Lösung 1: Die größte Schachtel

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösung 1: Die größte Schachtel"

Transkript

1 Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel heausagt? Ansatz: Um eine (offene) quadefömige Schachtel hezustellen, müssen aus dem Papiefaltblatt vie gleich goße Quadate de Seitenlänge x heausgeschnitten weden. Die Länge x ist vaiabel. Die Beite des DIN-A-Blattes wid mit b, die Länge mit l bezeichnet. Das olumen de quadefömigen Schachtel betägt y die Beite und z die Länge de Schachtel bezeichnet. x y z, wobei x die Höhe, Nebenbedingungen: Duch das Ausschneiden de Quadate sind Länge und Beite de Schachtel um x küze als Länge und Beite des Papies: y b x z l x

2 Zielfunktion: Die Nebenbedingungen weden in den Lösungsansatz x y z eingesetzt. Fü ein Blatt mit l 9,7 cm und b,0 cm egibt sich als Zielfunktion x x b x l x x,0 x 9,7 x ( ) ( ) ( ) ( ) ( ) GAPHIKFÄHIGE TASCHENECHNE (GT): Möchte man sich das Schaubild de Zielfunktion anzeigen lassen, so sieht man mit de Standadeinstellung nichts vom Schaubild. Gößenabschätzung ist gefagt, denn die y-achse zeigt das olumen an und dieses liegt bei übe tausend Einheiten (wenn man cm als Einheit vewendet). Die Zielfunktion wid in den GT eingegeben. Es kann nicht weite als bis zu halben Beite eingeschnitten weden. Die ideale Höhe (x-wet) muss demnach zwischen 0 und 0,5 cm liegen. Das olumen wid sichelich keine zwei Lite übesteigen und wid somit zwischen 0 und 000 cm liegen (y Wet). Die geschätzten Einstellungen weden im Fenste eingegeben: Egebnis: Das Maximum wid mit dem GT bestimmt: Fü ein Blatt mit l 9,7 cm und b,0 cm egibt sich bei eine Höhe von ca.,0 cm das maximale olumen von (,0 cm) 8 cm.

3 Lösung : Schweißnaht Aufgabenstellung: Fidolin möchte Ananassaft in zylindefömige Dosen vepacken. In jede Dose soll ein Lite Saft. Am schwieigsten gestaltet sich das eschweißen de veschiedenen Blechstücke. Wie lang muss die Schweißnaht mindestens sein? Zusatz: Lässt sich unabhängig vom olumen ein ideales ehältnis zwischen Höhe und adius de Dose angeben? Ansatz: Die Länge L de Schweißnaht setzt sich aus zwei Keisen und eine Stecke zusammen: L + h{ + Deckel Mantel Boden + h Nebenbedingung: Das olumen ist mit einem Lite ( l 000 ml) festgelegt: h. Diese Nebenbedingung kann nach h ode aufgelöst weden. Wi lösen hie nach h auf, um beim späteen Einsetzen in die Zielfunktion, Wuzeln zu vemeiden: h h Zielfunktion: Die Nebenbedingung wid in den Lösungsansatz eingesetzt: L + h L ( ) GAPHIKFÄHIGE TASCHENECHNE (GT): Die Zielfunktion wid in den GT eingegeben. De ideale adius wid zwischen 0 und 0 cm liegen (x-wet), die Länge de Schweißnaht zwischen 0 und 00 cm (y-wet). Die geschätzten Einstellungen weden im Fenste entspechend Eingegeben.

4 Egebnis: Das Minimum wid mit dem GT bestimmt. Die minimale Länge de Schweißnaht von ca. 69,7 cm egibt sich mit dem adius von,70 cm. Zusatz: Es gilt h h Hie kann nicht mit dem GT geabeitet weden, da die Aussage fü alle olumina gezeigt weden muss. Um das Minimum zu bestimmen, wid die Ableitung de Zielfunktion gleich null gesetzt: ( ) ( ) ( ) L L ( ) 0 0 L Fü das ehältnis h gilt mit den Nebenbedingungen (i) h und (ii) :. ) ( ) ( h ii i Es existiet ein ideales ehältnis zwischen Höhe und adius. Es betägt.

5 Lösung : Zelten Aufgabenstellung: Fidolin möchte sich ein Zelt mit quadatische Gundfläche bauen. Seine vie Stangen haben alle die Länge von 6,7 cm. Damit e nachts genug Luft bekommt, soll das Zelt maximales olumen besitzen. Bestimmt duch eine geeignete echnung das maximale Luftvolumen im Zelt. Welche Höhe hat das Zelt? Zusatz: Gibt es (nicht-quadatische) Pyamiden mit gößeem olumen? esucht eue emutung zu beweisen. Ansatz: Das olumen eine quadatischen Pyamide betägt a h. Nebenbedingung: Die Länge s de Zeltstangen betägt 6,7 cm. Fene a gilt: Die halbe Diagonale de Gundfläche ist. Damit gilt fü das eingezeichnete echtwinklige Deieck (Pythagoas): s h a + ( s h ) a s h a Da auch die Höhe gesucht ist, haben wi nach a bzw. a auflöst.

6 Zielfunktion: Die Nebenbedingung wid in den Lösungsansatz eingesetzt. Fü die Stangenlänge wude s 6,7 cm eingesetzt. a h ( h) ( s h ) h ( 6,7 h ) h GAPHIKFÄHIGE TASCHENECHNE (GT): Die Zielfunktion wid in den GT eingegeben. Wi echnen in cm bzw. in cm. Die Pyamide kann nicht höhe als die Stangen sein, also ist de x-wet im Fenste kleine als 6,7. Das maximale olumen wid vemutlich zwei Lite ( l 000 cm ) nicht übesteigen. Die geschätzten Einstellungen weden im Fenste eingegeben. Egebnis: Das Minimum wid mit dem GT bestimmt. Bei eine Höhe von ca 9,6 cm ist das olumen de Pyamide mit ca. 95 cm maximal. Zusatz: Wi zeigen, dass bei festgehaltene Höhe das olumen im Falle eine quadatischen Gundfläche maximal wid.. Schitt: Da alle Stangen dieselbe Länge haben und von einem Mittelpunkt ausgehen (Spitze de Pyamide), liegen ihe Endpunkte auf eine Kugelobefläche. Zusätzlich stehen alle auf eine Ebene und da de Schnitt zwischen Kugel und Ebene einen Keis egibt, befinden sich alle Endpunkte auf einem solchen (vgl. Abbildung).. Schitt: Das olumen eine Pyamide mit vogegebene Höhe ist genau dann maximal, wenn die Gundfläche maximal ist. Links sind vie beliebige Fußpunkte eingezeichnet. Wi betachten das Deieck BAD. Wenn die Punkte B und D festgehalten weden, wid de Flächenhalt dieses Deiecks maximal, wenn de Punkt A maximal von de duch die Punkte B und D definieten Geade entfent ist (maximale Höhe im Deieck).. Schitt: Das gleiche Agument wid fü den Punkt C auf de gegenübeliegenden Seite angewandt (gaues Deieck). Also liegen die Punkte A und C auf einem Duchmesse. Nun hält man die Punkte A und C fest, betachtet die beiden Deiecke CBA und CDA und wiedeholt das Agument fü die Punkte B und D. Folglich ist die Gundfläche de Pyamide ein Quadat.

7 Lösung : Am Beg Aufgabenstellung: Fidolin hat seinen Poviant efolgeich in eine Dose vepackt (vgl. Aufgabe ) und ollt diese von seine Wekstatt, die im Tal liegt, zu seinem Haus auf dem Hügel. De Landschaftsqueschnitt ist vekleinet im Bild eingezeichnet und kann duch die Funktion ( ) f x x x + x + x + beschieben weden. An welche Stelle benötigt Fidolin am meisten Kaft, um die Dose den Beg hinaufzuollen? Ansatz: Die meiste Kaft wid an de steilsten Stelle benötigt. Statt de Funktion f wid also die Ableitung f auf das Maximum in einem Intevall untesucht: f ( x) x x + x + x + f ( x) x x + x + Zielfunktion: Die Zielfunktion ist die Ableitungsfunktion f.

8 GAPHIKFÄHIGE TASCHENECHNE (GT): Das Maximum de Ableitung soll zwischen dem Tal und dem echten Hügel gefunden weden. Man suche also ein geeignetes Fenste und lasse sowohl die Funktion f als auch die Ableitung anzeigen. In de Abbildung ist die Ableitungsfunktion fett angezeigt: Egebnis: Das Maximum wid mit dem GT bestimmt. An de Stelle x 0,66 ist die Steigung auf Fidolins Weg am gößten (m,). Altenative Umgang mit dem GT: Man muss die Ableitung nicht von Hand beechnen. Altenativ kann de GT gafisch ableiten: Folgende Bescheibung bezieht sich auf den TI 8 Plus: Mittels de Tastenkombination MATH 8 lässt sich die Funktion ndeiv( auswählen. Die Funktion Y ehält man mit AS Pfeiltaste nach echts.

9 Lösung 5: Geschlossene Schachtel Aufgabenstellung: Bei seinem Umzug möchte Fidolin seine wetvollsten Dinge in eine geschlossenen Schachtel aufbewahen. Die quadefömige Kiste soll aus einem DIN-A-Blatt wie in de Abbildung gezeigt hegestellt weden. Welches olumen ist maximal möglich, ohne dass die Schachtel ausgebeult wid? Ansatz: Um eine geschlossene quadefömige Schachtel hezustellen, weden sechs gleich goße Quadate de Seitenlänge x heausgeschnitten. Die Länge x ist vaiabel. Die Beite des DIN-A-Blattes wid mit b, die Länge mit l bezeichnet. b l Das olumen eine quadefömigen Schachtel betägt x y z, wobei x die Höhe, y die Länge und z die Beite de (gefalteten) Schachtel bezeichnet. Nebenbedingungen: Fü die gefaltete Schachtel gilt: y b x l x z

10 Zielfunktion: Die Nebenbedingungen weden in den Lösungsansatz x y z eingesetzt. Fü ein Blatt mit l 9,7 cm und b,0 cm egibt sich als Zielfunktion l x 9,7 x ( x) x ( b x) x (,0 x) GAPHIKFÄHIGE TASCHENECHNE (GT): Gibt man die Zielfunktion in den GT ein und möchte sich mit de Standadeinstellung den Gaphen anzeigen lassen, so sieht man nichts vom Schaubild. Gößenabschätzung ist gefagt. Die Zielfunktion wid in den GT eingegeben. Wi echnen in cm bzw. in cm. Die ideale Höhe (x-wet) wid zwischen 0 cm und 0 cm geschätzt, das olumen wid sichelich nicht meh als l (000 cm ) betagen (y-wet). Die geschätzten Einstellungen weden im Fenste eingegeben: Egebnis: Das Maximum wid mit dem GT bestimmt: Fü ein Blatt mit l 9,7 cm und b,0 cm egibt sich bei eine Höhe von ca., cm das maximale olumen von (, cm) 70 cm. Daten zu Hestellung de Kiste folgen aus den Nebenbedingungen: x, cm y b x,0 cm 6,8 cm, cm l x 9,7 cm, cm z 9, 75 cm ((cm nicht kusiv setzen))

11 Lösung 6: Wassebecken Aufgabenstellung: In seine neuen Wohnung möchte Fidolin egenwasse mit Hilfe eines Tichtes sammeln. Diese soll die Fom eines Kegels haben und aus einem DIN-A-Blatt entstehen. Gesucht ist de Kegelmantel, de eine maximale Wassemenge speichen kann. Stellt einen solchen Kegelmantel he. Welche Gößen baucht ih zum Bau? Ansatz: Fü das Kegelvolumen gilt: G h h Sowohl als auch h ist zum Bau des Kegels ungeschickt. Gesucht ist also de Winkel des Keisausschnittes (vgl. Abbildung links). Nebenbedingungen: Fü h gilt: h (Pythagoas).

12 De Umfang de Kegelgundfläche betägt. Diese ist gleichzeitig die Bogenlänge des Keisausschnitts mit dem Winkel (vgl. Abbildungen). Damit gilt: Zielfunktion: lässt sich in Abhängigkeit von ausdücken: h G ist duch die halbe Beite eines DIN-A-Blattes mit 0,5 cm vogegeben. Damit lautet die Zielfunktion: ( ) 0, GAPHIKFÄHIGE TASCHENECHNE (GT): Die Zielfunktion wid in den GT eingegeben. Man achte daauf, dass das Gadmaß fü Winkel eingestellt ist. Die möglichen Winkel liegen zwischen 0 und 60 (x-wet), das olumen wid einen Lite ( l 000 cm ) nicht übesteigen (y-wet): Egebnis: Damit egibt sich mit dem GT: 9 9,. Fü 0,5 cm egibt sich ein olumen von ca. 67 cm.

13 Lösung 7: Gläse und Fässe Aufgabenstellung: Fidolin möchte ein Glas (0, l) als Wassetonne fü seinen Gaten vewenden. Es soll übeall gleich dick sein und dabei möglichst wenig wiegen. Welche Höhe und welche adius sind fü Fidolins Glas ideal? Zusatz: Bei Tinkgläsen und Wassefässen ist de adius in de egel kleine als die Höhe. Gibt es stets unabhängig von de Göße ein bestimmtes optimales ehältnis zwischen adius und Höhe, so dass de Mateialaufwand bei de Hestellung minimal wid? Ansatz: Bei vogegebenem olumen (0, l) soll die Obefläche minimiet weden. Die Obefläche setzt sich aus de Gundfläche und dem Mantel zusammen: O + h Nebenbedingung: Das olumen ist vogegeben. Die Obefläche hängt von und h ab, wi lösen nach h auf: h h. Zielfunktion: Die Nebenbedingung wid eingesetzt: O + h O + + Damit lautet die Zielfunktion fü 0, l 00 cm : O( ) + +

14 GAPHIKFÄHIGE TASCHENECHNE (GT): Die Zielfunktion wid in den GT eingegeben. Zu Anzeige des Schaubildes muss das Egebnis gob abgeschätzt weden: De adius (x Wet) wid 0 cm nicht übesteigen. Die Obefläche ist schwee abzuschätzen. Man stelle sich am besten ein typisches Tinkglas vo und übeschlage die Wete fü Höhe und adius. Es geht daum, die Gößenodnung des Egebnisses abzuschätzen, damit man mit dem GT abeiten kann. Es daf also goßzügig geschätzt weden. (Z.B. mit h 0 cm, cm ehält man ca. 50 cm. Wi nehmen das Doppelte fü die Anzeige, um siche nicht zu tief zu liegen.) Egebnis: Mit dem GT wid das Minimum bestimmt. Die minimale Obefläche (ca. 50, cm ) egibt sich fü den adius min von ca.,99 cm. Mit dem Ansatz lässt sich die Höhe bestimmen: O min 50,,99 O min + min hmin hmin,99 min,00 Die Höhe betägt ca.,00 cm bei einem adius von,99 cm. Ein solches Glas einnet ehe an einen Aschenbeche. Die typische Fom von Tinkgläsen entspicht nicht de Minimieung des Mateials. Teeschalen sind hie besse. Zusatz: Wi wollen den Zusammenhang zwischen den Gößen genaue fassen und setzen die Ableitung de Zielfunktion Null: Aus de Nebenbedingung lässt sich die Höhe hmin beechnen: min h min min. min min Die minimale Obefläche ist unabhängig vom olumen und egibt sich, wenn die Höhe gleich dem adius ist. Das optimale ehältnis, um Mateial zu spaen, ist somit. O O ( ) O ( ) + + ( ) 0 min min min min

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

2.8. Prüfungsaufgaben zum Satz des Pythagoras

2.8. Prüfungsaufgaben zum Satz des Pythagoras .8. üfungsaufgaben zum Satz des ythagoas Aufgabe : Rechtwinkliges Deieck Ein echtwinkliges Deieck mit de Kathete a = 0, m hat die Fläche A = 000 cm. Beechne die estlichen Seitenlängen dieses Deiecks. 000

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einfühung in die Infomatik I Kapitel I.: Automatisieungen von Beechnungen Pof..-Ing. Macin Gzegozek Juniopofessu fü Musteekennung im Institut fü Bildinfomatik epatment Elektotechnik und Infomatik Fakultät

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsvewaltung fü Bildung, Wissenschaft und Foschung Fach Name, Voname Klasse Abschlusspüfung an de Fachobeschule im Schuljah / Mathematik (B) Püfungstag.. Püfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Lösen von Extremwertaufgaben mit EXCEL

Lösen von Extremwertaufgaben mit EXCEL Lösen von Etemwetaugaben mit EXCEL In de Wissenschat, abe auch in de Witschat, spielt das Lösen von Etemwetaugaben eine goße Rolle. Imme wiede wid die Fage danach gestellt, was untenommen weden muss, damit

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Oberfläche des Zylinders

Oberfläche des Zylinders Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Mathematik / Wirtschaftsmathematik

Mathematik / Wirtschaftsmathematik tudiengang Witschaftsingenieuwesen Fach Mathematik / Witschaftsmathematik At de Leistung tudienleistung Klausu-Knz. WB-WMT--66 / WI-WMT- 66 Datum.6.6 Bezüglich de Anfetigung Ihe Abeit sind folgende Hinweise

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj

ghjklzxcvbnmqwertyuiopasdfghjklzxcvb lzxcvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiofghj qwetyuiopasdfghjklzxcvbnmqwetyuiop asdfghjklzxcvbnmqwetyuiopasdfghjklzx cvbnmqwetyuiopasdfghjklzxcvbnmqwe tyuiopasdfghjklzxcvbnmqwetyuiopasdf Aufgaben M-Beispielen ghjklzxcvbnmqwetyuiopasdfghjklzxcvb Vobeeitung

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS)

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS) Kenfach Mathematik (Thüingen): Abitupüfung 03 Aufgabe A: Analysis (mit CAS) Gegeben ist die Funktion f duch y= f(x) = x e (x 0). x a) Untesuchen Sie den Gaphen de Funktion f auf lokale Extempunkte und

Mehr

Demo: Mathe-CD. ANALYSIS Extremwertaufgaben. Teil 2: Anwendungsaufgaben INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich W.

Demo: Mathe-CD. ANALYSIS Extremwertaufgaben. Teil 2: Anwendungsaufgaben INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  Friedrich W. ANALYSIS Etemwetaufgaben Teil : Anwendungsaufgaben Datei N. 49011 Stand 18. Juli 008 Fiedich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vowot Diese Sammlung von Sachwet-Etemaufgaben enthält zunächst

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Kurvenradien von Eisenbahnen

Kurvenradien von Eisenbahnen BspN: E031 Ziele Umfomen von Fomeln Vetiefung von Funktionen Fächeübegeifende Unteicht Analoge Aufgabenstellungen Übungsbeispiele Lehplanbezug (Östeeich): Themenbeeich Quadatische Funktionen TI-9 (E031a)

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Kernfach Mathematik (Thüringen): Abiturprüfung 2015 Pflichtaufgaben Teil A

Kernfach Mathematik (Thüringen): Abiturprüfung 2015 Pflichtaufgaben Teil A Kenfach Mathematik (Thüingen): Abitupüfung 2015 Pflichtaufgaben Teil A 1. Gegeben ist die Funktion f duch f(x) = x 3 3x + 2 (x 0). a) Zeigen Sie, dass t(x) = 3x + 2 eine Gleichung de Tangente an den Gaphen

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

Skala. Lichtstrahl. Wasserbad

Skala. Lichtstrahl. Wasserbad . Coulomb sches Gesetz Wi haben gelent, dass sich zwei gleichatige Ladungen abstoßen und zwei ungleichatige Ladungen einande anziehen. Von welchen Gößen diese abstoßende bzw. anziehende Kaft jedoch abhängt

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort.

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort. M09 Bestimmung de allbeschleunigung Die usammenhänge zwischen eschwindigkeit, Beschleunigung, Masse und Kaft weden am Beispiel des feien alles mit de Atwoodschen allmaschine expeimentell untesucht. Im

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Financial Leverage. Die unendliche Rendite des Eigenkapitals und ihr Risiko. Finanzwirtschaft VII Matthias Paesel Hochschule Magdeburg-Stendal

Financial Leverage. Die unendliche Rendite des Eigenkapitals und ihr Risiko. Finanzwirtschaft VII Matthias Paesel Hochschule Magdeburg-Stendal Financial Leveage Die unendliche Rendite des Eigenkapitals und ih Risiko Finanzwitschaft VII Matthias Paesel Hochschule Magdebug-Stendal Gliedeung I. Was besagt de Leveage-Effekt? II. Die Leveage Chance

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

Der Kreis und die Kreisteile

Der Kreis und die Kreisteile De Keis und die Keisteile Schüle messen zu Hause Umfang und Duchmesse von unden Gegenständen: Gegenstand Umfang (U) Duchmesse (d) u d 38 CD 38 cm 1 cm = 3,1 6 1 0,5l-Glas cm 7 cm = 3,8571 7 Mülleime 63

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Fläche und Umfang des Kreises

Fläche und Umfang des Kreises Fläche und Umfang des Keises Mai 015 Ano Fehinge, Gymnasiallehe fü Mathematik und Physik Appoximation de Keisfläche duch einbeschiebene und umbeschiebene eguläe Vielecke duch sukzessive Eckenvedopplung

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln WEKA FACHMEDIEN GmbH Technische Spezifikationen fü die Anliefeung von Online-Webemitteln Jonathan Deutekom, 01.07.2012 Webefomen Webefom Beite x Höhe Fullsize Banne 468 x 60 Leadeboad 728 x 90 Rectangle

Mehr

Lichttechnische Grössen

Lichttechnische Grössen Lichttechnische Gössen Modul 931 Optik Lichttechnische Gössen und Fabe 1. De Raumwinkel De Lichtstahl z.b. eine Taschenlampe entspicht einem Lichtkegel. Zeichnen wi diesen Lichtstahl, so geben wi den Winkel

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr