1.3 Primitiv rekursive und µ-rekursive Funktionen

Größe: px
Ab Seite anzeigen:

Download "1.3 Primitiv rekursive und µ-rekursive Funktionen"

Transkript

1 Definition 1.11 Die Klasse der primitiv rekursiven Funktionen (a) Basisfunktionen: (1.) die konstanten Funktionen c (c N) (2.) die Projektionen Π m i (x 1,...,x m ) = x i (1 i m) (3.) die Nachfolgerfunktion s(n) = n + 1 (b) Abschlusseigenschaften: (4.) Komposition: g : N k N, h 1,...,h k : N m N : f(x 1,...,x m ) = g(h 1 (x 1,...,x m ),...,h k (x 1,...,x m )) (5.) Primitive Rekursion: g : N k N, h : N k+2 N : f(0, x 1,...,x k ) = g(x 1,...,x k ) f(n+1, x 1,...,x k ) = h(f(n, x 1,...,x k ), n, x 1,...,x k ) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 45 / 309

2 Alle primitiv rekursiven Funktionen sind total und (intuitiv) berechenbar. Frage: Sind dies genau die totalen und berechenbaren Funktionen? Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 46 / 309

3 Beispiele: (1.) add : N 2 N : add(0, x) = x (= Π 1 1 (x)) add(n+1, x) = s(add(n, x))(= s(π 3 1 (add(n, x), n, x))) (2.) mult : N 2 N : mult(0, x) = 0 mult(n+1, x) = add(mult(n, x), x) = h(mult(n, x), n, x) mit h(u, v, w) = add(π 3 1 (u, v, w),π3 3 (u, v, w)) (3.) Ist f(v, w, x, y) prim. rek., so auch g(a, b, c) = f(b, b, c, a), denn: g(a, b, c) = f(π 3 2 (a, b, c),π3 2 (a, b, c),π3 3 (a, b, c),π3 1 (a, b, c)). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 47 / 309

4 (4.) u(n) = max(n 1, 0) : u(0) = 0 u(n+1) = n (5.) sub(x, 0) = x sub(x, y + 1) = u(sub(x, y)) (= Π 2 2 (u(n), n)) Dann: sub(x, y) = max(x y, 0) = x y. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 48 / 309

5 (6.) ( ) n 2 = n(n 1) 2 : ( 0 ( 2) = 0, n+1 ) ( 2 = n ) 2 + n (7.) c : N 2 N : c(x, y) = ( x+y+1) ( 2 + x = add( s(add(x,y)) ),Π 2 1 (x, y)) x y c ist Bijektion von N 2 auf N. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 49 / 309

6 Verallgemeinerung,..., : N k+1 N : n 0, n 1,...,n k := c(n 0, c(n 1,...,c(n k, 0)...)) Seien e, f : N N die Umkehrfunktionen zu c: e(c(x, y)) = x, f(c(x, y)) = y, c(e(n), f(n)) = n. Dann : d 0 (n) = e(n) d 1 (n) = e(f(n)). d k (n) = e(f(f(...f(n)...))) }{{} k-mal Es gilt: d i ( n 0, n 1,...,n k ) = n i (0 i k). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 50 / 309

7 Lemma 1.12 Die Funktionen e und f sind primitiv rekursiv. P N ˆ= Prädikat P(n) n P gdw. P(n) gilt. Charakteristische { Funktion zu P: 1 falls P(n) χ P (n) = 0 sonst Definition P(n) ist prim. rekursiv gdw. χ P ist prim. rekursiv. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 51 / 309

8 Beschränkter max-operator: q(n) := max{ x n P(x)} := max({ x x n und P(x)} {0}). Lemma 1.13 Mit P ist auch q primitiv rekursiv. Beweis: q(0) = 0 { n+1 falls P(n+1) q(n+1) = q(n) sonst = q(n)+χ P (n+1) ((n+1) q(n)). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 52 / 309

9 Beschränkter Existenzquantor: Q(n) gdw. x n : P(x) Dann : Q(0) gdw. P(0) Q(n+1) gdw. d.h. χ Q (0) = χ P (0) P(n+1) oder Q(n) χ Q (n+1) = χ P (n+1)+χ Q (n) χ P (n+1) χ Q (n) Lemma 1.14 Mit P ist auch Q primitiv rekursiv. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 53 / 309

10 Beweis zu e, f sind primitiv rekursiv: e (n, m, k) := max{ x n y k : c(x, y) = m} Beh. e ist primitiv rekursiv. Bew.: Definiere P(x, y, m) gdw. c(x, y) = m. Dann gilt: χ P (x, y, m) = 1 ((c(x, y) m)+(m c(x, y))), d.h., P ist primitiv rekursiv. Definiere Q(x, k, m) gdw. y k : c(x, y) = m gdw. y k : P(x, y, m). Q ist primitiv rekursiv nach Lemma e (n, m, k) = max{ x n Q(x, k, m)}, also ist e primitiv rekursiv nach Lemma Es gilt e (n, n, n) = max{ x n y n : c(x, y) = n} = e(n). f (n, m, k) := max{ y n x k : c(x, y) = m} Dann: f (n, n, n) = f(n). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 54 / 309

11 Satz 1.15 Die Klasse der primitiv rekursiven Funktionen stimmt mit der Klasse der LOOP-berechenbaren Funktionen überein. Beweis: : Sei F : N r N LOOP-berechenbar. Es gibt ein LOOP-Programm P, das F berechnet. P enthalte die Variablen x 0, x 1,...,x k (k r). Behauptung: Es gibt eine prim. rekursive Funktion g P : N N: g P ( a 0, a 1,...,a k ) = b 0, b 1,...,b k, wobei a 0, a 1,...,a k die Werte von x 0, x 1,...,x k beim Start und b 0, b 1,...,b k die Werte von x 0, x 1,...,x k beim Halt von P sind. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 55 / 309

12 Beweis Induktion über den Aufbau von P: (i) x i := x j ± c g P (n) = d 0 (n),...,d i 1 (n), d j (n)±c, d i+1 (n),...,d k (n) (ii) Q; R g P (n) = g R (g Q (n)) (iii) LOOP x i DO Q END g P (n) = h(d i (n), n) mit h(0, x) = x h(n+1, x) = g Q (h(n, x)) d.h. h(n, x) = g Q (g Q (...(g }{{ Q (x))...) } n-mal Nun gilt: F(n 1,...,n r ) = d 0 (g P ( 0, n 1,...,n r, 0,...,0 )). }{{} k r Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 56 / 309

13 : Sei F primitiv rekursiv. Behauptung: Es gibt ein LOOP-Programm, das F berechnet. Beweis: Ind. über den Aufbau von F: (i) Basisfunktionen : LOOP-berechenbar. (ii) F(n 1,...,n m ) = g(h 1 (x 1,...,x m ),...,h k (x 1,...,x m )): P F aus P g und P h1,...,p hk. (iii) F(0, x 1,...,x r ) = g(x 1,...,x r ) F(n+1, x 1,...,x r ) = h(f(n, x 1,...,x r ), n, x 1,...,x r ) P F : y := g(x 1,...,x r ); ( mit P g ) k := 0; LOOP n DO y := h(y, k, x 1,...,x r );( mit P h ) k := k + 1 END Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 57 / 309

14 Definition 1.16 (µ-operator) Sei f : N k+1 N. Definiere g : N k N durch Anwendung des µ-operators auf f: g(x 1,...,x k ) = min{ n f(n, x 1,...,x k ) = 0 und m < n : f(m, x 1,...,x k ) N} Dabei: min := undefiniert. Bezeichnung: g = µf. Beispiel: f(x, y) = 1. Dann: g(y) := µf(y) = min{ n f(n, y) = 0} = Ω (undef. Funktion) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 58 / 309

15 Beispiel: f(x, y) = (y + 1) (x + 1) 2. g(y) = µf(y) = min{ n f(n, y) = 0 und m < n : f(m, y) N} = min{ n (y + 1) (n+1) 2 = 0} : n = 0 : (y + 1) (n+1) 2 = y, also: g(0) = 0, n = 1 : (y + 1) (n+1) 2 = y 3, also: g(y) = 1 für 1 y 3, n = 2 : (y + 1) (n+1) 2 = y 8, also: g(y) = 2 für 4 y 8. Damit: g(y) := µf(y) = min{ n (n+1) 2 > y } = max{ n n 2 y } = y. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 59 / 309

16 Definition 1.17 Die Klasse der µ-rekursiven Funktionen (a) Basisfunktionen : konstante Funktionen, Π m i, s. (b) Abschluss: Komposition, prim. Rekursion, µ-operator. Satz 1.18 Die Klasse der µ-rekursiven Funktionen stimmt mit der Klasse der WHILE-berechenbaren Funktionen überein. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 60 / 309

17 Beweis: Es bleibt, den µ-operator und die WHILE-Schleife zu betrachten. : WHILE-Programm: WHILE x i 0 DO Q END Die Funktion h(n, x) liefert den Zustand der Programmvariablen x = x 0,...,x k nach n Ausführungen von Q. Dann: g P (x) = h(µ(d i h)(x), x), wobei µ(d i h)(x) = min{ n d i h(n, x) = 0 und m < n : d i h(m, x) N}. Mit h ist dann g P µ-rekursiv. : Sei g(x) = µf(x). Nach I.V. gibt es ein WHILE-Programm für f. P g : x 0 := 0; y := f(0, x 1,...,x k ); WHILE y 0 DO x 0 := x 0 + 1; y := f(x 0, x 1,...,x k ); END Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 61 / 309

18 Satz 1.19 (Kleene) Für jede n-stellige µ-rekursive Funktion f gibt es zwei (n+1)-stellige, primitiv rekursive Funktionen p und q, sodass sich f wie folgt darstellen lässt: f(x 1,...,x n ) = p(x 1,...,x n,µq(x 1,...,x n )). Beweis: Sei f µ-rekursiv. WHILE-Programm, das f berechnet WHILE-Programm mit nur einer WHILE-Schleife, das f berechnet prim. rek. Funktionen p und q, die f wie oben darstellen. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 62 / 309

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen

Mehr

Mitschrift BFS WS 13/14

Mitschrift BFS WS 13/14 Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden

Mehr

1.4 Die Ackermannfunktion

1.4 Die Ackermannfunktion a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) =

Mehr

Primitiv rekursive Funktionen

Primitiv rekursive Funktionen Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym

Mehr

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert: 3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END

Mehr

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv

Mehr

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14. Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle

Mehr

8. Rekursive und primitiv rekursive Funktionen

8. Rekursive und primitiv rekursive Funktionen 8. Rekursive und primitiv rekursive Funktionen In diesem Abschnitt führen wir eine weitere (letzte) Formalisierung des Berechenbarkeitskonzeptes für Funktionen über den natürlichen Zahlen ein. Hatten wir

Mehr

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2 Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

Grundlagen der Theoretischen Informatik II

Grundlagen der Theoretischen Informatik II 1 Grundlagen der Theoretischen Informatik II Till Mossakowski Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Sommersemester 2015 2 Prädikate Eine Funktion, die nur die Werte 0 und 1 annimmt,

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. primitive Rekursion und µ-rekursion Malte Helmert Gabriele Röger Universität Basel 22. April 2015 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2 LOOP-Programme 1 LOOP-Programme verwenden (jeweils) endlich viele Variablen aus VAR := {X 0,X 1,X 2,...}, oft nur mit X,Y,Z,U,V,W bezeichnet, die als Register fungieren. Slide 1 Def (Meyer/Ritchie). LOOP-Programme

Mehr

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen 6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N

Mehr

ALP I Rekursive Funktionen

ALP I Rekursive Funktionen ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Primitive Rekursion. Alexander Hölzle

Primitive Rekursion. Alexander Hölzle Primitive Rekursion Alexander Hölzle 14.01.2007 Inhaltsverzeichnis Motivation i 1 Rekursive Funktionen 1 1.1 Nicht berechenbare Funktionen........................ 1 1.2 Primitiv rekursive Funktionen.........................

Mehr

Theorie der Informatik (CS206) Fortsetzung LOOP-Programme, primitiv-rekursive Funktionen

Theorie der Informatik (CS206) Fortsetzung LOOP-Programme, primitiv-rekursive Funktionen Theorie der Informatik (CS206) Fortsetzung LOOP-Programme, primitiv-rekursive Funktionen 26. März 2012 Proff Malte Helmert und Christian Tschudin Departement Mathematik und Informatik, Universität Basel

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Theoretische

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Programmieren für Fortgeschrittene

Programmieren für Fortgeschrittene Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2011/12 Programmieren für Fortgeschrittene Rekursive Spezifikationen Die folgende

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!# v 1 Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,

Mehr

Rekursive und primitiv-rekursive Funktionen

Rekursive und primitiv-rekursive Funktionen Rekursive und primitiv-rekursive Funktionen Patrik Lengacher 02. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.1 in [R]. Grundsätzlich wird dieselbe Notation wie in den vorhergehenden Vorträgen verwendet.

Mehr

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123,

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123, GTI µ-rekursive Funktionen Hannes Diener ENC B-0123, diener@math.uni-siegen.de 20. Juni 2. Juli 1 / 31 µ-rekursive Funktionen Kommen wir als nächstes zu unserem dritten Ansatz zur Berechenbarkeit. Diesmal

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Eine partielle Funktion ist eine Relation f A B; für jedes x dom(f) gibt es ein y range(f) mit x f y; wir schreiben statt f A B und x

Mehr

Die primitiv rekursiven Funktionen

Die primitiv rekursiven Funktionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Die primitiv rekursiven

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen WS 2005//06. Prof. Dr. R. Reischuk Institut für Theoretische Informatik

Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen WS 2005//06. Prof. Dr. R. Reischuk Institut für Theoretische Informatik Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen Universität zu Lübeck WS 2005//06 Prof. Dr. R. Reischuk Institut für Theoretische Informatik Oktober 2005 1 2 AKF, UzL WS2004/05

Mehr

Theoretische Informatik SS 03 Übung 4

Theoretische Informatik SS 03 Übung 4 Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Theoretische Informatik und Logik

Theoretische Informatik und Logik Fakultät Informatik, Institut für Theoretische Informatik, Lehrstuhl Automatentheorie Skript Theoretische Informatik und Logik Modul INF-D-330, INF-B-290 Teil 1 - Berechenbarkeit Teil 2 - Komplexitätstheorie

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Die Church-Turing-These

Die Church-Turing-These Die Church-Turing-These Elmar Eder () Die Church-Turing-These 1 / 12 Formale Systeme Formale Systeme µ-partiellrekursive Funktionen Logikkalküle SLD-Resolution (Prolog) Chomsky-Grammatiken Turing-Maschinen

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D.

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D. Kapitel 2 Die natürlichen Zahlen 2.1 Peano-Systeme Definition 2.1. Ein Tripel (D, S, d) mit den Eigenschaften (P1) d D, (P2) S : D D, (P3) S(n) d für alle n D, (P4) S ist injektiv, (P5) Ist M D mit d M

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Die Ackermannfunktion

Die Ackermannfunktion Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Lektion 10: Entscheidbarkeit Kurt-Ulrich Witt Wintersemester 2013/14 Kurt-Ulrich Witt Theoretische Informatik Lektion 10 1/15 Inhaltsverzeichnis Kurt-Ulrich Witt Theoretische Informatik

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Wahlpflichtfach Bachelor Informatik 4. Semester Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Lektion 6: utm- und Kurt-Ulrich Witt Sommersemester 2011 Kurt-Ulrich Witt Diskrete Mathematik Lektion

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet.

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Rückschau 12.11.04 Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Wir haben das Prinzip der Diagonalisierung eingeführt und mit DIAG eine erste nicht rek. aufz. Sprache

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Kapitel 1 Natürliche Zahlen

Kapitel 1 Natürliche Zahlen Kapitel 1 Natürliche Zahlen 1 1 1 Natürliche Zahlen 1.1 Endliche und unendliche Mengen... 3 1.2 Die Theorie der natürlichen Zahlen.. 23 1.1 Endliche und unendliche Mengen 3 1 Natürliche Zahlen Eines der

Mehr

Berechenbarkeitsmodelle

Berechenbarkeitsmodelle Berechenbarkeit 2 Endliche Automaten erkennen nicht alle algorithmisch erkennbaren Sprachen. Kontextfreie Grammatiken erzeugen nicht alle algorithmisch erzeugbaren Sprachen. Welche Berechnungsmodelle erlauben

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

Berechenbarkeit/Entscheidbarkeit

Berechenbarkeit/Entscheidbarkeit Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 12: Termersetzungssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A ist eine

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Die WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Polynome nur zu addieren, multiplizieren oder dividieren ist auf die Dauer langweilig. Polynome können mehr. Zum Beispiel ist es manchmal gar

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Grundlagen der Programm- und Systementwicklung Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Technische Universität München Institut für Informatik Software &

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL LARS KINDLER Dies sind Notizen für ein Seminar an der Universität Duisburg-Essen im Sommersemster 2011. Als Quelle diente das Buch A Course in the Theory of Groups

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr