3. Erzwungene Schwingungen

Größe: px
Ab Seite anzeigen:

Download "3. Erzwungene Schwingungen"

Transkript

1 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche äußere Kraft an. Weganregung: An einem Punkt des schwingenden Systems ist eine zeitlich veränderliche Bewegung vorgeschrieben. Prof. Dr. Wandinger 4. Schwingungen TM 4.3-1

2 3.2 Weganregung 3. Erzwungene Schwingungen Prof. Dr. Wandinger 4. Schwingungen TM 4.3-2

3 Grundmodell: An der Masse greift eine zeitlich veränderliche Kraft f(t) an. Die Bewegungsgleichung lautet: m ẍ d ẋ c x= f t Division durch m führt auf Feder Dämpfer Masse ẍ 2 ẋ 2 x= f t m x f(t) Prof. Dr. Wandinger 4. Schwingungen TM 4.3-3

4 Wichtiger Spezialfall: Harmonische Kraft Eine harmonische Kraft hat die Form f t =F sin t. Dabei ist Ω die Erregerkreisfrequenz und F(Ω) die Amplitude der Kraft, die im Allgemeinen von der Erregerkreisfrequenz abhängen kann. Jede periodische Kraft kann als Überlagerung von harmonischen Kräften dargestellt werden. Die Antwort des Systems auf eine periodische Kraft ist die Überlagerung der Antworten auf die harmonischen Kräfte. Prof. Dr. Wandinger 4. Schwingungen TM 4.3-4

5 Allgemeine Lösung: Die allgemeine Lösung der inhomogenen Gleichung ẍ 2 ẋ 2 x= F sin t m setzt sich zusammen aus einer partikulären Lösung x p t der inhomogenen Lösung und der allgemeinen Lösung x h t der homogenen Gleichung ẍ 2 ẋ 2 x=0 Die Lösung der homogenen Gleichung ist eine freie gedämpfte Schwingung. Prof. Dr. Wandinger 4. Schwingungen TM 4.3-5

6 Die homogene Lösung hängt von den Anfangsbedingungen ab und klingt exponentiell mit der Zeit ab. Nach Beendigung des sogenannten Einschwingvorgangs kann die homogene Lösung gegenüber der partikulären Lösung vernachlässigt werden. Die partikuläre Lösung beschreibt den eingeschwungenen Zustand. Prof. Dr. Wandinger 4. Schwingungen TM 4.3-6

7 Partikuläre Lösung: Mit m=c/ 2 F F gilt: m = 2 = 2 x S c Dabei ist x S = F die statische Lösung. c Lösungsansatz für die partikuläre Lösung: x p t = A s sin t A c cos t ẋ p t = A s cos t A c sin t ẍ p t = 2 A s sin t A c cos t Prof. Dr. Wandinger 4. Schwingungen TM 4.3-7

8 Einsetzen in ẍ 2 ẋ 2 x= 2 x S sin t führt auf: 2 A s sin t A c cos t 2 A s cos t A c sin t 2 A s sin t A c cos t = 2 x S sin t 2 A c 2 A s 2 A c cos t = 2 A s 2 A c 2 A s 2 x S sin t Diese Gleichung ist nur dann für alle Zeitpunkte t erfüllt, wenn die Ausdrücke in den Klammern verschwinden. Daraus folgen 2 Gleichungen zur Ermittlung der beiden Konstanten A s und A c. Prof. Dr. Wandinger 4. Schwingungen TM 4.3-8

9 Mit dem Frequenzverhältnis = / und dem Lehrschen Dämpfungsmaß D= / folgt nach Division durch 2 : 1 2 A c 2 D A s = 0 2 D A c 1 2 A s = x S Lösung mit der Cramerschen Regel: A c = 0 x S 2 D 2 1 = 2 D x S, A s = D 0 x S = 1 2 x S = D 2 D 1 2 = D 2 2 Prof. Dr. Wandinger 4. Schwingungen TM 4.3-9

10 Die partikuläre Lösung ist eine harmonische Schwingung mit der Amplitude x p t = Asin t A= A s 2 A c 2 = D 2 2 und dem Phasenwinkel D 2 2 x S = x S D 2 2 tan = A c A s = 2 D 1 2 tan = 2 D 1 2 Prof. Dr. Wandinger 4. Schwingungen TM

11 Mit dem dynamische Überhöhungsfaktor V 1 = gilt: D 2 x p t, =V 1 x S sin t Prof. Dr. Wandinger 4. Schwingungen TM

12 D = 0, D = 0,08 V D = 0,12 D = 0,5 3 2 D = ,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 η Prof. Dr. Wandinger 4. Schwingungen TM

13 φ D = 1.0 D = 0,5 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 η D = 0,12 D = 0,08 D = 0,04 Prof. Dr. Wandinger 4. Schwingungen TM

14 Diskussion der Lösung: Bereich 1: η < 0,8: unterkritisch Bei schwacher Dämpfung (D < 10%) hat die Dämpfung praktisch keinen Einfluss. Die Verschiebung ist in Phase mit der Anregung. Es gilt in guter Näherung: Für η < 1/3 erhält man: V V 1 1 1/3 2= 9 8 =1,125 Für η < 0,3 können Dämpfungs- und Trägheitskraft vernachlässigt werden: Quasistatische Lösung Prof. Dr. Wandinger 4. Schwingungen TM

15 Bereich 2: 0,8 < η < 1,2: kritisch Dieser Bereich wird wesentlich von der Dämpfung beeinflusst. Die Verschiebung hat eine Phasenverschiebung von 90 gegenüber der Anregung. Die Geschwindigkeit ist in Phase mit der Anregung. Trägheits- und Federkraft sind im Gleichgewicht. Die Anregung ist im Gleichgewicht mit der Dämpfungskraft. Den Zustand η = 1 nennt man Resonanz. Bei η = 1 sind Federkraft und Trägheitskraft entgegengesetzt gleich groß. Prof. Dr. Wandinger 4. Schwingungen TM

16 Bereich 3: η > 1,2: überkritisch Bei schwacher Dämpfung (D < 10%) hat die Dämpfung praktisch keinen Einfluss. Die Verschiebung hat eine Phasenverschiebung von 180 gegenüber der Anregung. Die Beschleunigung ist in Phase mit der Anregung. Es gilt in guter Näherung: Für η > 3 erhält man: V V = 1 8 =0,125 Für η > 3 ist die Trägheitskraft groß gegenüber der Federund der Dämpferkraft. Prof. Dr. Wandinger 4. Schwingungen TM

17 Beispiel: Unwucht m u e Ωt Die Masse m 0 wird durch die Zentrifugalkraft der rotierenden Masse m u zu Schwingungen angeregt. m 0 Beispiele: x Motor c d Rad Rüttler Prof. Dr. Wandinger 4. Schwingungen TM

18 m u S Kinematik: x u =x e sin t ẍ u =ẍ e 2 sin t S sin(ωt) Unwucht: m u ẍ u =S sin t S Ωt Schwinger: m 0 ẍ= F C F D S sin t m 0 x Kraftgesetze: F C F D F C =c x, F D =d ẋ Prof. Dr. Wandinger 4. Schwingungen TM

19 Einsetzen ergibt: m 0 m u ẍ d ẋ c x= m u e 2 sin t Der Schwinger wird also durch die Kraft angeregt. F = m u e 2 Division durch die Gesamtmasse m=m 0 m u ergibt: ẍ 2 x 2 x= m u m e 2 sin t = 2 x S sin t Dabei ist x S = m ue c 2 = m u e 2 = m u m 2 m e 2 die statische Verschiebung. Prof. Dr. Wandinger 4. Schwingungen TM

20 Die partikuläre Lösung lautet also x p t, = 2 V 1 m u m = V 3 m u m esin t esin t mit und V 3 = 2 V 1 tan = 2 D 1 2 Prof. Dr. Wandinger 4. Schwingungen TM

21 D = 0, D = 0,08 V D = 0,12 D = 0,5 3 2 D = ,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 η Prof. Dr. Wandinger 4. Schwingungen TM

22 Diskussion der Lösung: 3.1 Kraftanregung Unterkritischer Bereich: η < 0,8 Bei schwacher Dämpfung (D < 10%) hat die Dämpfung praktisch keinen Einfluss. Es gilt in guter Näherung: V Kritischer Bereich: 0,8 < η < 1,2 Dieser Bereich wird wesentlich von der Dämpfung bestimmt. An der Resonanzstelle η = 1 gilt: V 3 1 = 1 2 D Prof. Dr. Wandinger 4. Schwingungen TM

23 Überkritischer Bereich: η > 1,2 Bei schwacher Dämpfung (D < 10%) hat die Dämpfung praktisch keinen Einfluss. Es gilt in guter Näherung: V Für große Werte von η strebt V 3 gegen 1. Für η = 5 erhält man: V 3 5 = =1,042 Prof. Dr. Wandinger 4. Schwingungen TM

24 3.2 Weganregung Grundmodell: m Die Bewegung des Fundaments wird vorgeschrieben. Beispiele: c d x Rütteltisch fahrbahnerregte Fahrzeugschwingungen x F (t) Fundament Erdbeben Prof. Dr. Wandinger 4. Schwingungen TM

25 3.2 Weganregung Vorgeschriebene Bewegung des Fundaments: x F t =x F0 sin t, ẍ F t = 2 x F0 sin t Relativbewegung: x rel =x x F x=x F x rel Kräfte: F C =c x rel F D =d ẋ rel Schwerpunktsatz: m x m ẍ= d ẋ rel c x rel F C F D Prof. Dr. Wandinger 4. Schwingungen TM

26 3.2 Weganregung Mit folgt: ẍ=ẍ F ẍ rel m ẍ rel d ẋ rel c x rel = m ẍ F =m x F0 2 sin t Division durch m führt auf ẍ rel 2 ẋ rel 2 x rel =x F0 2 sin t = 2 x S sin t mit x S =x F0 2 =x F0 2 Damit gilt für die Relativverschiebung: x prel t, =x F0 2 V 1 sin t =x F0 V 3 sin t Prof. Dr. Wandinger 4. Schwingungen TM

27 3.2 Weganregung Für die Absolutverschiebung folgt: x p,t =x F,t x rel,t =x F0 sin t x F0 V 3 sin t =x F0 [sin t V 3 sin t cos cos t sin ] =x F0 [ 1 V 3 cos sin t V 3 sin cos t ] Die Amplitude ist: x pmax =x F0 1 V 3 cos 2 V 3 2 sin 2 =x F0 1 V 3 2 2V 3 cos Prof. Dr. Wandinger 4. Schwingungen TM

28 3.2 Weganregung Diskussion der Lösung: Tiefer unterkritischer Bereich: 0,3 V 3 0,32 1 0,3 2 0,1 Die Relativverschiebung ist vernachlässigbar klein. Die Masse folgt der Bewegung des Fundaments. Prof. Dr. Wandinger 4. Schwingungen TM

29 3.2 Weganregung Hoher überkritischer Bereich: 4 V ,1 Der Überhöhungsfaktor ist nahezu 1. Der Phasenwinkel ist nahezu 180. Die Relativverschiebung ist entgegengesetzt gleich groß wie die Verschiebung des Fundaments Die Absolutverschiebung der Masse geht gegen Null. Prof. Dr. Wandinger 4. Schwingungen TM

30 3.2 Weganregung Bei Vernachlässigung der Dämpfung gelten folgende Vereinfachungen: Überhöhungsfaktor: 2 V 3 = 1 2 Phasenwinkel: 0 für 1 ={ 180 für 1 Absolutverschiebung: x p t, ={ x F0 1 V 3 sin t für 1 x F0 1 V 3 sin t für 1 Prof. Dr. Wandinger 4. Schwingungen TM

31 3.2 Weganregung Beispiel: z x L m v z F (x) Das Fahrzeug der Masse m fährt mit der konstanten Geschwindigkeit v. Die Unebenheit der Fahrbahn wird beschrieben durch z F x =z 0 sin 2 x Prof. Dr. Wandinger 4. Schwingungen TM

32 3.2 Weganregung Gesucht: Relative und absolute Verschiebungsamplitude der vertikalen Hubschwingung Absolute Beschleunigungsamplitude der vertikalen Hubschwingung Daten: Masse m = 1500kg, Federsteifigkeit c = 1,5 105 N/m Lehrsches Dämpfungsmaß D = 20% Geschwindigkeit v = 30m/s Wellenlänge λ = 60m, Amplitude z 0 = 0,1m Radabstand L = 2,5m Prof. Dr. Wandinger 4. Schwingungen TM

33 Berechnungsmodell: 3.2 Weganregung Der Radabstand ist klein im Vergleich zur Wellenlänge. Daher wird angenommen, dass die Vertikalverschiebung an beiden Rädern ungefähr gleich groß ist. Das Fahrzeug wird als einfaches Feder-Masse-Dämpfer- System modelliert. m z c d z F (t) Prof. Dr. Wandinger 4. Schwingungen TM

34 3.2 Weganregung Anregung: x=v t z F t =z 0 sin 2 v t =z 0sin t Frequenzverhältnis: mit =2 v =2 30m/s 60m =3,142 1 s, = 1,5 105 N /m = kg s =0,3142 Dynamischer Überhöhungsfaktor: V 3 0,3142 = 0, , ,2 2 0, =0,1085 Prof. Dr. Wandinger 4. Schwingungen TM

35 3.2 Weganregung Amplitude der Relativverschiebung: z rel max =z 0 V 3 0,3142 =0,1m 0,1058=0,01058m Amplitude der Absolutverschiebung: tan = 2 0,2 0, , =0,1394 cos = 1 1 tan 2 = 1 1 0,1394 =0, z max =0,1m 1 0, ,1058 0,9904=0,1105 Prof. Dr. Wandinger 4. Schwingungen TM

36 3.2 Weganregung Amplitude der Beschleunigung: z max = 2 z max =3, s 2 0,1105m=1,091m/s2 Prof. Dr. Wandinger 4. Schwingungen TM

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Beispiel: Erzwungene gedämpfte Schwingungen

Beispiel: Erzwungene gedämpfte Schwingungen Lineare Dgln. mit konstanten Koeffizienten Zur Startseite TM-Mathe Gewöhnliche Dgln. (Grundlagen) Differenzialgleichungen 1. Ordnung Lineare Dgln. mit konstanten Koeffizienten Lineare Differenzialgleichungen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI.

HS D. V 101 : Pohlsches Pendel. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI. Gruppe : Nmen, Mtrikel Nr.: HS D Hochschule Düsseldorf Versuchstg: Vorgelegt: Testt : V 11 : Pohlsches Pendel Zusmmenfssung: 12.3.215 Versuch: Pohlsches Pendel Seite 1 von 8 Gruppe : HS D Korrigiert m:

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

Physikalisches Grundpraktikum. Mechanische Schwingungen

Physikalisches Grundpraktikum. Mechanische Schwingungen Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

x W x 3 W M 2 x 2 x 1

x W x 3 W M 2 x 2 x 1 Priv-Doz G Reißig, F Goßmann MSc Universität der Bundeswehr München Institut für Steuer- und Regelungstechnik LRT-5 Email: felixgossmann@unibwde Moderne Methoden der Regelungstechnik, HT 26 Übung - Lösung

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den M Geoppelte Pendel Versuchsprotooll von Thomas Bauer und Patric Fritzsch Münster, den.1.1 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Die Pendelbewegung. Dder Kopplungsgrad 3. Versuchsbeschreibung

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgabenstellungen der Dynamik.... 1 1.2 Einige Meilensteine in der Geschichte der Dynamik... 3 1.3 EinteilungundInhaltedesBuches... 5 1.4 ZieledesBuches... 6 2

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Mathematik 2 für Ingenieure

Mathematik 2 für Ingenieure Skriptum zur Vorlesung Mathematik für Ingenieure Differentialgleichungen Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner) Fachhochschule Pforzheim FB-Ingenieurwissenschaften,

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω Schwingungen Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung ẍ = D m x führt zu einer Schwingung A = x(t) = A e iωt + B e iωt, mit ω = ( x0 2 i 2 ) ẋ 0 e iωt 0 und B = ω D m ( x0 2 +

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr.

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Schwingungen Lena Flecken Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Eine Schwingung (auch Oszillation) bezeichnet den Verlauf

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Schwingende Körper. 48 C Vom Fahrrad zum Weltraum

Schwingende Körper. 48 C Vom Fahrrad zum Weltraum 48 C Vom Fahrrad zum Weltraum Anjuli Ahooja Corina Toma Damjan Štrus Dionysis Konstantinou Maria Dobkowska Miroslaw Los Schüler: Nandor Licker und Jagoda Bednarek C Schwingende Körper Vom Fahrrad zum Weltraum

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein.

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein. SCHWINGUNGEN sind besondere Formen der Bewegung. Sie sind in der modernen Physik grundlegend für die Beschreibung vieler Phänomene. Wir werden diese Bewegung zuerst wieder darstellen in Graphen und die

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Serienschwingkreis (E16)

Serienschwingkreis (E16) Serienschwingkreis (E6) Ziel des Versuches Die Eigenschaften einer eihenschaltung von ohmschem Widerstand, Kondensator und Spule werden untersucht. Dabei werden sowohl freie als auch erzwungene Schwingungen

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr