestens betreut Typische Risikostruktur einer Vorsorgeeinrichtung 2 500 000 Risikosummen Invalidität in CHF 2 000 000 1 500 000 1

Mehr

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981)

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe 100 identische Unternehmer

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Zahlt sich in Zukunft aus. Die PlusPunktRente. Die PlusPunktRente als Entgeltumwandlung. BVK Bayerische. V ersorgungskammer

Zahlt sich in Zukunft aus. Die PlusPunktRente. Die PlusPunktRente als Entgeltumwandlung. BVK Bayerische. V ersorgungskammer Zahlt sich in Zukunft aus. Die PlusPunktRente. Die PlusPunktRente als Entgeltumwandlung BVK Bayerische V ersorgungskammer Die gesetzliche Rentenversicherung allein kann in Zukunft Ihre Altersversorgung

Mehr

Versicherungsnachfrage

Versicherungsnachfrage 1 Versicherungsnachfrage Modelle der Versicherungsnachfrage Modelle der Versicherungsnachfrage In der Literatur werden drei rten von Modellen bzw. Diagramme der Versicherungsnachfrage unterschieden: 2

Mehr

Produktinformationsblatt zur Jahres-Reisekranken-Versicherung ohne Selbstbeteiligung der Europäische Reiseversicherung AG

Produktinformationsblatt zur Jahres-Reisekranken-Versicherung ohne Selbstbeteiligung der Europäische Reiseversicherung AG Produktinformationsblatt zur s-reisekranken-versicherung ohne Selbstbeteiligung der Europäische Reiseversicherung AG Das Produktinformationsblatt gibt Ihnen als versicherte Personen einen ersten Überblick

Mehr

Kapitel 13: Unvollständige Informationen

Kapitel 13: Unvollständige Informationen Kapitel 13: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Die optimale Ausgestaltung von Krankenversicherungsverträgen

Die optimale Ausgestaltung von Krankenversicherungsverträgen Kapitel 8 Die optimale Ausgestaltung von Krankenversicherungsverträgen Um die Kosten zu senken wurden in Deutschland in den vergangenen Jahren verstärkt zu einer Selbstbeteiligung etwa bei Arzneimitteln

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Black Jack - Kartenzählen

Black Jack - Kartenzählen Black Jack - Kartenzählen Michael Gabler 24.01.2012 Literatur: N. Richard Werthamer: Risk and Reward - The Science of Casino Blackjack, Springer Black Jack - Kartenzählen 1 Wie zähle ich Karten? Historisches

Mehr

Übungen XVII: Auswahlprobleme und Startfinanzierung

Übungen XVII: Auswahlprobleme und Startfinanzierung Übungen XVII: Auswahlprobleme und Startfinanzierung Christian Keuschnigg Universität St.Gallen, FGN Dezember 2004 Exercise 1 Angenommen die unternehmerische Fähigkeit a ist in der Bevölkerung wie in (17.2)

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Inhalt 1. Was wird gefördert? Bausparverträge

Inhalt 1. Was wird gefördert? Bausparverträge Inhalt 1. Was wird gefördert? 2. Wie viel Prozent bringt das? 3. In welchem Alter ist das sinnvoll? 4. Wie viel muss man sparen? 5. Bis zu welchem Einkommen gibt es Förderung? 6. Wie groß sollten die Verträge

Mehr

Kursmaterial: Geld und Kredit

Kursmaterial: Geld und Kredit Handout : Die Entstehung von Geld in einer Tauschwirtschaft Prof. Dr. Thomas Lux Lehrstuhl für Geld, Währung und Internationale Finanzmärkte Institut für Volkswirtschaftslehre Universität Kiel Kursmaterial:

Mehr

Wichtige Informationen vorab

Wichtige Informationen vorab Wichtige Informationen vorab Wir haben eine Mailing Liste "Vorles- UebSS09Kapitalmarkt" eingerichtet. Über diese Mailingliste erhalten Sie in Zukunft die Vorlesungsunterlagen und die Übungsunterlagen.

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem 20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem Autor Susanne Albers, Universität Freiburg Swen Schmelzer, Universität Freiburg In diesem Jahr möchte

Mehr

Kapitalversicherungen

Kapitalversicherungen Kapitalversicherungen Birgit Scharwitzl 10. Dezember 2008 Inhaltsverzeichnis 1 Begriffe und wichtige Definitionen 2 1.1 Prämie................................................... 2 1.2 Gewinnbeteiligung............................................

Mehr

Vorlesung 3: Versicherungsnachfrage

Vorlesung 3: Versicherungsnachfrage Vorlesung 3: Versicherungsnachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie, FS 12 Versicherungsnachfrage 1/20 2 / 20 3. 1 Das Versicherungsnachfrageproblem

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

6WDWHPHQW 3URIHVVRU'U-RFKHQ7DXSLW],QVWLWXWI U'HXWVFKHV(XURSlLVFKHVXQG,QWHUQDWLRQDOHV 0HGL]LQUHFKW*HVXQGKHLWVUHFKWXQG%LRHWKLN 8QLYHUVLWlWHQ+HLGHOEHUJXQG0DQQKHLP 6FKORVV 0DQQKHLP )D[ (0DLOWDXSLW]#MXUDXQLPDQQKHLPGH

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Sicherheit für eine unbeschwerte Zukunft: Jetzt gibt es 2 Versicherungen, die Sie doppelt entlasten!

Sicherheit für eine unbeschwerte Zukunft: Jetzt gibt es 2 Versicherungen, die Sie doppelt entlasten! Sicherheit für eine unbeschwerte Zukunft: Jetzt gibt es 2 Versicherungen, die Sie doppelt entlasten! Eine Versicherung offener Kreditkarten- Ausstände Eine Versicherung geplanter Kreditkarten- Ausgaben*

Mehr

Andreas Rühl. Investmentfonds. verstehen und richtig nutzen. Strategien für die optimale Vermögensstruktur. FinanzBuch Verlag

Andreas Rühl. Investmentfonds. verstehen und richtig nutzen. Strategien für die optimale Vermögensstruktur. FinanzBuch Verlag Andreas Rühl Investmentfonds verstehen und richtig nutzen Strategien für die optimale Vermögensstruktur FinanzBuch Verlag 1. Kapitel Wollen Sie Millionär werden? Kennen Sie die Formel zur ersten Million?

Mehr

Elektronische Märkte. Mechanismusdesign und Auktionstheorie

Elektronische Märkte. Mechanismusdesign und Auktionstheorie Elektronische Märkte Elektronische Märkte: B2C vs. B2B Intermediation in elektronischen Märkten Mechanismusdesign und Auktionstheorie Verhandlungen, Auktionen und Handelsplattformen Globalisierung durch

Mehr

Ihr Einkommensteuertarif: 26.152.-

Ihr Einkommensteuertarif: 26.152.- Ihr Einkommensteuertarif: 26.152.- Einkommensteuertarif Splitting Ihr Tarif Einkommensteuertarif in 10.000 5.000 0 45.000 50.000 55.000 zu versteuerndes Einkommen in 60.000 65.000 70.000 75.000 80.000

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Lösungen zu den Übungsaufgaben aus Kapitel 5

Lösungen zu den Übungsaufgaben aus Kapitel 5 Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,

Mehr