Prädiktion und Klassifikation mit

Größe: px
Ab Seite anzeigen:

Download "Prädiktion und Klassifikation mit"

Transkript

1 Prädiktion und Klassifikation mit Random Forest Prof. Dr. T. Nouri Technical University NW-Switzerland /35

2 Übersicht a. Probleme mit Decision Tree b. Der Random Forests RF c. Implementation & Tests RF d. Resultate e. Rückblick /35

3 Decision Tree 3/35

4 Probleme mit Decision Tree rule, conditions Gender =, FishLastWeek = ; FishLastWeek = Age = 3 Then Blood Pressure is High 7.4 4/35

5 a. Der Random Forests. Allgemeines. Die Erstellung eines Baumes. Random Trainingsets generieren. Baum erstellen 3. Wald testen 3. Scoring 5/35

6 Allgemeines zum Random Forest - Erweiterung des traditionellen Entscheidungsbaum-Modells - Viele Bäume - Weniger Splitvariablen - Zufällige Datensets - Kein Baum ist gleich wie der andere 6/35

7 . Random Trainingsets generieren. Daten einlesen. Anzahl Objekte (ntrain) und Anzahl Variablen (mdim) berechnen 3. Zufällig ntrain Objekte aus allen Objekte auswählen (Wiederholungen sind erlaubt) 4. Immer ntrain Objekte ergeben ein Training-Set Trn n 5. Mit jedem Training-Set wird ein Baum gebaut 7/35

8 . Random Trainingsets generieren x Case Obj. Nbr Class Var Var Var 3 Var 4 Var 5 ntrain = Anzahl Objekte Hier: ntrain = x 3x 3x (Die Trainingsdaten sollten repräsentativ für alle möglichen Daten sein.) Wähle zufällig ntrain Objekte aus den InputDate (Wiederholungen sind erlaubt) TrainingSet Trn 9 5 TrainingSet Trn 8/35

9 . Baum erstellen. Zufällig mtry Variablen aus den mdim Variablen aussuchen. mtry wird mit den Startparametern angegeben. Als gute Zahl für mtry wird mtry= mdim empfohlen. Hier wird mtry = verwendet. Var Var Var 3 Var 4 Var 5. Für die mtry Variablen wird berechnet, welche von ihnen die Trn i -Daten am besten aufteilt. (find best split) Dies kann mit dem Gini-Index, Entropie, usw. berechnet werden. In diesem Fall wurde folgende Entropieformel verwendet: p = + p "Entropie" p ln p ln n + n p + = Anz. richtig klassifizierte p - = Anz. falsch klassifizierte n = Anzahl Objekte 9/35

10 .. Node Case Obj. Nbr Class Var 6 Var 5 3 Var 3 Var 4 Var Im Node wird der Best Split bei Var und Var 4 gesucht. Var hat den kleineren Entropie -Wert Var ist der best Split Ent /35

11 .. Node,4,6,9 7,8 Rule : Wenn Var <=.5 dann Class =, Gehe zu Node Die Daten werden mit der Rule aufgeteilt. /35

12 .. Node Case Obj. Nbr Class Var Var 5 3 Var 3 Var 4 Var Im Node wird der Best Split bei Var und Var gesucht. Var hat den kleineren Entropie -Wert Ent.5 Var ist der best Split. /35

13 .. Node,4,6,9 7,8 9,4,6 Rule : Wenn Var <=.5 dann Class =, Gehe zu Node 4 Die Daten werden mit der Rule aufgeteilt. 3/35

14 ..3 Node 3 Case Obj. Nbr Class Var Var Var 3 Var 4 Var Im Node 3 befinden sich nur noch Objekte mit Class =, der Knoten ist daher rein und muss nicht mehr weiter gesplittet werden /35

15 ..3 Node 3,4,6,9 7,8 9,4,6 5/35

16 ..4 Node 4 Case Obj. Nbr 9 Class Var Var Var 3 Var 4 Var 5 5 Im Node 5 befinden sich nur noch Objekte mit Class =, der Knoten ist daher rein und muss nicht mehr weiter gesplittet werden. 6/35

17 ..4 Node 4,4,6,9 7,8 9,4,6 7/35

18 ..5 Node 5 Case Obj. Nbr 4 6 Class Var Var 5 3 Var 3 Var 4 Var Im Node 4 befinden sich nur noch Objekte mit Class =, der Knoten ist daher rein und muss nicht mehr weiter gesplittet werden. 8/35

19 ..5 Node 5,4,6,9 7,8 9,4,6 Der Fertig entwickelte Baum 9/35

20 .3 Wald evaluieren - Oob-TestSet erstellen - Objekte von Baum Klassifizieren lassen - Fehlerquote berechnen /35

21 .3. Oob-TestSet erstellen Case Obj. Nbr Class Var Var 5 4 Var 3 Var 4 Var Für den Test wird für jeden Baum Tree i ein TestSet verwendet. Dies sind jeweils diejenige Objekte, die nicht im TrainingsSet Trn i des Baum enthalten waren, gebildet /35

22 .3. Objekte Klassifizieren Obj. Nbr Class Var Var Var 3 Var 4 Var 5 Node Var Rule : Wenn Var <=.5 dann Class = Gehe zu Node Node Var Node3 IsLeaf Rule : Wenn Var <=.5 dann Class = Gehe zu Node 4 Node4 IsLeaf Node5 IsLeaf Objekt: Class = /35

23 .3.3 Für alle Bäume 3/35

24 .3.3 werden die Objekte Klassifiziert - Jeder Baum klassifiziert sein Oob-TestSet ObjektScore - Die ObjektScore gibt für jedes Objekt i an, mit welcher Wahrscheinlichkeit es falsch Klassifiziert wurde - Aussagekraft des Waldes = Durchschnitt aller ObjektScores Aussagekraft = mdim i = ObjektScore mdim i 4/35

25 .3.4 Fehlerquote berechnen Objekt Ausgewählt Davon falsch Fehler-% 4 5% 3 % 3 5% 4 5% % 6 % % % 9 % 3 % Total: 4.83% 5/35

26 3. Scoring Prädiktion und Klassifikation mit Random Forest Wenn ein Random Forest generiert wurde, können ihm beliebige Testdaten eingegeben werden. Jedes Test-Objekt wird von jedem Baum klassifiziert. Objekt i Objekt i Objekt i Objekt i Tree jbt Tree Tree Tree 3 Class = Class = Class = Class = Der Test Fall wird somit derjenigen Klasse zugewiesen, die am Meisten Stimmen erhält:voting 6/35

27 b. Implementation & Tests von RF - Implementierung des Modells in der SAS- Language - Einbindung in den Enterprise Miner 7/35

28 c. Tests - 4 Verschiedene Modelle - SAS Random Forest - Breiman Random Forest - Decision Tree - Decision Tree - 3 Verschiedene Datensets - SmallBPress Training / Test 5 Var. - Bank 5 Training / 5 Test 8 Var. - SatImage 4435 Training / Test 36 Var. 8/35

29 c. Tests - Durchläufe mit, 5, und Bäumen für alle Forest Modelle - Supervised und Unsupervised Scoring mit allen Modellen 9/35

30 d. Resultate / Supervised DatenSet SAS RF RF Hybrid Breiman RF Decision Tree Decision Tree SmallBPress % % % % % Bank % % % % % SatImage % % % 94% - Supervised Scoring Trees % 9% 8% 7% 6% 5% SmallBPress Bank SatImage 4% SAS RF RF Hybrid Breiman RF Decision Tree Decision Tree 3/35

31 d. Resultate / Unsupervised DatenSet SAS RF RF Hybrid Breiman RF Decision Tree Decision Tree SmallBPress 8% 5% 8% 5% 6% Bank 93% 93% 94% 8% 9% SatImage 9% 9% 9% 84% - Unsupervised Scoring Trees % 9% 8% 7% 6% SmallBPress Bank SatImage 5% 4% SAS RF RF Hybrid Breiman RF Decision Tree Decision Tree 3/35

32 d. Resultate - Random Forest liefert die besseren Resultate als traditionelle Modelle - Voraussetzung ist eine Mindestanzahl von Bäumen(mehr als ) - Somit ist das Random Forest - Modell eine bessere Alternative zum Decision Tree 3/35

33 Zusammenfassung 33/35

34 e. Rückblick - Erste Kommerzielle Implementation - Random Forest liefert bessere Ergebnisse Klassifikation/Vorhersage als Decision Trees - Nur die besten aussagekräftigsten Bäume wählen ====> Besser Modell 34/35

35 35/35

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Mining High-Speed Data Streams

Mining High-Speed Data Streams Mining High-Speed Data Streams Pedro Domingos & Geoff Hulten Departement of Computer Science & Engineering University of Washington Datum : 212006 Seminar: Maschinelles Lernen und symbolische Ansätze Vortragender:

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Konzepte der AI: Maschinelles Lernen

Konzepte der AI: Maschinelles Lernen Konzepte der AI: Maschinelles Lernen Nysret Musliu, Wolfgang Slany Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme, TU-Wien Übersicht Was ist Lernen? Wozu maschinelles

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Computerlinguistische Textanalyse

Computerlinguistische Textanalyse Computerlinguistische Textanalyse 10. Sitzung 06.01.2014 Einführung in die Textklassifikation Franz Matthies Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Weka: Software-Suite mit Maschineller Lernsoftware

Weka: Software-Suite mit Maschineller Lernsoftware : Software-Suite mit Maschineller Lernsoftware Computational Linguistics Universität des Saarlandes Sommersemester 2011 21.04.2011 Erste Schritte Waikato Environment for Knowledge Analysis entwickelt von

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Praktikum Maschinelle Übersetzung Lexikon and Word Alignment

Praktikum Maschinelle Übersetzung Lexikon and Word Alignment Praktikum Maschinelle Übersetzung Lexikon and Word Alignment Um die Aufgaben auszuführen, können Sie ihre Daten in folgendem Verzeichnis speichern: /project/smtstud/ss10/systems/username/ Wir werden zunächst

Mehr

Erfolgstypen & Typenerfolg

Erfolgstypen & Typenerfolg Erfolgstypen & Typenerfolg Zum Zusammenhang zwischen betriebstypologischen Merkmalen und Indikatoren des Betriebserfolgs Philipp Toscani Institut für Agrar- und Forstökonomie Methodische Aspekte und analytische

Mehr

1 Predictive Analytics mit Random Forest

1 Predictive Analytics mit Random Forest Predictive Analytics Demokratie im Wald 1 Agenda 1. Predictive Analytics Übersicht 2. Random Forest Grundkonzepte und Anwendungsfelder 3. Entscheidungsbaum Classification and Regression Tree (CART) 4.

Mehr

Entscheidungsbaum-Lernen: Übersicht

Entscheidungsbaum-Lernen: Übersicht Entscheidungsbaum-Lernen: Übersicht Entscheidungsbäume als Repräsentationsformalismus Semantik: Klassifikation Lernen von Entscheidungsbäumen vollst. Suche vs. TDIDT Tests, Ausdrucksfähigkeit Maße: Information

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Klassifikation im Bereich Musik

Klassifikation im Bereich Musik Klassifikation im Bereich Musik Michael Günnewig 30. Mai 2006 Michael Günnewig 1 30. Mai 2006 Inhaltsverzeichnis 1 Was ist eine Klassifikation? 3 1.1 Arten und Aufbau von Klassifikationen.................

Mehr

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8

Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8 Java 8 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Oktober 2014 JAV8 5 Java 8 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

5. Übungsblatt zur Einführung in die Stochastik

5. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik Prof. Dr. Michael Kohler Dipl.-Math. Andreas Fromkorth Dipl.-Inf. Jens Mehnert SS 09 25.5.2009 5. Übungsblatt zur Einführung in die Stochastik Aufgabe 18 Drei Spieler bekommen jeweils

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Listen & Bäume Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 SvenKosub@uni-konstanzde Sprechstunde: Freitag, 14:00-15:00 Uhr, onv Sommersemester

Mehr

Random Forests. Angewandte Biostatistik mit R. Fabian Knorre 26.11.2012. Ein Seminar bei Prof. Dr. Jörg Rahnenführer

Random Forests. Angewandte Biostatistik mit R. Fabian Knorre 26.11.2012. Ein Seminar bei Prof. Dr. Jörg Rahnenführer Angewandte Biostatistik mit R Fabian Knorre 26.11.2012 Ein Seminar bei Prof. Dr. Jörg Rahnenführer 1 / 53 Inhaltsverzeichnis 1 Motivation und Einleitung: Was ist ein... und wozu? 2 CART - Einleitung Konstruktion

Mehr

Auftragsbearbeitung 3.1

Auftragsbearbeitung 3.1 Auftragsbearbeitung / Bearbeitung bestehender Aufträge Automatische / manuelle Soll/Ist-Aufteilung (Stempelungen) Auf Aufträge kann über das Programm 15.2.1 gestempelt werden (PC in der Werkstatt auf dem

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Vorhersagequalität zufälliger Baumstrukturen

Vorhersagequalität zufälliger Baumstrukturen Vorhersagequalität zufälliger Baumstrukturen Vorhersagequalität zufälliger Baumstrukturen Bachelor-Thesis von Alexander Heinz März 20 Fachbereich Informatik Fachgebiet Knowledge Engineering Betreuer &

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 01 MATHEMATIK 3 STUNDEN DATUM : 11. Juni 01, Vormittag DAUER DER PRÜFUNG : Stunden (10 Minuten) ZUGELASSENE HILFSMITTEL : Prüfung mit technologischem Hilfsmittel 1/5 DE AUFGABE B1 ANALYSIS

Mehr

9.5 Entscheidungsbäume

9.5 Entscheidungsbäume 9.5. ENTSCHEIDUNGSBÄUME 149 9.5 Entscheidungsbäume Wir betrachten wieder einen Datensatz von Ereignissen mit jeweils m Merkmalen, zusammengefasst in x, die zwei verschiedenen Klassen angehören, zum Beispiel

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

16. Dezember 2004 Dr. M. Schneider, P. Ziewer

16. Dezember 2004 Dr. M. Schneider, P. Ziewer Technische Universität München WS 2004/2005 Fakultät für Informatik Lösungsvorschläge zu Blatt 8 A. Berlea, M. Petter, 16. Dezember 2004 Dr. M. Schneider, P. Ziewer Übungen zu Einführung in die Informatik

Mehr

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211)

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Prof. Dr. Uwe Schmidt 21.August 2007 Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Zeit: 75 Minuten erlaubte Hilfsmittel: keine Bitte tragen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Learning Expressive Linkage Rules using Genetic Programming

Learning Expressive Linkage Rules using Genetic Programming Learning Expressive Linkage Rules using Genetic Programming R. Isele and C. Bizer Seminarvortrag von Paul Dubs 29. Januar 2013 Fachbereich 20 Seminar aus maschinellem Lernen Paul Dubs 1 Einleitung Problem

Mehr

Alter berechnen mit Base SAS

Alter berechnen mit Base SAS News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren ETL & Base SAS Alter berechnen mit Base SAS 26 October, 2008-21:31 ChrisLemberg Hallo Community, hoffentlich

Mehr

Klassen und Objekte. Klassen sind Vorlagen für Objekte. Objekte haben. Attribute. Konstruktoren. Methoden. Merkblatt

Klassen und Objekte. Klassen sind Vorlagen für Objekte. Objekte haben. Attribute. Konstruktoren. Methoden. Merkblatt Klassen und Objekte Klassen sind Vorlagen für Objekte. Objekte haben Attribute Konstruktoren Methoden Aus einer Klasse kann man beliebig viele Objekte herstellen. Attribute bestimmen die Eigenschaften

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT.

Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. HIV - SCHNELLTEST Die Immunschwächekrankheit AIDS wird durch das HI-Virus, welches 1993 entdeckt wurde, verursacht. Die Krankheit gilt bis heute

Mehr

Von Labyrinthen zu. Algorithmen

Von Labyrinthen zu. Algorithmen Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert)

Mehr

Kapitel. Platzhalter. Was sind Platzhalter?

Kapitel. Platzhalter. Was sind Platzhalter? Kapitel 3 Was sind? sind ganz wichtige Elemente bei der Programmierung. Alle Programme, die du schon kennst (wie beispielsweise die Textverarbeitung WORD oder ein Programm zum Verschicken von E-Mails),

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

Programmieren in Java

Programmieren in Java Programmieren in Java Vorlesung 10: Ein Interpreter für While Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg, Germany SS 2015 Peter Thiemann (Univ. Freiburg) Programmieren in Java JAVA 1

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Arrays. PHP JavaScript Kapitel 9

Arrays. PHP JavaScript Kapitel 9 Arrays 1 Problem: Volatilitätenbeispiels in der Programmiersprache JavaScript. Der Benutzer unseres Programms soll die Aktienkurse für beliebig viele Tage eingeben können. Dabei soll er zunächst sagen,

Mehr

Aufgabe Total Punkte

Aufgabe Total Punkte Lösung der Informatikprüfung Klasse 4 Sa Kantonsschule XY 2007 Name :...Vorname :... Du hast 90 Minuten Zeit. Spicken ist nicht erlaubt (Die Prüfung wird sofort eingezoegen und Deine mögliche Bestnote

Mehr

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN  TORSTEN SCHOLZ W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz

Mehr

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Einführung Auf binären Klassifikatoren beruhende Methoden One-Against-All One-Against-One DAGSVM Methoden die alle Daten zugleich betrachten

Mehr

Eine JAVA Einführung ... Quellcode:... COMA Übung 3. T.Bosse. A.Griewank. Vorschau JAVA Programme Sprachen Kate

Eine JAVA Einführung ... Quellcode:... COMA Übung 3. T.Bosse. A.Griewank. Vorschau JAVA Programme Sprachen Kate COMA Eine Einführung Quellcode: Anweisung(en)1 Wiederhole: T.Bosse Anweisung(en) 2 Einfache Schleifen (z.b. for-loop) Wiederhole: Falls (Bedingung) wahr, tue: Anweisung(en) 2 sonst führe Verzweigungen

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Lineare Regression 1 Seminar für Statistik

Lineare Regression 1 Seminar für Statistik Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken

Mehr

Einführung in die STL

Einführung in die STL 1/29 in die STL Florian Adamsky, B. Sc. (PhD cand.) florian.adamsky@iem.thm.de http://florian.adamsky.it/ cbd Softwareentwicklung im WS 2014/15 2/29 Outline 1 3/29 Inhaltsverzeichnis 1 4/29 Typisierung

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Info zum Junk-Mail-Filter in Thunderbird:

Info zum Junk-Mail-Filter in Thunderbird: Datenverarbeitungszentrale Datenverarbeitungszentrale dvz@fh-muenster.de www.fh-muenster.de/dvz Info zum Junk-Mail-Filter in Thunderbird: Der Grossteil der Benutzer verwendet zusätzlich zum zentralen Mail-Filter

Mehr

Maschinelles Lernen. Kapitel 5

Maschinelles Lernen. Kapitel 5 Kapitel 5 Maschinelles Lernen Im täglichen Leben begegnet uns das Lernen meist in einer Mischung aus den Aspekten der Vergrößerung von Wissen und der Verbesserung von Fähigkeiten. Beim Erlernen einer Fremdsprache

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen

Einführung in die Methoden der Künstlichen Intelligenz. Maschinelles Lernen Einführung in die Methoden der Künstlichen Intelligenz Maschinelles Lernen Dr. David Sabel WS 2012/13 Stand der Folien: 14. Februar 2013 Einführung Direkte Programmierung eines intelligenten Agenten nicht

Mehr

Bericht. Hochschule Wismar. Fakultät für Wirtschaftswissenschaften. Bericht. Projekt Don t get kicked Data Mining

Bericht. Hochschule Wismar. Fakultät für Wirtschaftswissenschaften. Bericht. Projekt Don t get kicked Data Mining Hochschule Wismar Fakultät für Wirtschaftswissenschaften Bericht Bericht Bericht Projekt Don t get kicked Data Mining zur Veranstaltung Business Intelligence Zur Veranstaltung Business eingerichtet von:

Mehr

Seminar Business Intelligence Teil II: Data-Mining und Knowledge-Discovery

Seminar Business Intelligence Teil II: Data-Mining und Knowledge-Discovery Seminar usiness Intelligence Teil II: Data-Mining und Knowledge-Discovery Thema : Vortrag von Philipp reitbach. Motivation Übersicht. rundlagen. Entscheidungsbauminduktion. ayes sche Klassifikation. Regression.

Mehr

Konzepte und Methoden der Programmierung Lösungen P. Fierz / FS 2012

Konzepte und Methoden der Programmierung Lösungen P. Fierz / FS 2012 Kapitel 1 Rekursion Alle Programme finden Sie im mitgelieferten zip-file. Aufgabe 1.1 [Fakultät] Für diese Übung brauchen Sie die Klassen Factorial Skelett und MyTimer. n! ist rekursiv folgendermassen

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

JUnit 4 Tutorial. Wolfgang Stöttinger

JUnit 4 Tutorial. Wolfgang Stöttinger JUnit 4 Tutorial Wolfgang Stöttinger JUnit 4 Tutorial... 1 1 Einführung in JUnit 4... 3 1.1 Wie funktioniert JUnit?... 3 1.2 Annotations... 3 1.2.1 Test Annotation... 3 1.2.2 Before Annotation... 3 1.2.3

Mehr

6. Multivariate Verfahren Zufallszahlen

6. Multivariate Verfahren Zufallszahlen 4. Zufallszahlen 6. Multivariate Verfahren Zufallszahlen - werden nach einem determinist. Algorithmus erzeugt Pseudozufallszahlen - wirken wie zufäll. Zahlen (sollen sie jedenfalls) Algorithmus: Startwert

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 Analysiert man das Verfahren anhand des angegebenen Beispiels, ist schnell zu erkennen, dass das erste Element von infeld2 nach outfeld an Index 2 kopiert wird, das zweite den Index 4 bekommt,

Mehr

Threading - Algorithmen

Threading - Algorithmen Threading - Algorithmen Florian Lindemann 22.11.2007 Florian Lindemann () Threading - Algorithmen 22.11.2007 1 / 25 Gliederung 1 Prospect Scoring Function Algorithmus Weitere Eigenschaften Komplexität

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Algorithmen zur Analyse historischer Landkarten. Benedikt Budig Universität Würzburg

Algorithmen zur Analyse historischer Landkarten. Benedikt Budig Universität Würzburg Algorithmen zur Analyse historischer Landkarten Benedikt Budig Universität Würzburg Einführung Einführung Algorithmen zur Analyse historischer Landkarten Einführung Algorithmen zur Analyse historischer

Mehr

Mobile Objekte Indexstrukturen

Mobile Objekte Indexstrukturen Verteilung und Integration von Informationen im Verkehrsbereich Mobile Objekte Indexstrukturen Ingo Beutler 07.06.2004 Anfragen: z.b. Welche Transporter befinden sich in der Nähe des HSaF? Wie können räumliche

Mehr

CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks. Cathleen Ramson, Stefan Lehmann LSDD SS 2013 25.04.

CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks. Cathleen Ramson, Stefan Lehmann LSDD SS 2013 25.04. CBLOCK: An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks Cathleen Ramson, Stefan Lehmann LSDD SS 2013 25.04.2013 Gliederung 2 Motivation Ziel Algorithmen Zusammenfassung Bewertung Motivation

Mehr

THEMA: "DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN

THEMA: DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN WEBINAR@LUNCHTIME THEMA: "DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh

Mehr

PMML Predictive Modeling Markup Language

PMML Predictive Modeling Markup Language PMML Predictive Modeling Markup Language Thomas Morandell 30/01/2003 1. Index 1. Index... 2 2. Einführung... 3 2.1. Definition Data Mining... 3 2.2. Motivation für Standards in Data Mining... 3 3. PMML

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2008/2009 Musterlösung für das 7. Übungsblatt Aufgabe 1: Evaluierung und Kosten Gegeben sei ein Datensatz mit 300 Beispielen, davon 2 /3 positiv

Mehr

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim CreditMetrics Portfoliokreditrisiko Seminar 10. Oktober 2007 Sebastian Sandner Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim Gliederung Page 1. Einführung in Credit Metrics 4 2. Durchführung

Mehr

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Voraussetzung für die Anwendung von Stichproben: Stichproben müssen repräsentativ sein, d.h. ein verkleinertes

Mehr

AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK

AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten

Mehr

Fuzzy-Systeme zur Unterstützung von Entscheidungen in land- und forstwirtschaftlichen Logistik-Prozessen

Fuzzy-Systeme zur Unterstützung von Entscheidungen in land- und forstwirtschaftlichen Logistik-Prozessen Fuzzy-Systeme zur Unterstützung von Entscheidungen in land- und forstwirtschaftlichen Logistik-Prozessen Steve Schneider Logistik- und Fabriksysteme Fraunhofer Institut für Fabrikbetrieb und -automatisierung

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Traveling Salesman Unterrichtsform Lernen am Modell Voraussetzung Wahrscheinlich kennen viele Schüler/innen

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr