Das Trägheitsmoment und der Satz von Steiner

Größe: px
Ab Seite anzeigen:

Download "Das Trägheitsmoment und der Satz von Steiner"

Transkript

1 Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders um seine Symmetrieachse. Der Zyinder habe den Radius R und die asse. Benutzen Sie dann den Satz von Steiner um das Trägheitsmoment um eine Achse zu berechnen weche parae zur Symmetrieachse in einem Abstand r veräuft. Das Trägheitsmoment entang der Symmetrieachse beträgt I A = ρ x + y = ρ R r 3 dr Das Trägheitsmoment entang der zweiten Achse beträgt π = I B = I A + r = R + r R 4 πr 4 π = R Aufgabe 39 Punkte Zwei Kugen und der Satz von Steiner Nehmen Sie zwei Kugen mit identischem Radius R und geicher homogener Dichteverteiung ρ, weche am Punkt T zusammengekebt sind. Berechnen Sie den gesamten Trägheitstensor reativ zum Schwerpunkt der beiden Kugen am Punkt T. Der Trägheitstensor einer einzenen Kuge reativ zu ihrem Schwerpunkt is aufgrund der Kugesymmetrie Θ ik = I δ ik

2 mit dem Trägheitsmoment I = 5 R Dabei is die asse einer einzenen Kuge. Nun benutzen wir den Satz von Steiner um den Trägheitstensor einer einznen Kuge reativ zum Punkt T zu berechnen. T ist um den Vektor R =, R, entang der x Achse verschoben. Θ = Θ 33 = I + R δ ik R R = I + R Θ = I + R δ ik R R = I Ae nicht-diagonaen Eemente verschwinden. Für das Gesamtsystem addieren wir nurnoch die beiden Tensoren. Aufgabe 4 Dünne Scheibe Berechnen Sie den Trägheitstensor für eine dünne, homogene Scheibe mit Radius R und asse. Nehmen Sie dabei an, dass sich der Drehpunkt in der itte der Scheibe befindet und dass die z-achse mit der Symmetrieachse der Scheibe übereinstimmt. Die asseverteiung der Scheibe ist gegeben durch { ρ x, y, z = πr δ z wenn x + y R sonst Dabei ist die Deta-Distribution durch fogenden Zusammenhang definiert δzfz = f Θ ij = δij x x i x j dm = δij x x i x j ρ x d 3 x V Θ zz = Θ xx = π π = 4 R R R + + Θ yy = Θ xx aus Symmetriegründen Θ xy = Θ yx = Θ xz = Θ zx = π π π R R R πr δ z r + z zz = π πr R πr δ z r + z r cos ϕ = πr Θ yz = Θ zy = 4 R Θ = 4 R R δ z r sin ϕ r cos ϕ = πr δ z r cos ϕ z = πr δ z r sin ϕ z = πr r 3 dr = π R 4 πr 4 = R π sin ϕ R r 3 dr = π R 4 πr 4

3 Aufgabe 4 Rotierender, gewinketer Stab Ein dünner homogener Stab der Länge und der Gesamtmasse m ist bei seiner itte C um einen Winke Φ = 3π/4 abgewinket. Der Stab drehe sich mit konstanter Winkegeschwindigkeit ω um die vertikae Achse siehe Abbidung. Ein Ende des Stabes ist in einem Lager befestigt A. an nehme an, dass sich der Drehpunkt im Ursprung des Koordinatensystems befinde und dass ω = ω e z. Wähen Sie die e y Achse so, dass sich der Stab im körperfesten System kompett in der e y, e z Ebene befindet. a Bestimmen Sie die fogenden drei Komponenten des Trägheitstensors Θ xz, Θ yz, und Θ zz. Führen Sie dazu fogende Parametrisierung ein z = t, x = y = unterhab von C, z = t, x =, y = t oberhab von C t [, [ unterhab von C, t [, + / [ oberhab von C benutzen Sie dann Wegintegrae um die Komponenten zu berechnen. b Auf den Stab wirkt ein Drehmoment N reativ zu dem Lager A. Bestimmen Sie dies as eine Funktion der Θ ij. Benutzen Sie dazu die Vektoridentität a b c = b a c c a b zum Vereinfachen der Rechnung. Sie müssen keine konkreten Werte für die Θ ij einsetzen. c Bestimmen Sie das Drehmoment weches auf das Lager A wirkt. Benutzen Sie dazu die vektoriee Form der Euergeichungen und transformieren Sie nicht in das System der Hauptachsen. Sie können die Aufgabe ösen ohne den Trägheitstensor expizit anzugeben. a Agemein git: Θ ij = Körper assevertieung: ρ r ds = m ds, δij r x i x j dm = Stab δij r x i x j ρ r ds ds ist ein Längeneement des Stabes it der gegebenen Parametrisierung ergibt sich für das Längeneement: ds = dt unterhab von C, ds = dt oberhab von C. Integrieren nach t gibt +/ / Θ zz = m dt t = m dt t = m Θ yz = Θ zy = m +/ dt t t = [ ] +/ m 3 t3 t = [ m ] [ + = m + 3 ] 4 Θ xz = Θ zx = 3

4 b Für das Drehmoment git N = r F rd 3 r und für die Dichte der Zentripetakraft erät man F r = ρ r ω ω r = ρ r ω r ω ρ r ω r. 3 Durch Einsetzen fogt N = ρ r ω r r ω d 3 r 4 it ω = ω e z ergibt sich N = ω ρ r z r e z d 3 r 5 = ω ρ r zy d 3 r ω ω Θ yz ρ r zx d 3 r = ω Θ xz = ω Θ yz e x 6 c Der Drehpunkt des Stabes befindet sich in A, das heisst der Drehpunkt ist im IS in Ruhe L = Θ ω = d Θ ω = d Θ ω + ω Θ ω dt dt IS KS d Θ ω d = da dt dt ω = = ω Θ ω KS x Θ xz ω Θ yz ω [ y = Θ yz ω = Θ xz ω = ω m + 3 ] 4 z ω Θ zz ω Aufgabe 4 Trägheitstensor und kinetische Energie Betrachten Sie einen homogenen, rechteckigen Stab mit den Dimensionen x, y, z und der asse. Nehmen Sie an, dass der Stab im körperfesten Bezugssystem parae zu den kartesischen Koordinatenachsen e x, e y, e z in fogender Form ausgerichtet ist x x, y y, z z, 7 a Berechnen Sie ae Komponenten des Trägheitstensors Θ ij durch expizite Integration. b Betrachten Sie die Drehung des Stabes um den Ursprung x =,, eines Inertiasystems mit der Winkegeschwindigkeit ω = ω, ω, ω. Dabei sei das Inertiasystem so gewäht, dass es zu einem bestimmten Zeitpunkt t mit dem körperfesten System übereinstimmt und der Ursprung des körperfesten Systems bei der Drehung fest im Inertiasystem beibt. Berechnen Sie die kinetische Energie bei dieser Drehung. a Wir erhaten für den Trägheitstensor Θ ij = δij x x i x j dm = Für einen homogenen Stab git ρ = V δij x x i x j ρ x d 3 x 8 x y z 9 4

5 Daraus erhaten wir x Θ xx = ρ Θ yy = ρ Θ zz = ρ x x y Θ xy = Θ yx = ρ Θ xz = Θ zx = ρ Θ yz = Θ zy = ρ y y x x x z z z y y y y + z = 3 x + z = 3 x + y = 3 z z z y + z x + z x + y xy = 4 x y 3 xz = 4 x z 4 yz = 4 y z 5 b T = ω Θ ω mit 3 y + z 4 x y 4 x z Θ = 4 x y 3 x + z 4 y z 4 x z 4 6 y z 3 x + y = ω 3 x + 3 y + 3 z x y x y x y 7 5

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Institut für Mechanische Verfahrenstechnik und Mechanik Bereich Angewandte Mechanik Vorprüfung Technische Mechanik III (Dynamik) Montag, 31.08.009, 9:00 11:00 Uhr Bearbeitungszeit: h Aufgabe 1 (6 Punkte)

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s):

Mit s = l ϕ bekommt man dann aus der Newtonschen Gleichung (Beschleunigung a hat entgegengesetzte Richtung wie die Auslenkung s): S1 Matheatisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen ageein, atheatisches Pende, physikaisches Pende, Steinerscher Satz Matheatische Behandung von Schwingungsvorgängen

Mehr

Lösung zu Übungsblatt 1

Lösung zu Übungsblatt 1 Technische Universität München Fakutät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsbatt 1 Grundagen der Newton schen Mechanik, Zweiteichensysteme 1. Vektoranaysis (*) (a) Der Gradient eines

Mehr

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.).

Übungsblatt 3. Lagrange-Formalismus, Systeme von Schwingungen. Man betrachte ein ebenes Doppelpendel im dreidimensionalen Raum (siehe Abb.). Technische Universität München Fautät für Phsi Ferienurs Theoretische Phsi 1 Übungsbatt 3 Lagrange-Foraisus, Sstee von Schwingungen 1. Ebenes Pende (*) Man betrachte ein ebenes Doppepende i dreidiensionaen

Mehr

Fluss durch einen Zylindermantel

Fluss durch einen Zylindermantel Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

, 2 f N, f M f n f m dx 0 sin xx x3 3! x 5 5! a n x n n0 N f N x a n x n n0 a,ba * x b x a * y b y a * z b z aa x 2 a y 2 a z 2, * r,tr,td 3 r, * d 3 r * * d 3 r, *, * d 3 r * d 3 r, * d 3 r * * d 3 r

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Vom Spannungstensor zum Impulsstrom

Vom Spannungstensor zum Impulsstrom Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszette aus dem Modu math31. Dieser Übungszette wurde nicht korrigiert. Es handet sich edigich um meine Abgabe und keine Musterösung. Ae Übungszette zu diesem

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Lösungsblatt Quader-Anordnung (5P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Quader-Anordnung (5P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) Lösungslatt 11 echanik (Physik, Wirtschaftsphysik, Physik Lehramt (WS7/8 Wolfgang v. Soden (wolfgang.soden@uni-ulm.de 15. 1. 8 7 Quader-Anordnung (5P Aufgae Zwei gröÿere Quader mit Kantenlängen (a,,c zw.

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

1. Klausur Mechanik I SS 05, Prof. Dr. V. Popov

1. Klausur Mechanik I SS 05, Prof. Dr. V. Popov . Kausur Mechanik I SS 05, Prof. Dr. V. Popov itte deutich schreiben! Name, Vorname: Matr.-Nr.: Studiengang: itte inks und rechts ankreuen! Studienbegeitende Prüfung Ergebnis ins WWW Übungsscheinkausur

Mehr

Eine kurze Geschichte der Trägheit

Eine kurze Geschichte der Trägheit Eine kurze Geschichte der Trägheit G. Schmidt 8. Mai 2 Zusammenfassung Beispiele für die Berechnung des Trägheitsmomentes von örpern längs beliebiger Achsen. Diese kurze Abhandlung ist entstanden nachdem

Mehr

Trägheitsmomente starrer Körper

Trägheitsmomente starrer Körper Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht.

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 2: ǫ Tensor [6] Gegeben sind die Vektoren a =

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Klausur der Modulprüfung / Diplomvorprüfung

Klausur der Modulprüfung / Diplomvorprüfung Klausur der Modulprüfung / Diplomvorprüfung für B.Sc. aer / B.Sc. mawi / Dipl. aer / Dipl. geod. / Dipl. autip Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel:

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Donnerstag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v.2 203/0/22 5:58:28 hk Exp $ 3 Konvexgeometrie 3.2 Die patonischen Körper Ein patonischer Körper von Typ (n, m) ist ein konvexer Poyeder dessen Seitenfäche ae geichseitige n-ecke und in

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Mathematik, Klasse 7, Terme und Termwerte

Mathematik, Klasse 7, Terme und Termwerte Mathematik, Klasse 7, Terme und Termwerte. Finde den Term und berechne dann den Termwert für x = - 5 und x = 00. x = x = x = 3 x = 4 x = 5 x = - 5 x =00 T (x) = 5 8 4 7 T (x) = 3 6 9-5 T 3 (x) = 0 3 8

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 9, 1 Bonuspunkte Dr. P. P. Orth Abgabe und Besprechung 1.1.14 1. Kollision

Mehr

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente 1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Drehimpulse in der Quantenmechanik. Drehimpulse kommen in der Natur nur in Einheiten von ½ ħ vor!

Drehimpulse in der Quantenmechanik. Drehimpulse kommen in der Natur nur in Einheiten von ½ ħ vor! Drehipuse in der Quantenechanik In der Atophysik spiet der Drehipus eine entrae, entscheidende Roe. Für Potentiae it Vr) Vr), Zentrapotentiae ist der Drehipus eine Erhatungsgröße. Der Drehipus hat die

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 7. Übung Lösungen 7.1 Pende im Fahrstuh In einem Fahrstuh,

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Allgemeine Mechanik Musterlösung 7.

Allgemeine Mechanik Musterlösung 7. Allgemeine Mechanik Musterlösung 7. HS 204 Prof. Thomas Gehrmann Übung. Lagrange-Funktion eines geladenen Teilchens Die Lagrange-Funktion für ein Teilchen der Ladung q in elektrischen und magnetischen

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 9 (Fortsetzung) (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr