Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Größe: px
Ab Seite anzeigen:

Download "Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden."

Transkript

1 Nachrichtentechnisches Praktikum Versuch 3: Digitale Frequenzmodulation Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

2 Inhaltsverzeichnis Hinweise zum Referat 1 1 Einleitung 2 2 Theoretische Grundlagen Diskrete Frequenzmodulation (FSK) FSK-Demodulation Kohärente FSK-Demodulation Inkohärente FSK-Demodulation Vorbereitungsaufgaben 8 4 Versuchsdurchführung Continuous Phase FSK Inkohärente FSK-Demodulation Referenzangaben 12 Literatur 12 i

3 Hinweise zum Referat Zu Beginn des Seminars soll einer oder mehrere der für das einführende Referat verantwortlichen Studenten einen Kurzvortrag von ca Minuten halten, in dem die wesentlichen Aussagen zu diesem Thema zusammengefasst dargestellt werden. Die Präsentation ist vor Seminarbeginn vorzubereiten. Die hierfür nötigen Hilfsmittel (Folien, Overheadprojektor) werden zur Verfügung gestellt. Sie können diesen Kurzvortrag entweder handschriftlich auf dem Overheadprojektor oder mit selbstgefertigten Folien vortragen oder auf einen Satz vorgefertigter Folien zurückgreifen, die beim Versuchsbetreuer als Folien verfügbar sind und auf unseren Internetseiten als pdf-dateien zur Verfügung stehen! 1

4 1 Einleitung Bei der Frequenzumtastung Frequency Shift Keying - FSK besteht die Modulation des Trägers darin, dass die Frequenz des Trägers entsprechend dem Datensignal zwischen verschiedenen diskreten Frequenzen verändert wird. Wenn zwischen den Zuständen keine kontinuierlichen Phasenübergänge vorliegen, liegt das Verfahren Non-continuous FSK - NCFSK zu Grunde. Aufgrund der nicht-kontinuierlichen Phase ergeben sich ungünstige Spektraleigenschaften, weshalb dieses Verfahren keine praktische Bedeutung hat. Die einfachste Realisierungsmöglichkeit ist es, zwei Oszillatoren im Takt des Datensignals auf den Ausgang des Modulators zu legen. In Bild 1 ist das Blockschaltbild eines solchen Modulators dargestellt. Bild 1: Einfacher NCFSK-Modulator Wenn die Phasenübergänge zwischen den Zuständen kontinuierlich sind, entsteht ein gedächtnisbehaftetes Modulationsverfahren. Dieses Verfahren bezeichnet man als Continuous Phase FSK - CPFSK. Eine mögliche Realisierung für einen CPFSK-Modulator ist in Bild 2 dargestellt. Hierbei werden die zu übertragenden Daten nach einer entsprechenden Impulsformung auf den Abstimmeingang eines spannungsgesteuerten Oszillators (VCO) mit der Mittenfrequenz f gegeben. VCO!"#$%&!'( Bild 2: CPFSK-Modulator 2

5 2 Theoretische Grundlagen 2.1 Diskrete Frequenzmodulation (FSK) Allgemein lässt sich ein frequenzmoduliertes Signal schreiben als x FM (t) = A Re{exp[j(ω t + 2π f t x(τ)dτ)]} = A cos(ω t + 2π f t x(τ)dτ). (1) Zunächst wird ein Datensignal aus zeitversetzten analogen Impulsen g(t it s ), die mit einer Datenfolge d i { 1, +1} gewichtet sind, erzeugt. Für das Datensignal schreibt man x(t) = d i g(t it s ), (2) i= wobei g(t) ein rechteckförmiger Grundimpuls der Länge T s ist. Die entsprechende digitale Version der Frequenzmodulation erhält man, in dem ein Datensignal der Form (2) die Momentanfrequenz moduliert. Wird noch in Anlehnung an die analoge Frequenzmodulation der Modulationsindex h definiert mit lässt sich somit ein FSK-Signal ausdrücken als h = 2 ft s, (3) x FSK (t) = A Re{exp[j(ω t + h π T s = A cos(ω t + h π T s t i= t i= d i g(τ it s )dτ)]} d i g(τ it s )dτ). (4) Durch die Integration der Momentanfrequenz und durch die Verwendung eines recheckförmigen Impulsformungsfilter g(t) ist sichergestellt, dass die zugehörige Phase kontinuierlich verläuft. Aus diesem Grunde wird diese Form der diskreten Frequenzmodulation auch als Continuous Phase FSK - CPFSK bezeichnet. Wichtig ist hier, dass ein CPFSK-Signal von der 3

6 Gesamtheit der bisher übertragenen Daten abhängt. Somit ist ein CPFSK-Signal, wie in der Einleitung schon erwähnt wurde, der Klasse der gedächtnisbehafteten Modulationsverfahren zuzuordnen. Der Modulationsindex h sollte i.a. so gewählt werden, dass die Signale bei den verschiedenen Frequenzen möglichst gut zu unterschieden werden können. Dies ist der Fall, wenn die Signale unkorreliert bzw. orthogonal sind. Im Zeitintervall t T s unter Verwendung eines rechteckigen Impulsformungsfilters der Dauer T s sind zwei Elementarsignale möglich. Es gilt für komplexen Einhüllende dieser Elementarsignale : [ )] x 1 (t) = exp j (ω t + πh tts (5) und [ )] x 2 (t) = exp j (ω t πh tts, (6) deren Energien gleich sind. Es gilt : T s T s E = x 1 (t) 2 dt = x 2 (t) 2 dt = T s. (7) Der komplexe Kreuzkorrelationskoeffizient berechnet sich zu ρ 12 = T s x 1 (t)x 2(t) E1 E 2 = 1 [exp(j2πh) 1]. j2πh (8) Für die Klassifikation von Signalen ist der Realteil dieser Größe maßgebend, also Somit erhält man unter der Bedingung ρ 12 = sin(2πh) 2πh. (9) h = n/2, n = 1, 2,... (1) orthogonale Zeitfunktionen mit den zugehörigen Frequenzhüben 4

7 f = 1 4T s, 1 2T s, 3 4T s, 1 T s,.... (11) Die diskrete Frequenzmodulation mit dem kleinsten Modulationsindex h =.5, bei dem die Orthogonalität erfüllt ist, bezeichnet man als Minimum Shift Keying - MSK. In Bild 3 ist ein CPFSK-Signal mit dem zugehörigem Phasenverlauf mit dem Modulationsindex h = 1 dargestellt. Die Frequenz wurde in diesem Beispiel mit einem bipolarem Datensignal d i ǫ[ 1, 1] moduliert. xfsk(t)/a CPFSK Signal Datensignal t/[s] Momentanphase 5 ϕi(t) t/[s] Bild 3: CPFSK-Signal mit dem Modulationsindex h = FSK-Demodulation Kohärente FSK-Demodulation In Bild 4 ist das Blockschaltbild des kohärenten FSK-Demodulators dargestellt. Es handelt sich hier bei um einen Maximum-Likelihood-Empfänger in der Realisierungsform mit Matched- Filter. Bei einem rechteckförmigem Sendeimpuls können diese Filter auch als Integrator realisiert werden. Man kann die Matched-Filterung auch auf die rechte Seite der Differenzbildung verschieben, wie im unteren Blockschaltbild dargestellt. Damit muss nur noch ein Filter realisiert werden. 5

8 2cos(2πf+t) FSK-Signal r(t) X b+(t) X b,(t) h )* (t) h )* (t) s+(t) + - s,(t) + s(t) Entscheider e- 2cos(2πf,t) 2cos(2πf+t) FSK-Signal. /1 X b+(t) X b,(t) b(t) h)*(t) s(t) Entscheider e- 2cos(2πf,t) Bild 4: Kohärenter Demodulator für binäre FSK Bei der kohärenten Demodulation muss der Demodulator sowohl die Trägerfrequenz als auch die Phasenlage des Signals rekonstruieren. Schaltungstechnisch kann zur Rekonstruktion der Trägerfrequenz ein VCO verwendet werden. Die aus den lokalen Oszillatoren gewonnenen Trägersignale werden dann mit dem Empfangssignal multipliziert. Danach folgt eine Integrationsstufe welche sich über die Dauer eines Symbols erstreckt. Anschließend entscheidet sich der ML-Empfänger für das Symbol mit der größeren Metrik. Es gilt e k = 1, s 1 (k T s + T s 2 ) s 2(k T s + T s 2 ) >, s 1 (k T s + T s 2 ) s 2(k T s + T s 2 ) < (12) 6

9 In Bild 5 ist ein Beispiel für eine kohärente Demodulation dargestellt. Amplitude 1 CPFSK Signal Datensignal t / T s 1 (t) 2 s 2 (t) Amplitude t / T s(t) 5 Empfangsfolge Amplitude t / T Bild 5: Beispiel für eine kohärente FSK-Demodulation Inkohärente FSK-Demodulation Die Struktur eines inkohärenten FSK-Demodulators ist in Bild 6 dargestellt. Die beiden Bandpassfilter sind auf die jeweiligen FSK-Frequenzen f + f und f f abgestimmt und weisen eine so geringe Bandbreite auf, dass sie - im Idealfall - keine Leistung durchlassen, wenn die jeweils andere FSK-Frequenz ausgesendet wird. In den nachfolgenden Hüllkurvendetektoren wird die - von der Amplitudendemodulation bekannte - inkohärente Detektion durchgeführt. Es ist festzustellen, dass der inkohärente FSK-Demodulator keine Trägerrückgewinnung benötigt um das empfangene Signal zu demodulieren. Somit ist ein inkohärenter FSK-Demodulator verglichen mit dem kohärentem FSK-Demodulator einfacher zu realisieren. 7

10 FSK-Signal r(t) BPF f2 BPF f 3 b2(t) b 3 (t) HKD HKD s(t) Entscheider e4 Bild 6: Struktur des inkohärenten FSK-Demodulators 3 Vorbereitungsaufgaben 1. Erklären Sie warum Continuous FSK - CPFSK, den gedächtnisbehafteten Modulationsverfahren zugeordnet wird? 2. Eine Datenfolge ist gegeben durch d = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Diese Datenfolge wird nun mit dem Übertragungsverfahren CPFSK gesendet. Dabei wird ein rechteckförmiges Impulsformungsfilter der Form ( t g(t) = rect 1 ) T s 2 verwendet. Der Modulationsindex beträgt h =.5. (a) Skizzieren Sie qualitativ den momentanen Phasenverlauf des Sendesignals. Die Anfangsphase sei. (b) Skizzieren Sie qualitativ den Real- und Imaginärteil der komplexen Einhüllende des Sendesignals. (c) Nennen Sie eine weitere Bezeichnung für dieses Übertragungsverfahren. 3. Im Folgenden ist der Real- und Imaginärteil eines CPFSK-Signals dargestellt. (a) Skizzieren Sie den momentanen Phasenverlauf für t T s. (b) Ermitteln Sie die zugehörige bipolare Datenfolge. (c) Geben Sie den zugehörigen modulationsindex h an. 8

11 1.77 Realteil Amplitude Amplitude t / T s Imaginärteil t / T s 4 Versuchsdurchführung 4.1 Continuous Phase FSK Bild 7: CPFSK-Signal 1. Bauen Sie die Übertragungsstrecke gemäß Bild 8 auf. Bevor Sie das VCO-Modul anschließen stellen Sie sicher, dass der Schalter auf der Platine auf FSK eingestellt ist. Es stehen ihnen zwei Frequenzbereiche zur Verfügung. Mit dem Schalter auf der Frontplatte können Sie zwischen Audio-Bereich (Schalter auf LO) und einem 1 khz Bereich (schalter auf HI) umschalten. Verwenden Sie in dieser Anordnung den Audio- Bereich. Die zwei FSK-Frequenzen sind voreingestellt und sind zunächst unbekannt. Verwenden Sie außerdem noch ein digitales Datensignal (Rote Anschlüsse am SEQUENZ GENERATOR-Modul) und schließen Sie das Datensignal an den DATA-Anschluss des VCO-Moduls. Audio Oszillator Digital Utilities Sequenz Generator VCO CPFSK-Signal Bild 8: CPFSK-Modulator 9

12 2. Verwenden Sie den TTL-Anschluss am AUDIO OSZILLATOR-Modul, um ein Taktsignal für das SEQUENZ GENERATOR-Modul zu erzeugen. Stellen Sie eine Taktfrequenz von 1 khz am AUDIO OSZILLATOR ein, und verwenden Sie das DIGITAL UTILITIES-Modul, um die Frequenz des Taktsignals um den Faktor 2 zu reduzieren. Schließen Sie anschließend das Taktsignal an den CLK-Anschluss des SEQUENZ GENERATOR-Moduls. Hinweis: Verwenden Sie den FREQUENCY COUNTER-Anschluss, um die Taktfrequenz einzustellen. 3. Schließen Sie das Datensignal am Ausgang des SEQUENZ GENERATOR-Moduls und das CPFSK-Signal am Ausgang des VCO-Moduls an das Oszilloskop, und untersuchen Sie die Phasenkontinuität des CPFSK-Signals. 4. Verwenden Sie die FFT-Funktion am Oszilloskop, um das Spektrum des CPFSK-Signals zu betrachten. Wie kann man aus dem Spektrum die zwei unbekannten FSK-Frequenzen bestimmen? Bestimmen Sie diese zwei FSK-Frequenzen. 5. Stellen Sie die FSK-Frequenzen nun auf 2 khz und 4 khz ein. 4.2 Inkohärente FSK-Demodulation 1. Ergänzen Sie die Übertragungsstrecke gemäß 9 mit dem inkohärentem FSK- Demodulator. Auf dem BIT CLOCK REGENERATION-Modul befinden sich zwei Bandpassfilter. Verwenden Sie für den Hüllkurvendetektor den RECTIFIER-Anschluss (Einweg-Gleichrichter) und das EINSTELLBARE TIEFPASS-Modul. Verwenden für die Detektion den KOMPARATOR auf dem UTILITIES-Modul. BPF f5 HKD 789:; ABCBDC<BECBF :<= >?@ A? CB > F<= >?@ Entscheider BPF f 6 HKD Bild 9: Inkohärenter FSK-Demodulator 2. Stellen Sie die Taktfrequenz des Datensignals auf 1 Hz ein. 1

13 3. Überlegen Sie sich, welche Mittenfrequenzen an den Bandpassfiltern eingestellt werden muss, und stellen Sie diese ein. Die Mittenfrequenz kann durch ein extern angeschlossenes digitales Taktsignal eingestellt werden, und ist 1/5tel der Taktfrequenz. Stellen Sie den Schalter SW1 (SW1-1 für BPF1,SW1-2 für BPF2), dass sich auf der Platine des BIT CLOCK REGENERATION-Modul befindet, auf EXT. CLOCK, um die Mittenfrequenz extern zu steuern, oder auf INT. CLOCK, um die intern festgelegte Mittenfrequenz von 2.83 khz zu verwenden. Verwenden Sie zur Generierung des Taktsignals ein zusätzliches EINSTELLBARES TIEFPASS-Modul. Schließen Sie den CLK-Anschluss des Tiefpassfilters an den EXT CLK-Anschluss des BIT CLOCK REGENERATION-Moduls. 4. Was muss für die Grenzfrequenz des Tiefpassfilters gelten? Stellen Sie eine geeignete Grenzfrequenz ein. 5. Der KOMPARATOR benötigt eine Referenzsignal um eine Detektion durchzuführen. Das an den KOMPARATOR angeschlossene Signal wird mit dem Referenzsignal verglichen, und entsprechend den Amplituden dieser Signale eine 1 oder eine detektiert. Welcher Zweig muss an den REF-Anschluss des KOMPARATORs angeschlossen werden, um das empfangene Signal fehlerfrei zu detektieren? Verwenden Sie die GAIN-Regler an den TIEFPASS-Modulen, damit beide Signale die gleiche Spitze-Spitze- Spannung aufweisen. Vergleichen Sie zum Schluss via Oszilloskop das gesendete und das detektierte Datensignal. 11

14 Referenzangaben [1] PROAKIS, J. G. und SALEHI, M., Grundlagen der Kommunikationstechnik, Prentice Hall Inc. [2] KAMMEYER, K. D., Nachrichtenübertragung, Vieweg+Teubner Verlag Literatur [1] CZYLWIK, A., Vorlesung Übertragungstechnik, Universität Duisburg-Essen [2] PROAKIS, J. G. und SALEHI, M., Grundlagen der Kommunikationstechnik, Prentice Hall Inc. [3] KAMMEYER, K. D., Nachrichtenübertragung, Vieweg+Teubner Verlag [4] OHM, J. R. und LÜKE, H. D., Signalübertragung, Springer Verlag [5] HAYKIN, S., Communication Systems, John Wiley & Sons,Inc. 12

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Nachrichtentechnisches Praktikum Versuch 2: Analoge Winkelmodulation Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Nachrichtentechnisches Praktikum Versuch 1: Analoge Amplitudenmodulation Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

Laborpraktikum Grundlagen der Kommunikationstechnik

Laborpraktikum Grundlagen der Kommunikationstechnik Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik Laborpraktikum Grundlagen der Kommunikationstechnik Versuch Analoge Modulationsverfahren Amplitudenmodulation KT 01 Winkelmodulation

Mehr

FM PM FSK BPSK FDM PSK GMSK OFDM ASK 64-QAM AFSK. Analoge und digitale Modulationsarten im Amateurfunk

FM PM FSK BPSK FDM PSK GMSK OFDM ASK 64-QAM AFSK. Analoge und digitale Modulationsarten im Amateurfunk BPSK FM PM FSK ASK AM FDM PSK GMSK OFDM 64-QAM AFSK 1 von 28 Vortrag zur UKW-Tagung 2010 DL7MAJ - 09/2010 Die Amplitudenmodulation - AM u 0 (t) = A ( 1 + m cos(ϖ Μ t)) cos(ϖ Τ t) m = Modulationsgrad 0...

Mehr

Nachrichtenübertragung

Nachrichtenübertragung Klausur im Lehrgebiet Nachrichtenübertragung Vorlesung II und Rechenübung II - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:..............................

Mehr

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Nachrichtentechnisches Praktikum Versuch 4: Signalraum-Konstellationen Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode Blockschaltbild eines OOK-Empfängers rauschfreier opt. Verstärker s(t) g(t) w(t) Photodiode 2 R y k n(t) optisches Filter incl. Polfilter das Verhalten wird im äquivalenten Tiefpass-Bereich analysiert

Mehr

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt.

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt. 5. Modulation Für die Uebertragung eines Nutzsignals über Leitungen oder durch die Luft muss das informationstragende Signal, das Nutzsignal, an die Eigenschaften des Uebertragungswegs angepasst werden.

Mehr

1 Analoge und digitale Signale

1 Analoge und digitale Signale Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Modulation, Demodulation

Modulation, Demodulation Modulation, Demodulation Modulation 1 Unter Modulation versteht man das Verbinden von Information (Sprache, NF, Daten, etc.) mit einem hochfrequenten Signal, mit dem Träger. Demodulation ist das umgekehrte

Mehr

Aufgabe 8: Phasenregelkreis (PLL Schaltung)

Aufgabe 8: Phasenregelkreis (PLL Schaltung) Aufgabe 8: Phasenregelkreis (PLL Schaltung) Gruppe 7 Teilnehmer: André Borgwardt 724834 Lars Hammerbacher 722946 Marcus Witzke 727655 Protokollant: André Borgwardt Ort der Durchführung: Raum 257 Betreuer:

Mehr

Unterschiede zwischen analogen und digitalen Modulationsverfahren

Unterschiede zwischen analogen und digitalen Modulationsverfahren Unterschiede zwischen analogen und digitalen Modulationsverfahren Die Grafik zeigt oben ein analoges Übertragungssystem und darunter gezeichnet ein Digitalsystem. Die wesentlichen Unterschiede sind rot

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Modulationsverfahren Inhalt

Modulationsverfahren Inhalt Inhalt 1. Allgemeines... 2 2. Übersicht über... 3 5. Amplitudenmodulation... 3 3.1 Zweiseitenbandmodulation... 5 3.2 Einseitenbandmodulation... 5 4. Winkelmodulation... 6 5. Tastmodulation(Digitale Modulation)...

Mehr

Praktikum 3: I/Q Architekturen

Praktikum 3: I/Q Architekturen ZHAW, NTM1, HS2012, 1(10) Praktikum 3: I/Q Architekturen 1. Ziele Moderne Modulationsformen verlangen in den Architekturen von Kommunikationsgeräten nach einer Inphase- & Quadrature Modulation und Demodulation

Mehr

Analoge Modulationsverfahren. Roland Küng, 2013

Analoge Modulationsverfahren. Roland Küng, 2013 Analoge Modulationsverfahren Roland Küng, 203 Amplitudenmodulation AM m s(t) y(t) A [+m s(t)] cos(2πf 0 t) Einfache Implementation Geringe Bandbreite Is(t)I A cos(2πf 0 t) Beispiel: m0.5, s(t) cos(2πf

Mehr

AM/FM/ϕM-Messdemodulator FS-K7

AM/FM/ϕM-Messdemodulator FS-K7 Datenblatt Version 02.00 AM/FM/ϕM-Messdemodulator FS-K7 April 2005 für die Analysatoren FSQ/FSU/FSP und die Messempfänger ESCI/ESPI AM/FM/ϕM-Messdemodulator zur Bestimmung analoger Modulationsparameter

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196 doepfer System A - 100 PLL A-196 1. Einführung A-196 PLL VCO CV In Offset Das Modul A-196 enthält eine sogenannte Phase Locked Loop (PLL) - im deutschen mit Nachlaufsynchronisation bezeichnet, die aus

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Frequenzselektive Messungen

Frequenzselektive Messungen Mathias Arbeiter 31. Mai 2006 Betreuer: Herr Bojarski Frequenzselektive Messungen Aktive Filter und PEG Inhaltsverzeichnis 1 Aktive Filter 3 1.1 Tiefpass.............................................. 3

Mehr

Seite 108. Datenübertragung: asynchron synchron. langsame Übertragung kurze Distanzen langsame Übertragung weite Distanzen

Seite 108. Datenübertragung: asynchron synchron. langsame Übertragung kurze Distanzen langsame Übertragung weite Distanzen 7 Seite 8 Tabelle. Klassierung der Datenübertragungsverfahren Datenübertragung: asynchron synchron parallel seriell langsame Übertragung kurze Distanzen langsame Übertragung weite Distanzen schnelle Übertragung

Mehr

Amateurfunk- Empfänger. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de)

Amateurfunk- Empfänger. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Amateurfunk- Empfänger Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Themen für heute Prinzip eines Empfängers Wichtige Funktionsblöcke Filter Verstärker Mischer Oszillator

Mehr

Nonreturn to Zero (NRZ)

Nonreturn to Zero (NRZ) Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem

Mehr

Fakultät für Elektrotechnik und Informationstechnik. Lehrstuhl für Kommunikationstechnik. Prof. Dr.-Ing. R. Kays

Fakultät für Elektrotechnik und Informationstechnik. Lehrstuhl für Kommunikationstechnik. Prof. Dr.-Ing. R. Kays Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Kommunikationstechnik Prof. Dr.-Ing. R. Kays Praktikum zur Vorlesung Nachrichtentechnik Versuch 2 Analoge Modulation Raum P2-04-513 Version

Mehr

FM Synthese. Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering. Betreuer: Michael Krieger

FM Synthese. Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering. Betreuer: Michael Krieger FM Synthese Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering Betreuer: Michael Krieger FM Synthese R. Holzmann, Uni Heidelberg 1 Übersicht Einführung Geschichte Mathematisches

Mehr

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Wintersemester 204/205 Signale und Systeme II Übungsaufgaben Übung Datum Themen Aufgaben

Mehr

5 Modulationsverfahren

5 Modulationsverfahren U: Latex-docs/Angewandte Physik/2004/VorlesungWS04-05, 21. Dezember 2004 89 5 Modulationsverfahren Abbildung 1: Schema eines Übertragungssystems Bei der Übertragung von Signalen durch Übertragungskanäle

Mehr

Praktikum 4: Frequenzmodulation

Praktikum 4: Frequenzmodulation ZHAW, NTM1,kunr 1 Praktikum 4: Frequenzmodulation Teil A: Analoge FM 1. Allgemeines In diesem Praktikum sollen sinusförmig modulierte FM-Signale im Zeit- und Frequenzbereich analysiert werden. Die FM-Signale

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

A-117 DNG / Einführung. doepfer System A Digital Noise Generator A-117

A-117 DNG / Einführung. doepfer System A Digital Noise Generator A-117 doepfer System A - 100 Digital Noise Generator A-117 1. Einführung Noise/ Clock Out Ext. Clock In Mix 2 Mix 6 A-117 DNG / 808 Das Modul A-117 (DNG) ist ein Kombinationsmodul aus einem digitalen Rauschgenerator

Mehr

Praktikum Elektronik für Wirtschaftsingenieure

Praktikum Elektronik für Wirtschaftsingenieure Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel.(0351) 462 2437 ~ Fax (0351)

Mehr

Praktikum 6: PSK Empfang & Sync

Praktikum 6: PSK Empfang & Sync ZHAW, NTM1, HS2008, 1(10) Praktikum 6: PSK Empfang & Sync 1. Ziele BPSK und QPSK sind weit verbreitete und robuste Modulationen mit sehr guter BER Performance. Anwendungen im Satellitenfunk, ZigBee Funkknoten,

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Funktionsgenerator. Amplitudenmodulation (AM), Frequenzmodulation (FM), Pulsmodulation (PM) und spannungsgesteuerter

Funktionsgenerator. Amplitudenmodulation (AM), Frequenzmodulation (FM), Pulsmodulation (PM) und spannungsgesteuerter Funktionsgenerator Zur Beschreibung von Signalquellen sind verschiedene Bezeichnungen gebräuchlich, z.b. Signalgenerator, Funktionsgenerator, Pulsgenerator oder Waveformgenerator. Durch diese Unterteilung

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Die Modulationsarten - Theorie und praktische Anwendungen Vortrag zur VHF-UHF 2002 in München Stefan Steger, DL7MAJ

Die Modulationsarten - Theorie und praktische Anwendungen Vortrag zur VHF-UHF 2002 in München Stefan Steger, DL7MAJ Die Modulationsarten - Theorie und praktische Anwendungen Vortrag zur VHF-UHF 2002 in München Stefan Steger, DL7MAJ Gliederung: 1. Warum gibt es Modulation, was ist ein Träger? 2. Theorie der analogen

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Empfindlichkeit und Rauschmaß eines DVB T Sticks

Empfindlichkeit und Rauschmaß eines DVB T Sticks Empfindlichkeit und Rauschmaß eines DVB T Sticks Messung kritischer Spezifikationen eines Salcar Stick DVB T RTL 2832U&R820T SDR Salcar Stick, oder ähnlich Blockschaltbild des R820T Tuners Aufbau für Empfindlichkeitsmessung:

Mehr

DFE I Digitale Funksysteme Einführung. 1 Einführung 1

DFE I Digitale Funksysteme Einführung. 1 Einführung 1 DFE I Digitale Funksysteme Einführung Digitale Funk Systeme Inhaltsverzeichnis Einführung 2 Informations Übertragung analog und digital 2 2. Analoge Übertragung............................................

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Digitale Modulation mit MFSK

Digitale Modulation mit MFSK Hochschule für Technik und Informatik ICT Grundlagen Fachbereich Elektro- und Kommunikationstechnik Übung ICT-4 1 Ziele der Übung Digitale Modulation mit MFSK Modellaufbau eines kompletten Datenübertragungssystems.

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen CMT-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung Wechselstromwiderstände (Lit.: GERTHSEN) Schwingkreise (Lit.: GERTHSEN) Erzwungene Schwingungen (Lit.: HAMMER) Hochpass, Tiefpass,

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Galileo und Anwendungen. GPS/Galileo/GLONASS-Frontend

Galileo und Anwendungen. GPS/Galileo/GLONASS-Frontend GPS/Galileo/GLONASS-Frontend ITG-Diskussionssitzung Galileo und Anwendungen GPS/Galileo/GLONASS-Frontend Sascha Jakoblew, Robert Bosch GmbH 05. Juni 2008, Oberpfaffenhofen 1 GPS/Galileo/GLONASS-Frontend

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 13: Frequenzaufbereitung. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 13: Frequenzaufbereitung. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 13: Frequenzaufbereitung Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 17.06.2016 Balance- Mehrfach- This work is licensed under the Creative Commons Attribution-ShareAlike

Mehr

Übertragungssysteme WS 2011/2012. Vorlesung 5. Prof. Dr.-Ing. Karlheinz Brandenburg.

Übertragungssysteme WS 2011/2012. Vorlesung 5. Prof. Dr.-Ing. Karlheinz Brandenburg. Übertragungssysteme WS 2011/2012 Vorlesung 5 Prof. Dr.-Ing. Karlheinz Brandenburg Karlheinz.Brandenburg@tu-ilmenau.de Kontakt: Dipl.-Ing.(FH) Sara Kepplinger / Dipl.-Inf. Thomas Köllmer vorname.nachname@tu-ilmenau.de

Mehr

Kennenlernen der analogen Modulation am Beispiel der Amplitudenmodulation (AM)

Kennenlernen der analogen Modulation am Beispiel der Amplitudenmodulation (AM) Gemeinsames Grundpraktikum AM Versuch-Nr.: E405 Ziel: Kennenlernen der analogen Modulation am Beispiel der Amplitudenmodulation (AM) Für diesen Versuch ist der Lehrstuhl Nachrichten- und Übertragungstechnik

Mehr

Nachrichtenübertragung

Nachrichtenübertragung Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:...........................

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

DMV I Digitale Modulations Verfahren

DMV I Digitale Modulations Verfahren DMV I Digitale Modulations Verfahren Digitale Modulationsverfahren Inhaltsverzeichnis Modell der Digital Übertragung mit Modulation. Grundsätzliches Blockschaltbild des Digitalen Modulators.......................

Mehr

Fachpraktikum Digitale Modulation

Fachpraktikum Digitale Modulation Communication Technology Laboratory Wireless Communications Group Prof. Dr. A. Wittneben ETH Zurich, ETF, Sternwartstrasse 7, 8092 Zurich Tel 41 44 632 36 11 Fax 41 44 632 12 09 Fachpraktikum Digitale

Mehr

Versuch 3: Sequenzielle Logik

Versuch 3: Sequenzielle Logik Versuch 3: Sequenzielle Logik Versuchsvorbereitung 1. (2 Punkte) Unterschied zwischen Flipflop und Latch: Ein Latch ist transparent für einen bestimmten Zustand des Taktsignals: Jeder Datensignalwechsel

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Labor Informationstechnik FSK

Labor Informationstechnik FSK Labor Informationstechnik Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Irina Ikkert FSK Gruppennummer: eilnehmer: Name Vorname Matrikelnummer 1 2 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel

Mehr

Praktikum Frequenz Synthese PLL

Praktikum Frequenz Synthese PLL Praktikum Frequenz Synthese PLL 1. Ziele In diesem Praktikum geht es darum, die Phase-Locked Loop Technik zur Frequenzsynthese näher kennen zu lernen. Die Schwierigkeit im Verständnis besteht oftmals darin,

Mehr

Produktbeschreibung. MCD Audio Analyzer. Softline. Modline. Funktionen und Merkmale des Produkts. Conline. Boardline. Avidline. Pixline.

Produktbeschreibung. MCD Audio Analyzer. Softline. Modline. Funktionen und Merkmale des Produkts. Conline. Boardline. Avidline. Pixline. Produktbeschreibung Funktionen und Merkmale des Produkts Softline Modline Conline Boardline MCD Audio Analyzer Avidline Pixline Applikation MCD Elektronik GmbH Hoheneichstr. 52 75217 Birkenfeld Telefon

Mehr

1. Beschaltung der Platine mit Operationsverstärkern (OP)

1. Beschaltung der Platine mit Operationsverstärkern (OP) Elektronikpraktikum SS 2015 5. Serie: Versuche mit Operationsverstärkern (Teil 1) U. Schäfer, A. Brogna, Q. Weitzel und Assistenten Ausgabe: 16.06.2015, Durchführung: Di. 23.06.15 13:00-17:00 Uhr Ort:

Mehr

SDR# Software Defined Radio

SDR# Software Defined Radio SDR# Software Defined Radio Beispiel von DVB T USB Stick und SDR Receiver Frequenz 24 1700MHz Frequenz 0,1 2000MHz, mit Down Converter für KW Treiber und Software http://sdrsharp.com/#download 1 Nach dem

Mehr

Nachrichtentechnik. Martin Werner. Eine Einführung für alle Studiengänge 6., verbesserte Auflage Mit 235 Abbildungen und 40 Tabellen STUDIUM

Nachrichtentechnik. Martin Werner. Eine Einführung für alle Studiengänge 6., verbesserte Auflage Mit 235 Abbildungen und 40 Tabellen STUDIUM Martin Werner Nachrichtentechnik Eine Einführung für alle Studiengänge 6., verbesserte Auflage Mit 235 Abbildungen und 40 Tabellen STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Aufgaben und Grundbegriffe

Mehr

PPS: Bits on Air 3. Teil

PPS: Bits on Air 3. Teil Institut für Kommunikationstechnik Prof. Dr. H. Bölcskei Sternwartstrasse 7 CH-892 Zürich PPS: Bits on Air 3. Teil Markus Gärtner, Felix Kneubühler Revidierte Version vom 6. August 26 Einleitung Das Ziel

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

Untersuchung analoger und digitaler Demodulationsverfahren

Untersuchung analoger und digitaler Demodulationsverfahren Universität Karlsruhe (H) Institut ür Höchstrequenztechnik und Elektronik Hochrequenzlaboratorium Untersuchung analoger und digitaler Demodulationsverahren Versuch 8 Betreuer: Andreas Lambrecht WS 8/9

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke

E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke E408 Versuchsprotokoll - Korrekturblatt 1 Grundpraktikum II - Gruppe 4 Lars Hallmann, Johannes Kickstein, Stefan Hanke Inhaltsverzeichnis 1 Einleitung 1 2 Versuche 2 2.1 Eingesetzte Geräte.......................

Mehr

Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 6. Lock-in-Verstärker

Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 6. Lock-in-Verstärker 1. Einleitung Versuch 6 Lock-in-Verstärker Lock-in-Verstärker werden sehr häufig in Laborexperimenten bei der Detektion und Verarbeitung sehr schwacher Analogsignale (Wechselspannungen bzw. -ströme auf

Mehr

Lernkarten Technik Klasse A Ver , funken-lernen.de / DC8WV TE101. Wie unterscheidet sich J3E von A3E in Bezug auf die benötigte Bandbreite?

Lernkarten Technik Klasse A Ver , funken-lernen.de / DC8WV TE101. Wie unterscheidet sich J3E von A3E in Bezug auf die benötigte Bandbreite? Lernkarten Technik Klasse A Ver.1.0 2010, funken-lernen.de / DC8WV TE101 Wie unterscheidet sich J3E von A3E in Bezug auf die benötigte Bandbreite? TE101 Die Sendeart J3E beansprucht weniger als die halbe

Mehr

Werner Nitsche DL7MWN

Werner Nitsche DL7MWN Zwischenbericht Retro-Radios 04.04.2009 Unterhaching, den 04.04.2009 Bild 1 ARIEL Teil 1 AM-Teil Liebe Funkfreunde! Wie bereits im letzten Zwischenbericht versprochen, berichte ich nun über den AM/FM-

Mehr

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Inhaltsverzeichnis Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Kapitel 1 Einleitung 17 1.1 Historischer

Mehr

6 Simultane Signal- und Energieübertragung

6 Simultane Signal- und Energieübertragung 88 6 Simultane Signal- und Energieübertragung 6 Simultane Signal- und Energieübertragung In diesem Kapitel wird der Einbau der optischen Übertragungsstrecke in eine Sehprothese, sowie die hiermit erzielten

Mehr

A= A 1 A 2. A i. A= i

A= A 1 A 2. A i. A= i 2. Versuch Durchführung siehe Seite F - 3 Aufbau eines zweistufigen Verstärkers Prof. Dr. R Schulz Für die Verstärkung 'A' eines zwei stufigen Verstärkers gilt: oder allgemein: A= A 1 A 2 A= i A i A i

Mehr

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118

A-118 NOISE / RANDOM. 1. Einführung. doepfer System A NOISE / RANDOM A-118 doepfer System A - 100 NOISE / A-118 1. Einführung A-118 NOISE / Lev el Das Modul A-118 (NOISE / ) ist ein Rauschund Zufallsspannungs-Generator (engl. noise / random voltage generator). Der A-118 generiert

Mehr

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47 Encoding und Modulation Digitale it Dt Daten auf Analogen Signalen Grundlagen der Rechnernetze Physikalische Schicht 47 Amplitude Shift Keying (ASK) Formal: Signal s(t) für Carrier Frequenz f c : Bildquelle:

Mehr

20 Grundlagen der Rundfunktechnik:

20 Grundlagen der Rundfunktechnik: 20 Grundlagen der Rundfunktechnik: Hertz hat damals mit der Entdeckung der elektromagnetischen Wellen den Grundstein für unsere heutige Rundfunktechnik gelegt. Doch nicht nur für das, sondern auch für

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

c f 10. Grundlagen der Funktechnik 10.1 Elektromagnetische Wellen

c f 10. Grundlagen der Funktechnik 10.1 Elektromagnetische Wellen 10.1 Elektromagnetische Wellen Ein Strom mit einer Frequenz f größer als 30kHz neigt dazu eine elektromagnetische Welle zu produzieren. Eine elektromagnetische Welle ist eine Kombination aus sich verändernden

Mehr

Versuch 5: Spreizbandcodierung

Versuch 5: Spreizbandcodierung Versuch 5: Spreizbandcodierung Einleitung In diesem Versuch sollen Sie ausgehend von dem schematic aus Versuch 3 ein Übertragungssystem mit Spreizbandcodierung realisieren. Sie werden die Spektren und

Mehr

{w, e, o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

{w, e, o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. LEHRSTUHL FÜR INFORMATIONSÜBERTRAGUNG Laboratorium für Nachrichtentechnik μ Prof. Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg D Schriftliche Prüfung im Fach Signalübertragung und

Mehr

Aufbau eines modulierbaren Senders und Prinzipexperimente zur Informationsübertragung

Aufbau eines modulierbaren Senders und Prinzipexperimente zur Informationsübertragung Aufbau eines modulierbaren Senders und Prinzipexperimente zur Informationsübertragung Wissenschaftliche Arbeit zur Erlangung der ersten Staatsprüfung für das Lehramt am Gymnasium Universität Leipzig Fakultät

Mehr

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich.

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich. Kapitel 2 Pulsweitenmodulation Die sogenannte Pulsweitenmodulation (kurz PWM) ist ein Rechtecksignal mit konstanter Periodendauer, das zwischen zwei verschiedenen Spannungspegeln oszilliert. Prinzipiell

Mehr

Protokoll zum Übertragungsverhalten passiver Zweitore

Protokoll zum Übertragungsverhalten passiver Zweitore Protokoll zum Übertragungsverhalten passiver Zweitore Ronny Harbich. Juli 005 Ronny Harbich Protokoll zum Übertragungsverhalten passiver Zweitore Vorwort Das hier vorliegende Protokoll wurde natürlich

Mehr

Komplexe Widerstände

Komplexe Widerstände Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Vorbereitungen zur Funkamateur-Prüfung. Aufgaben B.007

Vorbereitungen zur Funkamateur-Prüfung. Aufgaben B.007 1. Es soll ein Bandpass für die Frequenz von 8 khz mit einer Spule von 20 mh aufgebaut werden. Die Bandbreite dieses Bandpasses darf nur 2.5 khz haben. Berechnen Sie a) den erforderlichen Kondensator;

Mehr

7. Filter. Aufgabe von Filtern

7. Filter. Aufgabe von Filtern . Filter Aufgabe von Filtern Amplitude Sperren einer Frequenz oder eines Frequenzbereichs Durchlassen einer Frequenz oder eines Frequenzbereichs möglichst kleine Phasenänderung Phase Phasenverschiebung

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr