Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1"

Transkript

1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

2 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1

3 Verschiedene Winkel Vermessungsaufgaben v 1 Mag. DI Rainer Sickinger Trigonometrie 3 / 1

4 Wh. Umfang eines Kreises Definition (Kreiszahl π) Die Zahl π ist das Verhältnis des Umfangs eines Kreises zu seinem Durchmesser. Also: Daraus folgt nun: π = Umfang (u) Durchmesser (d) = u 2r Satz (Umfang eines Kreises) Sei d R der Durchmesser und r R der Radius eines Kreises dann berechnet sich der Umfang u R wie folgt: GeoGebra (Wiederholung Umfang Kreis Datei) u = d π = 2rπ

5 Bogenmaß Betrachtet man nun den Einheitskreis mit dem Radius r = 1 so ergibt sich der folgende Umfang: u = 2π v 1 Mag. DI Rainer Sickinger Trigonometrie 5 / 1

6 Bogenmaß Definition (Bogenmaß, Radiant) Ein Winkel in rad (Radiant) oder im Bogenmaß ist die Länge des entsprechenden Kreisbogens im Einheitskreis. Praktische Erarbeitung am Modell v 1 Mag. DI Rainer Sickinger Trigonometrie 6 / 1

7 Bogenmaß Bis jetzt haben wir Winkel immer in Grad angegeben. Man kann den Winkel jedoch auch über ein Kreisstück angeben. v 1 Mag. DI Rainer Sickinger Trigonometrie 7 / 1

8 Bogenmaß Wir verwenden hierzu wieder den Einheitskreis. Will man beispielsweise den Winkel von 45 im Einheitskreis darstellen sieht dies so aus: v 1 Mag. DI Rainer Sickinger Trigonometrie 8 / 1

9 Bogenmaß Wie kann man das Bogenmaß jetzt berechnen? Wir wissen bereits, dass der Umfang des Einheitskreises 2π ist. Wir benötigen jetzt einen Teil des Umfangs, der dem Kreisabschnitt bei einem Winkel von 45 entspricht. Dazu stellen wir uns zuerst die Frage, wie groß der Kreisabschnitt bei nur 1 wäre. Die Antwort: 2π 360 Wenn wir jetzt wissen möchten, wie groß der Winkel im Bogenmaß bei 45 ist, dann müssen wir nur noch diesen Wert mal 45 rechnen: 2π = 2π = π = π 4 Somit haben wir den Winkel 45 in das Bogenmaß umgerechnet! v 1 Mag. DI Rainer Sickinger Trigonometrie 9 / 1

10 Bogenmaß Diese Vorgangsweise funktioniert für jeden beliebigen Winkel α. Wollen wir also α in einen Winkel α R in Rad umrechnen, so überlegen wir uns wieder das Bogenmaß von 1, welches durch 2π 360 gegeben ist. Diesen Wert multiplizieren wir mit dem Winkel α und kommen somit auf folgende Formel: α R = 2π 360 α = α 360 2π = α 180 π v 1 Mag. DI Rainer Sickinger Trigonometrie 10 / 1

11 Bogenmaß Wir fassen also zusammen: Wollen wir einen Winkel α in Grad in einen Winkel α R in Rad umrechnen, verwenden wir folgende Formel: α R = α 360 2π = α 180 π v 1 Mag. DI Rainer Sickinger Trigonometrie 11 / 1

12 Bogenmaß Daraus folgt nun sofort die Umrechnung von Rad in Grad: α R = α 180 π 180α R = απ 180 π α R = α α = 180 π α R v 1 Mag. DI Rainer Sickinger Trigonometrie 12 / 1

13 Übung Wir wissen: α R = α π und α = π α R. 1 Transferieren Sie die folgenden Winkel von Grad in Rad: 0, 45, 90, 180, 225, 270, 315, Transferieren Sie die folgenden Winkel von Rad in Grad: π 6 rad, 3π 4 rad, 5π 2 rad, 3π rad v 1 Mag. DI Rainer Sickinger Trigonometrie 13 / 1

14 Graph der Sinus und Kosinus Funktion Warum die Graphen so aussehen wie sie aussehen erarbeiten wir mit GeoGebra! GeoGebra (Sinus, Cosinus, Tangens am Einheitskreis) v 1 Mag. DI Rainer Sickinger Trigonometrie 14 / 1

15 Graph der Sinus und Kosinus Funktion Die Graphen der Sinus- und Kosinusfunktion sehen also wie folgt aus: Sinus Nullstellen: N s = (0 + n π 0) für alle n Z Kosinus Nullstellen: N c = ( π 2 + n π 0) für alle n Z v 1 Mag. DI Rainer Sickinger Trigonometrie 15 / 1

16 Graph der Sinus und Kosinus Funktion Satz (Sinus und Kosinus sind periodische Funktionen) Für alle x R gilt: und sin(x + 2π) = sin(x) cos(x + 2π) = cos(x) Bemerkung: Man sagt auch Sinus und Kosinus sind periodische Funktionen mit Periodenlänge 2π. GeoGebra (Periodizität Sinus Cosinus Datei ) v 1 Mag. DI Rainer Sickinger Trigonometrie 16 / 1

17 Graph der Sinus und Kosinus Funktion Zusammenhang sin und cos Verschiebt man den Graphen der Sinusfunktion um π 2 nach links, so deckt sie sich mit der Cosinusfunktion. Es gilt also: cos(x) = sin(x + π 2 ) GeoGebra (Zusammenhang sin cos) v 1 Mag. DI Rainer Sickinger Trigonometrie 17 / 1

18 Graph der Sinus und Kosinus Funktion Eigenschaften der Sinus- und Cosinusfunktion D = R W = [ 1; 1] Nullstellen: Sinus: N s = (0 + n π 0) für alle n Z Cosinus: N c = ( π 2 + n π 0) für alle n Z Schnittpunkt mit y-achse Sinus: P s = (0 0) Cosinus: P c = (0 1) Monotonie Sinus: streng monoton steigend in ( π 2 + 2nπ; π 2 + 2nπ), für n Z streng monoton fallend in ( π 2 + 2nπ; 3π 2 + 2nπ), für n Z Cosinus: streng monoton steigend in ( π + 2nπ; 2nπ), für n Z streng monoton fallend in (2nπ; π + 2nπ), für n Z v 1 Mag. DI Rainer Sickinger Trigonometrie 18 / 1

19 Graph der Sinus und Kosinus Funktion Parameter der Sinus- und Cosinusfunktionen Seien f (x) = a sin(bx + c) + d und g(x) = a cos(bx + c) + d zwei Sinus- und Cosinusfunktionen. Die Parameter a, b, c und d beeinflussen das Aussehen dieser Funktionen: Veränderung von a bewirkt eine Streckung/Stauchung in Richtung der y-achse um den Faktor a. Veränderung von b bewirkt eine Streckung/Stauchung in Richtung der x-achse um den Faktor 1 b. Veränderung von c bewirkt eine Verschiebung entlang der x-achse um den Faktor c b. Veränderung von d bewirkt eine Verschiebung entlang der y-achse um d. GeoGebra (parametersincos) v 1 Mag. DI Rainer Sickinger Trigonometrie 19 / 1

20 Steigungswinkel einer Geraden Definition (Drehrichtung rechts, im Uhrzeigersinn, oder auch im mathematisch negativen Drehsinn ) Es sei eine Kreisfläche gegeben, die sich um ihren Mittelpunkt dreht und in Richtung der Drehachse betrachtet wird. Beschreiben nun Punkte der Fläche bei der Drehung eine erst nach oben, dann nach rechts verlaufende Linie, so ist die Drehrichtung rechts, im Uhrzeigersinn, oder auch im mathematisch negativen Drehsinn. v 1 Mag. DI Rainer Sickinger Trigonometrie 20 / 1

21 Steigungswinkel einer Geraden Definition ( Drehrichtung links, im Gegenuhrzeigersinn, oder auch im mathematisch positiven Drehsinn ) Es sei eine Kreisfläche gegeben, die sich um ihren Mittelpunkt dreht und in Richtung der Drehachse betrachtet wird. Beschreiben nun Punkte der Fläche bei der Drehung eine erst nach oben, dann nach links verlaufende Linie, so ist die Drehrichtung links, im Gegenuhrzeigersinn, oder auch im mathematisch positiven Drehsinn. v 1 Mag. DI Rainer Sickinger Trigonometrie 21 / 1

22 Definition (Steigungswinkel einer Geraden) Der Steigungswinkel einer Geraden ist derjenige im mathematisch positiven Sinn gemessene Winkel α, den die Gerade mit der positiven x-achse einschließt. v 1 Mag. DI Rainer Sickinger Trigonometrie 22 / 1

23 Gegeben sei eine Funktion f (x) = kx + d: Wie am eingezeichneten Steigungsdreieck schon zu sehen ist, hängt der Winkel von der Steigung ab. In diesem rechtwinkligen Dreieck kennen wir zwei Katheten, und somit kommt der Tangens zum Einsatz. Sofern die Gerade keine Senkrechte ist (dann ist k nicht definiert), gilt nämlich: GeoGebra (Steigungswinkel berechnen) tan(α) = Gegenkathete Ankathete = k 1 = k. v 1 Mag. DI Rainer Sickinger Trigonometrie 23 / 1

24 Eigenschaften des Steigungswinkels Man kann den Steigungswinkel an jeder Stelle der Funktion ablesen, indem man eine Parallele zur x-achse zeichnet und den Winkel zwischen der Funktion und dieser Parallele betrachtet. Der Steigungswinkel ist unabhängig von d Der Steigungswinkel hängt von k ab. v 1 Mag. DI Rainer Sickinger Trigonometrie 24 / 1

25 Das führt uns zu folgendem Satz: Satz (Berechnung des Steigungswinkels für α < 90 ) Sei α der Steigungswinkel einer Geraden (Graph der Funktion f (x) = kx + d) mit α < 90 dann gilt k = tan(α) und α = arctan(k). Bemerkung: Bei α < 90 ist die Steigung k Positiv! Beispiel: Gegeben sei f (x) = 2 3x 1. Gesucht ist nun der Steigungswinkel des Graphen der Funktion. Wegen dem Satz wissen folgt nun tan(α) = 2 3 α = arctan( 2 3 ) 33, 7 v 1 Mag. DI Rainer Sickinger Trigonometrie 25 / 1

26 Was machen wir aber wenn die Steigung k der Funktion f (x) = kx + d negativ wird? GeoGebra (Steigungswinkel berechnen) v 1 Mag. DI Rainer Sickinger Trigonometrie 26 / 1

27 Gegeben sei der Graph der Funktion f (x) = 1 x + 1. Gesucht ist ihr Steigungswinkel. 2 Wenn wir wie gewohnt vorgehen, erhalten wir mit dem Taschenrechner arctan( 1 2 ) 26, 6. Der negative Winkel ist dabei so zu deuten, dass der Winkel im mathematisch negativen Sinn (also im Uhrzeigersinn) überstrichen wird. So sieht es aus: Den Steigungswinkel erhalten wir, indem wir den gestreckten Winkel (180 ) addieren: tan(α ) = 1 2 α = arctan( 1 ) 26, 6 2 α = α = 153, 4 v 1 Mag. DI Rainer Sickinger Trigonometrie 27 / 1

28 Dies führt uns zu folgendem finalen Satz: Satz (Steigungswinkel berechnen) Gegeben sei eine Funktion f (x) = kx + d. Den Steigungswinkel α des Graphen von f berechnet man nun wie folgt. Ist k 0 so gilt ist k < 0 so gilt α = arctan(k) α = arctan(k) Bemerkung: Die Berechnung von α ist unabhängig von d. v 1 Mag. DI Rainer Sickinger Trigonometrie 28 / 1

29 Beispiel 1 Gegeben seien die beiden Punkte A = ( 4 1) und B = (1, 5 4) der Funktion f. Finden Sie die Geradengleichung. 2 Gegeben seien die beiden Punkte C = (0, 5 2) und D = (8, 2) der Funktion g. Finden Sie die Geradengleichung. 3 Berechnen Sie die Steigungswinkel α von f und β von g. 4 Geben Sie den Schnittwinkel der beiden Geraden an. v 1 Mag. DI Rainer Sickinger Trigonometrie 29 / 1

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Zusammenfassung: Sinus- und Kosinusfunktion

Zusammenfassung: Sinus- und Kosinusfunktion LGÖ Ks h -stündig 96 Zusammenfassung: Sinus- und Kosinusfunktion Sinus und Kosinus am rechtwinkligen Dreieck Für einen Winkel mit 9 gilt: Hpotenuse Gegenkathete Gegenkathete sin = Hpotenuse Ankathete cos

Mehr

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid.

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid. Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen LehrerInnenteam m/ Mag. Wolfgang Schmid Unterlagen Um die Größe eines Winkels anzugeben gibt es verschiedenee

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

F u n k t i o n e n Trigonometrische Funktionen

F u n k t i o n e n Trigonometrische Funktionen F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Was mag das sein? Wir haben auch hier wieder eine Grundform, in die sich alle trigonometrischen Funktionen pressen lassen, mit denen wir zu tun haben werden: f(x) = a sin(bx

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

Aufgaben zum Basiswissen 10. Klasse

Aufgaben zum Basiswissen 10. Klasse Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT

Verlauf Material LEK Glossar Lösungen. Schritt für Schritt erklärt Sinus und Kosinus. Florian Borges, Traunstein VORANSICHT Reihe 9 S Verlauf Material Schritt für Schritt erklärt Sinus und Kosinus Florian Borges, Traunstein y 5 6 R ϕ( t ) 7 0 Die Sinusfunktion entsteht durch Projektion eines rotierenden Zeigers auf die y-achse.

Mehr

Übung 2 vom

Übung 2 vom Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?

Mehr

Experimente mit trigonometrischen Funktionen

Experimente mit trigonometrischen Funktionen Mathematik und ihre Didaktik Uni Bayreuth Sinus Sachsen-Anhalt Experimente mit trigonometrischen Funktionen Eine Sammlung von interaktiven Arbeitsblättern zur vertieften Betrachtung der Funktionen sin

Mehr

Trigonometrie. Winkelfunktionen und Einheitskreis

Trigonometrie. Winkelfunktionen und Einheitskreis Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

21 Winkelfunktionen

21 Winkelfunktionen Winkelfunktionen. Berechnungen am rechtwinkligen Dreieck Ein Dreieck, in dem ein Winkel genau 90 hat nennt man ein rechtwinkliges Dreieck. Für die Dreiecksseiten hat man hier verschiedene Bezeichnungen

Mehr

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle

Sinus, Cosinus und Tangens. Sinus, Cosinus und Tangens. Gruppenmitglieder: Gruppenmitglieder: Station Aufgabenstellung Kontrolle Sinus, Cosinus und Tangens Sinus, Cosinus und Tangens Gruppenmitglieder: Gruppenmitglieder: Bearbeitet gemeinsam die Aufgabenstellungen, die bei den einzelnen Stationen bereitliegen (in beliebiger Reihenfolge!

Mehr

Einführung in die Trigonometrie

Einführung in die Trigonometrie Einführung in die Trigonometrie Sinus, Kosinus, Tangens am rechtwinkligen Dreieck und am Einheitskreis Monika Sellemond, Anton Proßliner, Martin Niederkofler Thema Stoffzusammenhang Klassenstufe Trigonometrie

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013

Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013 Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 =

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 = Trriigonomettrriische Funkttiionen Bezeichnungen Das Wort Trigonometrie stammt aus dem Griechischen: τρι (tri) bedeutet drei und γονυ (gony) Winkel, insgesamt also Dreiwinkligkeit oder Dreiecksberechnung.

Mehr

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken. Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß?

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß? M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius Kreissektor mit Mittelpunktswinkel? die Länge des Kreisbogens für einen Wie berechnet man in einem Kreis mit Radius Kreissektors

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit 5. Trigonometrie 5.. Trigonometrische Terme am Einheitskreis 5... Das olarkoordinatensstem Man kann die Lage eines unktes im -dimensionalen Raum folgendermaßen

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x)

mathphys-online TRIGONOMETRISCHE FUNKTIONEN y-achse x-achse Graph von sin(x) Graph von cos(x) Graph von tan(x) TRIGONOMETRISCHE FUNKTIONEN 5 4 8 7 6 5 4 0 4 5 6 7 8 4 5 Graph von sin(x) Graph von cos(x) Graph von tan(x) x-achse Trigonometrische Funktionen Inhaltsverzeichnis Kapitel Inhalt Seite Winkelfunktionen

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

V4. VORKURSWISSEN: Funktionen

V4. VORKURSWISSEN: Funktionen Prof. Dr. Wolfgang Konen Mathematik, WS06 30.09.06 V4. VORKURSWISSEN: Funktionen INHALT: V4. VORKURSWISSEN: Funktionen... V4.. Allgemeine Funktionseigenschaften... V4.. Funktionsübersicht... 5 4... Polynome

Mehr

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0)

56 Kapitel 6 Reelle Funktionen. B) Quadratische Funktionen: Eine Funktion der Gestalt. f(x) := ax 2 + bx + c (mit a 0) 55 6 Reelle Funktionen 6.1 Beispiele von Funktionen A) Lineare Funktionen: Seien a, b R, a 0. Dann heißt die Funktion f : R R, die durch definiert wird, eine lineare Funktion. 1 f(x) := ax + b Lineare

Mehr

Trigonometrie am rechtwinkligen Dreieck

Trigonometrie am rechtwinkligen Dreieck 1. Geschichtliches Trigonometrie am rechtwinkligen Dreieck Die Trigonometrie ein Teilgebiet der Geometrie, welches sich mit Dreiecken beschäftigt. Sie entstand vor allem aus der frühen stronomie 1, hat

Mehr

Grundlagen IV der Kathetensatz

Grundlagen IV der Kathetensatz Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

16 Trigonometrie: Sinus und Freunde, Arcusfunktionen

16 Trigonometrie: Sinus und Freunde, Arcusfunktionen 6 Trigonometrie: Sinus und Freunde, Arcusfunktionen Jörn Loviscach Versionsstand: 2. Dezember 20, 6:28 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Didaktik der Geometrie 7.1 Didaktik der Geometrie Didaktik der Geometrie 7.2 Inhalte Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen

Mehr

O A B. Ableitung der Winkelfunktionen

O A B. Ableitung der Winkelfunktionen Ableitung der Winkelfunktionen Das Verständnis der Herleitung der Ableitung der Winkelfunktionen sett einiges an Mittelstufenkenntnissen voraus; das meiste davon wird häufig im Unterricht geschlabbert

Mehr

Abitur Mathematik Baden-Württemberg 2012

Abitur Mathematik Baden-Württemberg 2012 Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir wollen einer Zeichnung und nicht dem Taschenrechner mehrere Sinuswerte entnehmen und graphisch darstellen. Falls c = ist, gilt a = sinα. Die Strecken der Länge liegen auf

Mehr

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1.

r Oberflächeninhalt 1 Berechnungen am Kreis O 4r 1.1 Bogenmaß Das Bogenmaß x ist das zu gehörende Verhältnis Bogenlänge, also die 1. Grundwissen Mathematik 0 Berechnungen am Kreis. Bogenmaß Das Bogenmaß ist das zu gehörende Verhältnis Bogenlänge, also die Radius Zahl / r Umrechnungen: r r 0 30 45 60 90 360 0. Kreisteile Sektorfläche:.3

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Grundkompetenzen (Mathematik Oberstufe)

Grundkompetenzen (Mathematik Oberstufe) Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik

Mehr

Die Steigung m wird als Parameter (Platzhalter, der nicht die Variabel ist) festgelegt:

Die Steigung m wird als Parameter (Platzhalter, der nicht die Variabel ist) festgelegt: Lösungen des Wochenplans "Lineare Funktionen" Schuljahr 014/1 Zuerst definieren wir den Zahlenbereich, in dem wir arbeiten: assume(type::real) R Jetzt zu den Aufgaben: Aufgabe 1: Definieren der Funktion

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie?

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie? Einführung Was bedeutet und mit was beschäftigt sich die? Wortkunde: tri bedeutet 'drei' Bsp. Triathlon,... gon bedeutet 'Winkel'/'Eck' Bsp. Pentagon das Fünfeck mit 5 Winkeln metrie bedeutet 'Messung'

Mehr

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 % 5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel

Mehr

Abkürzungen & Begriffe

Abkürzungen & Begriffe A Bedeutungen Abkürzungen & Begriffe Abzisse ist ein normaler x-wert [ Ordinate] arcsin, arccos, arctan sind die korrekten Bezeichnungen für: sin -, cos -, tan -. [Die üblichen Bezeichnungen sin -, cos

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz 2009 Zusammenfassung Wenn es dich schon immer interessiert

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK7 vom 29.9.2016 Komplexe Zahlen und trigonometrische Funktionen VK7.1: exp und ln Denition 1: Für

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 18 In dieser Vorlesung führen wir weitere wichtige Funktionen über ihre Potenzreihen ein. Die Hyperbelfunktionen Der Verlauf

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz

Fit in Mathe. Juni Klassenstufe 10. Trigonometrie mit Sinus- und Kosinussatz Thema Musterlösungen 1 Trigonometrie mit Sinus- und Kosinussatz Vorbemerkungen Für Winkelangaben wird hier, wenn nicht anders angegeben, das Bogenmaß verwendet. Es gilt 1 rad = 360 π 57, bezeichnet das

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Übungsbeispiel 1 1/1 Einheitskreis. Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze.

Übungsbeispiel 1 1/1 Einheitskreis. Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze. Übungsbeispiel 1 1/1 Einheitskreis Wie sind Sinus, Kosinus und Tangens am Einheitskreis definiert? Erkläre anhand einer Skizze. Tipp: rote Folie Übungsbeispiel 2 1/1 Einheitskreis Beispiel 2 Wie lautet

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Trigonometrie. Schülerzirkel Mathematik Schülerseminar

Trigonometrie. Schülerzirkel Mathematik Schülerseminar Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Prof. U. Stephan Wi-Ing 1.2

Prof. U. Stephan Wi-Ing 1.2 Seite 1 von 5 Prof. U. Stephan Wi-Ing 1. inweis: Dateien Starmath.ttf und Starbats.ttf im Verzeichnis C:\WINDOWS\FONTS erforderlich Ich vermisse im Vorspann "Was man weiß, was man wissen sollte" die trigonometrischen

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Die lineare Funktion:

Die lineare Funktion: Die lineare Funktion:. Die allgemeine Form: y=mx+b Sonderfälle: y=b chsenabschnitt b Steigungsdreick m y-änderung sp.: y= - - - - x-änderung x=z - - -. chsenabschnitt b: - x - - sp.: x= Der chsenabschnitt

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

3. Durchführung Modul 1: Winkelfunktionen am Einheitskreis Modul 2: Sinus- und Kosinusfunktionen

3. Durchführung Modul 1: Winkelfunktionen am Einheitskreis Modul 2: Sinus- und Kosinusfunktionen 3. Durchführung Alle Unterrichtsmaterialien sind so gestaltet, dass ein eigenständiges Lernen innerhalb einer Arbeitsgruppe oder alleine möglich ist. Die Schülerinnen und Schüler versuchen zunächst die

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Schulinterner Plan 10

Schulinterner Plan 10 Schulinterner Plan 10 PA Partnerarbeit SV Schülervortrag SK Sachkompetenz SoK Sozialkompetenz Zeit Thema und inhaltliche Schwerpunkte Kernmethode/ Arbeitsform 28h 2h Funktionen und ihre Anwendungen 1.

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN

Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN Kapitel 4 TRIGONOMETRISCHE FUNKTIONEN Fassung vom 9. Dezember 005 Mathematik für Humanbiologen und Biologen 53 4. Periodische Vorgänge 4. Periodische Vorgänge Neben den Wachstumsprozessen spielen die periodischen

Mehr