Musterlösungen Blatt Theoretische Physik IV: Statistische Physik

Größe: px
Ab Seite anzeigen:

Download "Musterlösungen Blatt Theoretische Physik IV: Statistische Physik"

Transkript

1 Musterlösungen Blatt Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay Eindimensionales Ising-Modell. Das eindimensionale Ising-Modell für N Spins mit Wechselwirkung zwischen nächsten Nachbarn ist durch die Hamiltonfunktion H v N σ j σ j+ + µb N j j σ j festgelegt. Dabei nehmen die Spinvariablen σ j die Werte + und an. Im Folgenden seien periodische Randbedingungen zugrundegelegt, d.h., σ N+ σ. a Zeigen Sie, dass die Zustandssumme dieses Ising-Modells durch Tr T N gegeben ist, wobei die Transfermatrix T durch exp βµb exp T exp exp + βµb mit β /k B T definiert ist. Es ist Tr [exp βh] σ,...,σ N ± wobei die -Matrix T durch N σ,...,σ N ± j T σ,σ T σ,σ 3 T σn,σ Tr T N, T σ,σ exp exp σ jσ j+ βµbσ j + σ j+ σ jσ j+ βµbσ j + σ j+ definiert ist. Damit erhält man die in der Aufgabenstellung angegebene Beziehung für die Transfermatrix. Ein Vorteil der Tranfermatrix-Methode besteht darin, dass die eindimensionale Ising-Kette auf einen einzigen Spin nulldimensionale Kette abgebildet werden kann. b Zeigen Sie, dass im thermodynamischen Limes N die freie Energie pro Spin durch ft, B k B T λ gegeben ist, wobei λ den größten Eigenwert von T bezeichnet. Die Transfermatrix T ist symmetrisch und wird daher durch eine orthogonale Matrix Γ diagonalisiert, d.h., ΓT Γ λ 0 Λ. 0 λ

2 Dabei sind die Eigenwerte λ, durch λ, exp coshβµb ± [ exp + exp sinh βµb ] / bestimmt. Es ist daher Tr T N Tr [ Γ ΛΓ N] Tr Λ N λ N + λ N. Im thermodynamischen Limes gilt für die freie Energie pro Spin ft, B k B T lim k B T lim N k B T lim [ N λ + + N λ da nach Voraussetzung λ < λ, d.h., λ /λ N 0 für N. N λn + λ N ] N λ k B T λ, c Berechnen Sie die Magnetisierung m f/ B, und zeigen Sie damit, dass das System keinen Ferromagnetismus für Temperaturen T > 0 aufweist. Es ist ft, B m B µ sinhβµb [ sinh βµb + exp ] /. Für B 0 gilt stets m 0, d.h., es gibt keine spontane Magnetisierung ohne äußeres Feld. d Beweisen Sie mit Hilfe der Transfermatrix-Methode, dass die Spin-Korrelationsfunktion im thermodynamischen Limes für B 0 durch σ k σ l λ /λ l k gegeben ist. Dabei bezeichnet λ den kleineren Eigenwert von T. Berechnen Sie die Korrelationslänge. Hinweis: Bei exponentiell abfallender Korrelationsfunktion ist die Korrelationslänge ξ durch σ k σ l exp k l /ξ definiert. Wir nehmen zunächst an, dass l k. Dann folgt für beliebiges N σ k σ l Tr σ,...,σ N ± σ,...,σ N ± exp βhσ k σ l T σ,σ T σk,σ k σ k T σk,σ k+ T σl,σ l σ l T σl,σ l+ T σn,σ T k τ z T l k τ z T N l Tr τ z T l k τ z T N l+k mit der Pauli-Matrix Für B 0 gilt d.h., Γτ z Γ τ x mit τ z 0 0 Γ τ x 0 0..,

3 Damit folgt σ k σ l Tr τ x Λ l k τ x Λ N l+k + τ x Λ l k τ x Λ N l+k + + τ x Λ l k τ x Λ N l+k Λ l k τ x Λ N l+k Λ l k τ x Λ N l+k λl k λ N l+k + λ l k λ N l+k λ N + λn λ /λ l k + λ /λ N l+k + λ /λ N. Im Limes N gilt somit σ k σ l λ /λ l k. Der Fall l < k läßt sich sofort auf den oben behandelten zurückführen, da σ k σ l σ l σ k. Es ist also allgemein σ k σ l λ /λ l k exp [λ /λ l k ]. Für die Korrelationslänge ergibt sich daher ξ λ /λ tanh/. Die Korrelationslänge divergiert im Limes T 0.. In dieser Aufgabe soll das eindimensionale Ising-Modell mit Hilfe der Renormierungsgruppen- Theorie behandelt werden. Dazu werden die Flussgleichungen für die Parameter des Modells hergeleitet und untersucht. a Bestimmen Sie Flussgleichungen für die Parameter v und B des Ising-Modells mit Hilfe eines Dezimierungsverfahrens, bei dem in jedem Schritt die Hälfte aller Spins eliminiert wird. Anleitung: Nehmen Sie an, dass N gerade ist, und führen Sie in der Zustandssumme die Summation über jeden zweiten Spin explizit durch. Zeigen Sie, dass die reduzierte Zustandssumme, die jetzt nur noch von N/ Spinvariablen abhängt, die Gestalt A N/ / v, B hat. Dabei ist A eine von den σ i unabhängige Konstante, und / v, B ist die Zustandssumme eines Ising-Modells mit N/ Spinvariablen und modifizierten Parametern v, B. Zeigen Sie, dass die neuen Parameter aus den alten durch die Rekursionsbeziehung K 4 [coshk + L coshk L] cosh L, L L + coshk + L coshk L mit K / und L βµb hervorgehen. Wir führen die zunächst die Summation über jeden zweiten Spin durch. Als Beispiel betrachten wir σ 4. Dabei erhält man exp [Kσ 3 σ 4 + Kσ 4 σ 5 + Lσ 4 ] coshkσ 3 + Kσ 5 + L. σ 4 ±

4 Wenn unsere Annahme stimmt, dass die reduzierte Zustandssumme in der Form A N/ / v, B geschrieben werden kann, so muss man dieses Ergebnis auch als A exp[bσ 3 σ 5 + Cσ 3 + σ 5 ] darstellen können. Dabei nehmen σ 3 und σ 5 die Werte ± an. Somit ergeben sich die folgenden Bestimmungsgleichungen für A, B und C: σ 3 σ 5 : σ 3 σ 5 : σ 3 σ 5 : coshk + L A expb + C, cosh L A exp B, cosh K + L A expb C. Durch Division der ersten durch die dritte Gleichung erhält man C 4 coshk + L coshk L. Unter Verwendung dieses Ergebnisses erhält man ferner durch Division der ersten durch die zweite Gleichung B 4 [coshk + L coshk L] cosh L. Führt man diese Rechnung für alle σ j mit geradem j durch, so folgt, dass die reduzierte Zustandssumme nun die Form A N/ exp K σ j σ j+ L. mit σ j ± j unger. j unger. K B 4 [coshk + L coshk L] cosh L, L L + C L + coshk + L coshk L. hat. Dies ist tatsächlich die Zustandssumme eines Ising-Modells mit N/ Spins. b Zeigen Sie, dass die Flussgleichungen mit Hilfe der Ersetzungen x exp 4K, y exp L in die einfachere Form gebracht werden können. Für y ergibt sich y e L exp x x + y x + y + xy, y y x + y + xy [ L + ] coshk + L coshk L L expk L + exp K + L e expk + L + exp K L y Für x verläuft die Rechnung analog. σ j L coshk L e coshk + L y/x + x/y / xy + xy y x + y + xy.

5 c Skizzieren Sie den durch die Rekursionsbeziehungen, induzierten Fluss. Bestimmen Sie die Fixpunkte, und untersuchen Sie die Stabilität der diskreten Fixpunkte durch Linearisierung der Flussgleichungen in deren Umgebung. Der durch die Rekursionsbeziehungen, induzierte Fluss hat die in der Abbildung dargestellte Form. Hierbei ist zu beachten, dass G., eine Folge von diskreten Punkten generieren. Die dargestellten Flusslinien ergeben sich als Interpolationskurve entlang dieser Punkte. Eine andere Möglichkeit, die Flusskurven zu erzeugen, besteht darin, eine große Zahl von Rekursionsfolgen mit entsprechend benachbarten Anfangsbedingungen zu zeichnen. Die Fixpunkte ergeben sich aus der Forderung x x, y y. Man findet damit die diskreten Fixpunkte x 0, y 0 und x 0, y sowie eine kontinuierliche Linie von Fixpunkten x, 0 y. Die Linearisierung um den Fixpunkt x 0, y liefert δx δxδy + δx + δy + [ + δxδy + ] 4δx, δy δy mit δx x x, δy y y. Dabei folgt die untere Gleichung aus y δx + + δy + δy + δx + δy + δy + δx + δy δx + δy Der Fixpunkt ist also instabil. Er beschreibt den Pseudo-Phasenübergang bei T 0, B 0. Für den Fixpunkt x 0, y 0 folgt δx δx δx + δy, δy δyδx + δy, d.h. δxδy δx δy. Die Rekursionskurven in der Nähe des Fixpunkts haben die Form von Hyperbe, d.h., der Fixpunkt ist ebenfalls instabil.

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Ising-Modell Vorlesung Statistische Mechanik: Ising-Modell Das Ising Modell besteht auser einer Anzahl von Spins, die wir mit s i bezeichnen wollen. Jeder der N Spins kann den Wert ±1 annehmen. Die Spins

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells 1

Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells 1 Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells Vorbemerkung In der Statistischen hysik können magnetische Materialien als System von miteinander wechselwirkender Elementarmagneten,

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Zwischen Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Fragen: (1) Wie weit hängt das Kabel durch? ( d =?) () Wie groß ist die Seilspannung

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

5 Bose-Einstein-Kondensation. Suprafluidität

5 Bose-Einstein-Kondensation. Suprafluidität Prof. Dr. A. Muramatsu Fortgeschrittene Quantentheorie WS / 9 5 Bose-Einstein-Kondensation. Suprafluidität Wie im Fall der Fermionen betrachten wir in diesem Kapitel zunächst nicht wechselwirkende Bosonen.

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

8 Spontane Symmetriebrechung

8 Spontane Symmetriebrechung 8 SPONTANE SYMMETRIEBRECHUNG 111 8 Spontane Symmetriebrechung 8.1 Gebrochene diskrete Symmetrie Betrachte die φ 4 -Theorie eines reellen Skalarfeldes mit der Lagrangedichte L = 1 ( µφ)( µ φ) 1 m φ λ 4!

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

1 Grundlagen der Numerik

1 Grundlagen der Numerik 1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Theoretische Physik F: Zwischenklausur SS 12

Theoretische Physik F: Zwischenklausur SS 12 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

Seminar zur Theorie der Teilchen und Felder. Kritische Phänomene. Florian König WS 2009/2010

Seminar zur Theorie der Teilchen und Felder. Kritische Phänomene. Florian König WS 2009/2010 Seminar zur Theorie der Teilchen und Felder Kritische Phänomene Florian König WS 2009/2010 1 Phasendiagramme Thermodynamische Systeme treten oft in mehreren unterschiedlichen Phasen in Erscheinung. In

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

Übungen zur Nichtgleichgewichtsthermodynamik Blatt 3 Lösungen

Übungen zur Nichtgleichgewichtsthermodynamik Blatt 3 Lösungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2015/2016 Übungen zur Nichtgleichgewichtsthermodynamik Blatt 3 Lösungen Aufgabe: Diffusion im 3D Gitter Wir betrachten einen Markovschen Random Walk in

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Erster Akt: Begriffe und Beispiele

Erster Akt: Begriffe und Beispiele Eigenvektoren 1 Erster Akt: Begriffe und Beispiele 2 Sei L : A A eine lineare Abbildung von einem Vektorraum A in sich sich selbst. (Man denke an z. B. an A = R 2.) 3 Ein Vektor a A, a 0, heißt ein Eigenvektor

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme"

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme" Dietmar Paschek SS 016 Gittermodell für Mischungen Grenzen der Bragg-Williams Näherung Das Ising Modell Quasi-Chemische

Mehr

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Prof. Roland Gunesch Sommersemester Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Analysieren Sie folgende mathematischen Modelle der Liebesbeziehung zwischen

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE Datenanalyse in der Physik Übung 1 Übungen zu C und MAPLE Prof. J. Mnich joachim.mnich@desy.de DESY und Universität Hamburg Datenanalyse in der Physik Übung 1 p. 1 Bemerkungen zu den Übungen Schulungsaccounts

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

6 Spontane Symmetriebrechung

6 Spontane Symmetriebrechung 6 SPONTANE SYMMETRIEBRECHUNG 84 6 Spontane Symmetriebrechung In diesem Abschnitt behandeln wir die Theorien weitgehende auf dem klassischen Niveau. 6.1 Spontan gebrochene diskrete Symmetrie Betrachte die

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

42 Lokale Extrema mit Nebenbedingungen

42 Lokale Extrema mit Nebenbedingungen 4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr