Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Größe: px
Ab Seite anzeigen:

Download "Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda"

Transkript

1 ALP I µ-rekursive Funktionen WS 2012/2013

2 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert werden kann. Jede Loop-berechenbare Funktion ist auch eine PR-Funktion. Loop-Sprache: - stark beschränkte Programmiersprache nur Addition, Zuweisungen und loop-schleifen sind erlaubt - Loop-Programme terminieren immer. - Die Laufzeit kann genau berechnet werden.

3 Loop-Sprache Syntaktische Komponenten: 3 Schlüsselwörter: Loop, Do, End 4 Sondersymbole: +, -, ;, := Beliebige Variablennamen: x 1, x 2, x 3,... Beliebige Konstanten: 0, 1, 2,... Syntax in BNF: P := x i := x j + c x i := x j c P;P LOOP x i DO P END Wertzuweisungen sequentielle Komposition endliche Schleife

4 Zusammengefast: Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion kann mit Hilfe einer Loop-Schleife berechnet werden und umgekehrt. Addition x 1 + x 2 x 3 x3 := x1 + 0 LOOP x2 DO x3 := x3 + 1 END Berechnet die n-te Fibonacci-Zahl (Eingabe in x n und Ausgabe in x fib ) x 2 := 0; x 1 := x 2 +1; x fib := 0; x n := n; LOOP x n DO END x 2 := x fib + 0 LOOP x 1 x fib := x fib + 1 END x 1 := x 2 + 0

5 Ackermann-Funktion Bis 1926 vermutete Hilbert, dass jede totale berechenbare Funktion primitiv rekursiv ist, bis zwei von seinen Schülern, Ackermann (1928) und Sudan (1927), Funktionen entdeckten, die nicht primitiv rekursiv aber total berechenbar sind. Ackerman-Péter-Funktion ack :: Integer -> Integer -> Integer ack 0 n = n + 1 ack (m+1) 0 = ack m 1 ack (m+1) (n+1) = ack m (ack (m+1) n)

6 Ackerman-Péter-Funktion ack 0 n = n + 1 ack (m+1) 0 = ack m 1 Reduktionsverlauf: ack (m+1) (n+1) = ack m (ack (m+1) n) ack 2 3 => ack 1 (ack 2 2) => ack 1 (ack 1 (ack 2 1)) m+1 n+1 (m+1) rekursive Aufrufe von (n-1) => ack 1 (ack 1 (ack 1 (ack 2 0))) 4 rekursive Aufrufe von 1 => ack 1 (ack 1 (ack 1 (ack 1 1))) => ack 1 (ack 1 (ack 1 (ack 0 (ack 1 0)))) => ack 1 (ack 1 (ack 1 (ack 0 (ack 0 1)))) => ack 1 (ack 1 (ack 1 (ack 0 2))) => ack 1 (ack 1 (ack 1 3)) => ack 1 (ack 1 (ack 0 (ack 1 2))) => ack 1 (ack 1 (ack 0 (ack 0 (ack 1 1)))) => ack 1 (ack 1 (ack 0 (ack 0 (ack 0 (ack 1 0))))) => ack 1 (ack 1 (ack 0 (ack 0 (ack 0 (ack 0 1))))) => ack 1 (ack 1 (ack 0 (ack 0 (ack 0 2)))) => ack 1 (ack 1 (ack 0 (ack 0 3))) => ack 1 (ack 1 (ack 0 4)) => ack 1 (ack 1 5) => ack 1 (ack 0 (ack 1 4)) => ack 1 (ack 0 (ack 0 (ack 1 3))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 1 2)))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 1))))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 0)))))) =>...

7 ... => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 0)))))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 1)))))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 2))))) => ack 1 (ack 0 (ack 0 (ack 0 (ack 0 3)))) => ack 1 (ack 0 (ack 0 (ack 0 4))) => ack 1 (ack 0 (ack 0 5)) => ack 1 (ack 0 6) ack 0 n = n + 1 => ack 1 7 ack (m+1) 0 = ack m 1 => ack 0 (ack 1 6) ack (m+1) (n+1) = ack m (ack (m+1) n) => ack 0 (ack 0 (ack 1 5)) => ack 0 (ack 0 (ack 0 (ack 1 4))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 1 3)))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 2))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 1)))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 1 0))))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 1))))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 2)))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 (ack 0 3))))) => ack 0 (ack 0 (ack 0 (ack 0 (ack 0 4)))) => ack 0 (ack 0 (ack 0 (ack 0 5))) => ack 0 (ack 0 (ack 0 6)) => ack 0 (ack 0 7)) => ack 0 8 => 9 Die Argumente bewegen sich nicht immer in Richtung der Abbruchbedingung.

8 ... ack 4 2 => (19,729 Ziffern) Ackermann-Funktion

9 die Folge n+1, n+m, n*m, n m, ab hier reichen unsere bekannten arithmetischen Operationen nicht mehr Idee Up-Arrow-Notation von Knuth a b = a x a x x a b Wiederholungen von a a b = a a a b Wiederholungen von a = a ( a (a a) ) = a a b = a a a b Wiederholungen von a a a a... b Wiederholungen von a

10 Up-Arrow-Notation von Knuth m Wiederholungen von im allgemeinen: a m b = a b = a m-1 a m-1 m-1 a b Wiederholungen von a = a m-1 (a m-1 (a m-1 a) ) Beispiel: 2 3 = 2 x 2 x 2 = = = 2 4 = 2 x 2 x 2 x 2 = = = 2 4 = = 2 16 = 65536

11 ack(0,n) = n+1 Ack(m,n) ack(1,n) = n+2 = 2 + (n+3) -3 ack(2,n) = 2n+3 = 2 x (n+3) -3 ack(3,n) = 2 (n+3) -3 = 2 "" (n+3) -3 ack(4,n) = = 2 (n+3) -3 ack(5,n) = = 2 (n+3) -3 ack(m,n) = = 2 m-2 (n+3) -3

12 Ackermann-Funktion - verschachtelte Rekursion. Das bedeutet, ein Argument des rekursiven Aufrufs muss selbst erst rekursiv berechnet werden - nicht primitiv rekursiv, aber berechenbar - wächst schneller als jede primitiv-rekursive Funktion - eine Komplexitätsanalyse wird unmöglich - der Verwaltungsaufwand des Ausführungsstapels ist extrem groß

13 Sudan-Funktion Definition: in Haskell: sud :: Integer -> Integer -> Integer -> Integer sud 0 x y = x+y sud n x 0 = x sud n x y = sud (n-1) (sud n x (y-1)) ((sud n x (y-1)) + (y-1) + 1) prelude> sud it :: Integer ( secs, bytes)

14 µ-rekursive Funktionen 1. Alle primitiv-rekursive Funktionen sind auch µ-rekursive Funktionen. 2. mit dem µ-operator als weiterem Konstruktionsoperator wird die Klasse der primitiv-rekursiven Funktionen auf die Klasse der partiellen µ-rekursiven Funktionen erweitert 3. und damit die Klasse der intuitiv berechenbaren Funktionen konstruiert.

15 Der unbeschränkte µ-operator Sei f : N m+1 N eine partielle Funktion, dann ist die partielle Funktion µf : N m N definiert durch: µf (x 1,...,x m ) = min M (f, x 1,...,x m ) falls M(f, x 1,...,x m ) θ undefiniert sonst wobei die Menge M ( f, x 1,..., x m ) als { n 0 f (x 1,...,x m, n ) = 0 und f (x 1,...,x m, k ) für alle n k definiert ist }

16 Der unbeschränkte µ-operator Sei b eine Funktion, die angewendet auf x, y (natürliche Zahlen) testet, ob y eine Primzahl und gleichzeitig größer als x ist. b (x, y) = 1 falls y eine Primzahl größer als x ist 0 sonst Folgende Funktion liefert die kleinste Primzahl, die größer als x ist: f(x) = µ y [ 1 - b(x, y) ] liefert das kleinste y, sodass die Bedingung erfüllt wird. Sei g (n, y) = 1 - b(n, y) y := 0; while g(n,y) 0 do y := y+1; f := y;

17 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Register Maschinen ALP II Turing-Maschine Theoretische Informatik I λ-kalkül Kombinatorische Logik µ-rekursive Funktionen Allgemein rekursive Funktionen

18 µ-rekursive Funktionen Effektiv Berechenbare Funktionen Primitiv Rekursive Funktionen Allgemein rekursive Funktionen Mathematische Modelle µ-rekursive Funktionen Loop- Berechenbar While- Berechenbar Maschinelle Modelle

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

ALP I Rekursive Funktionen

ALP I Rekursive Funktionen ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive

Mehr

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14. Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

Grundlagen der Theoretischen Informatik II

Grundlagen der Theoretischen Informatik II 1 Grundlagen der Theoretischen Informatik II Till Mossakowski Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Sommersemester 2015 2 Prädikate Eine Funktion, die nur die Werte 0 und 1 annimmt,

Mehr

8. Rekursive und primitiv rekursive Funktionen

8. Rekursive und primitiv rekursive Funktionen 8. Rekursive und primitiv rekursive Funktionen In diesem Abschnitt führen wir eine weitere (letzte) Formalisierung des Berechenbarkeitskonzeptes für Funktionen über den natürlichen Zahlen ein. Hatten wir

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Primitiv rekursive Funktionen

Primitiv rekursive Funktionen Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym

Mehr

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit

1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:

Mehr

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2 Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. primitive Rekursion und µ-rekursion Malte Helmert Gabriele Röger Universität Basel 22. April 2015 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle

Mehr

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv

Mehr

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 19 Harald Krottmaier Sven Havemann Agenda Begriffe Turingmaschine Beispiele Berechenbarkeit Hilfsmittel Beispiele WS2007 2 Motivation Sind Computer allmächtig? Präziser:

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen

Mehr

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert: 3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Eine partielle Funktion ist eine Relation f A B; für jedes x dom(f) gibt es ein y range(f) mit x f y; wir schreiben statt f A B und x

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie (Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation

Mehr

Berechenbarkeitsmodelle

Berechenbarkeitsmodelle Berechenbarkeit 2 Endliche Automaten erkennen nicht alle algorithmisch erkennbaren Sprachen. Kontextfreie Grammatiken erzeugen nicht alle algorithmisch erzeugbaren Sprachen. Welche Berechnungsmodelle erlauben

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider

Mehr

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Wahlpflichtfach Bachelor Informatik 4. Semester Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Lektion 6: utm- und Kurt-Ulrich Witt Sommersemester 2011 Kurt-Ulrich Witt Diskrete Mathematik Lektion

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn November 2016 Algorithmen und Programme Algorithmus = Schritt-für-Schritt Vorschrift zur Lösung eines Problems. Formuliert man

Mehr

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15

EINI LW/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15 EINI LW/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 14/15 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 19 Entscheidbarkeit und Berechenbarkeit In der letzten Vorlesung haben wir verschiedene mathematische Operationen

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (1)

Algorithmen & Programmierung. Rekursive Funktionen (1) Algorithmen & Programmierung Rekursive Funktionen (1) Berechnung der Fakultät Fakultät Die Fakultät N! einer nichtnegativen ganzen Zahl N kann folgendermaßen definiert werden: d.h. zur Berechnung werden

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Die Ackermannfunktion

Die Ackermannfunktion Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv

Mehr

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen

Mehr

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2 LOOP-Programme 1 LOOP-Programme verwenden (jeweils) endlich viele Variablen aus VAR := {X 0,X 1,X 2,...}, oft nur mit X,Y,Z,U,V,W bezeichnet, die als Register fungieren. Slide 1 Def (Meyer/Ritchie). LOOP-Programme

Mehr

JavaScript. Dies ist normales HTML. Hallo Welt! Dies ist JavaScript. Wieder normales HTML.

JavaScript. Dies ist normales HTML. Hallo Welt! Dies ist JavaScript. Wieder normales HTML. JavaScript JavaScript wird direkt in HTML-Dokumente eingebunden. Gib folgende Zeilen mit einem Texteditor (Notepad) ein: (Falls der Editor nicht gefunden wird, öffne im Browser eine Datei mit der Endung

Mehr

Funktionale Programmiersprachen

Funktionale Programmiersprachen Funktionale Programmiersprachen An den Beispielen Haskell und Erlang Übersicht Programmiersprachen λ-kalkül Syntax, Definitionen Besonderheiten von funktionalen Programmiersprache, bzw. Haskell Objektorientierte

Mehr

Syntax von Programmiersprachen

Syntax von Programmiersprachen "Grammatik, die sogar Könige zu kontrollieren weiß... aus Molière, Les Femmes Savantes (1672), 2. Akt Syntax von Programmiersprachen Prof. Dr. Christian Böhm in Zusammenarbeit mit Gefei Zhang WS 07/08

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

1.4 Die Ackermannfunktion

1.4 Die Ackermannfunktion a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) =

Mehr

Übung zu Einführung in die Informatik # 11

Übung zu Einführung in die Informatik # 11 Übung zu Einführung in die Informatik # 11 Tobias Schill tschill@techfak.uni-bielefeld.de 22. Januar 2016 Aktualisiert am 22. Januar 2016 um 11:36 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* Aufgabe

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 22 Repräsentierbarkeit in einer Theorie Wir haben schon in der zwanzigsten Vorlesung davon gesprochen, wann eine arithmetische

Mehr

JAVA-Datentypen und deren Wertebereich

JAVA-Datentypen und deren Wertebereich Folge 8 Variablen & Operatoren JAVA 8.1 Variablen JAVA nutzt zum Ablegen (Zwischenspeichern) von Daten Variablen. (Dies funktioniert wie beim Taschenrechner. Dort können Sie mit der Taste eine Zahl zwischenspeichern).

Mehr

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen 6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N

Mehr

Programmieren für Fortgeschrittene

Programmieren für Fortgeschrittene Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2011/12 Programmieren für Fortgeschrittene Rekursive Spezifikationen Die folgende

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Wintersemester 2009/10 Prof. Dr. Dr. h.c. Manfred Broy Unter Mitarbeit von Dr. K. Spies, Dr. M. Spichkova, L. Heinemann, P.

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung Eine Funktion wird als Funktion höherer Ordnung bezeichnet, wenn Funktionen als Argumente verwendet werden, oder wenn eine Funktion als Ergebnis zurück gegeben wird. Beispiel: twotimes :: ( a -> a ) ->

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

3. Grundanweisungen in Java

3. Grundanweisungen in Java 3. Grundanweisungen in Java Die Grundanweisungen entsprechen den Prinzipien der strukturierten Programmierung 1. Zuweisung 2. Verzweigungen 3. Wiederholungen 4. Anweisungsfolge (Sequenz) Die Anweisungen

Mehr

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123,

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123, GTI µ-rekursive Funktionen Hannes Diener ENC B-0123, diener@math.uni-siegen.de 20. Juni 2. Juli 1 / 31 µ-rekursive Funktionen Kommen wir als nächstes zu unserem dritten Ansatz zur Berechenbarkeit. Diesmal

Mehr

C++ - Einführung in die Programmiersprache Schleifen

C++ - Einführung in die Programmiersprache Schleifen C++ - Einführung in die Programmiersprache Schleifen Bedingung wiederhole ja Anweisung Anweisung Anweisung Leibniz Universität IT Services Anja Aue Schleifen Iterationsanweisungen. Wiederholung von Anweisungsblöcken.

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Mitschrift BFS WS 13/14

Mitschrift BFS WS 13/14 Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden

Mehr

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme

zu große Programme (Bildschirmseite!) zerlegen in (weitgehend) unabhängige Einheiten: Unterprogramme Bisher Datentypen: einfach Zahlen, Wahrheitswerte, Zeichenketten zusammengesetzt Arrays (Felder) zur Verwaltung mehrerer zusammengehörender Daten desselben Datentypes eindimensional, mehrdimensional, Array-Grenzen

Mehr

Der erste Gödelsche Unvollständigkeitssatz

Der erste Gödelsche Unvollständigkeitssatz Der erste Gödelsche Unvollständigkeitssatz Referent: Tobias Gleißner 29. Januar 2013 (syntaktischer Aufbau eines arithmetischen Terms) - Jede Zahl ist ein Term - Jede Variable ist ein Term - Sind und Terme,

Mehr

Elementare Konzepte von

Elementare Konzepte von Elementare Konzepte von Programmiersprachen Teil 1: Bezeichner, Elementare Datentypen, Variablen, Referenzen, Zuweisungen, Ausdrücke Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Bezeichner

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

3.4 Struktur von Programmen

3.4 Struktur von Programmen 3.4 Struktur von Programmen Programme sind hierarchisch aus Komponenten aufgebaut. Für jede Komponente geben wir Regeln an, wie sie aus anderen Komponenten zusammengesetzt sein können. program ::= decl*

Mehr

Berechenbarkeit/Entscheidbarkeit

Berechenbarkeit/Entscheidbarkeit Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2014 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2014) 0. Organisatorisches und Überblick 1 / 16

Mehr

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte

Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In

Mehr

Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1)

Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1) Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1) Anweisungen: Eingabeanweisungen, z.b. Eingabe: x Ausgabeanweisungen, z.b. Ausgabe: Das Maximum ist, max Die Symbole x und max werden

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

Einführung in die Informatik Algorithms

Einführung in die Informatik Algorithms Einführung in die Informatik Algorithms Vom Problem zum Algorithmus und zum Programm Wolfram Burgard Cyrill Stachniss 1.1 Motivation und Einleitung In der Informatik sucht man im Normalfall nach Verfahren

Mehr

Programmierkurs Python I

Programmierkurs Python I Programmierkurs Python I Michaela Regneri & Stefan Thater Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Winter 2010/11 Übersicht Kurze Wiederholung: while Sammeltypen (kurz

Mehr

1 Syntax von Programmiersprachen

1 Syntax von Programmiersprachen 1 Syntax von Programmiersprachen Syntax ( Lehre vom Satzbau ): formale Beschreibung des Aufbaus der Worte und Sätze, die zu einer Sprache gehören; im Falle einer Programmier-Sprache Festlegung, wie Programme

Mehr

Theoretische Informatik II

Theoretische Informatik II Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Wintersemester 2007/2008 B. Beckert Theoretischen Informatik II: WS 2007/08 1 / 179 Dank Diese Vorlesungsmaterialien basieren

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

Praktische Informatik I Der Imperative Kern Rekursive Funktionen

Praktische Informatik I Der Imperative Kern Rekursive Funktionen Praktische Informatik I Der Imperative Kern Rekursive Funktionen Prof. Dr. Stefan Edelkamp Institut für Künstliche Intelligenz Technologie-Zentrum für Informatik und Informationstechnik (TZI) Am Fallturm

Mehr

Rekursion und Induktion

Rekursion und Induktion Rekursion und Induktion Rekursion und Induktion Quick Start Informatik Theoretischer Teil WS2011/12 11. Oktober 2011 Rekursion und Induktion > Rekursion > Was ist Rekursion? Definition der Rekursion fu

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung:

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung: 2.4 Schleifen Schleifen beschreiben die Wiederholung einer Anweisung bzw. eines Blocks von Anweisungen (dem Schleifenrumpf) bis eine bestimmte Bedingung (die Abbruchbedingung) eintritt. Schleifen unterscheiden

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Java - Schleifen. Bedingung. wiederhole. Anweisung Anweisung Anweisung. Leibniz Universität IT Services Anja Aue

Java - Schleifen. Bedingung. wiederhole. Anweisung Anweisung Anweisung. Leibniz Universität IT Services Anja Aue Java - Schleifen Bedingung wiederhole ja Anweisung Anweisung Anweisung Leibniz Universität IT Services Anja Aue Anweisung int zahl; zahl = 2; zahl = zahl * 10; int zahl; ; Jede Anweisung endet mit einem

Mehr

1.4.12 Sin-Funktion vgl. Cos-Funktion

1.4.12 Sin-Funktion vgl. Cos-Funktion .4. Sgn-Funktion Informatik. Semester 36 36.4.2 Sin-Funktion vgl. Cos-Funktion Informatik. Semester 37 37 .4.3 Sqr-Funktion Informatik. Semester 38 38.4.4 Tan-Funktion Informatik. Semester 39 39 .5 Konstanten

Mehr