Data Warehousing und Data Mining

Größe: px
Ab Seite anzeigen:

Download "Data Warehousing und Data Mining"

Transkript

1 Data Warehousing und Data Mining OLAP Operationen Ein konzeptionelles MDDM Aggregierbarkeit Ulf Leser Wissensmanagement in der Bioinformatik

2 Inhalt dieser Vorlesung Operationen im multidimensionalen Datenmodell Aggregation Verfeinerung Weitere Operationen ME/R: Graphische multidimensionale Datenmodellierung Aggregierbarkeit Ulf Leser: Data Warehousing und Data Mining 2

3 OLAP Operationen MDDM entspricht der Sprache des Betriebswirts Objekte seiner täglichen Welt (Kunden, Waren, etc.) Keine technischen Details Operationen auf dem MDDM müssen betriebswirtschaftliche Analysen unterstützen Schnelle und intuitive Manipulation der Daten Abbildung der Aufgaben von Betriebswirten Grundoperationen Aggregation (Roll-Up): Granularität (Abstraktion) wird erhöht Verfeinerung (Drill-Down): Granularität wird erniedrigt Aggregation bzgl. einer Funktion f (SUM, AVG, MEDIAN, ) Ulf Leser: Data Warehousing und Data Mining 3

4 Übersicht Z.Tag Z.Monat Marke Marke Skoda VW Skoda VW München Wedding Nantes Lyon R.Shop München Wedding Nantes Lyon R.Shop (1.101, , Wedding, Skoda) ( 129, , Wedding, Skoda) ( 225, , Wedding, Skoda) (1.540, , Wedding, Skoda) (2.500, , Nantes, Skoda) Rollup Tag Monat (3.000, , Wedding, Skoda) (2.500, , Nantes, Skoda) Ulf Leser: Data Warehousing und Data Mining 4

5 Datenpunkte und Würfelkoordinaten Definition Gegeben ein Würfel W, eine Dimension D und ein Klassifikations-knoten x aus D. Sei z ein Datenpunkt (Fakt) und D(z) seine Koordinate bzgl. D. Dann gilt z liegt in x, z x, gdw. D(z)=x oder D(z) nachfahren(x) punkte(x)={z z x} Bemerkung Erweiterung auf mehrere Koordinaten durch Schnitt punkte(x,y,z)=punkte(x) punkte(y) punkte(z) mit x D 1, y D 2, z D 3 D(z)=x punkte(x) Januar Februar... Dezember 32,50 17, ,50 Viele z Ulf Leser: Data Warehousing und Data Mining 5

6 Aggregation in Hierarchien Definition. Gegeben Dimension D, Pfad P={k 0... k k... TOP} in D x ein Klassifikationsknoten der Klassifikationsstufe k aus P Aggregationsfunktion f, Measure F Sei Y=kinder(x) die Menge {y 1,...,y n } knoten(k ) von Klassifikationsknoten von k, von denen x funktional abhängt Die Aggregation von Y nach x bzgl. f und F bezeichnet die Berechnung des aggregierten Faktes F(x)=f(F(y 1 ),..., F(y n )) Die Aggregation von k nach k bzgl. f und F bezeichnet die Berechnung von F(x) für alle x knoten(k) k Das schreiben wir kurz als F(k) Jahr 2003 x... k Monat Januar Februar... Dezember Y Ulf Leser: Data Warehousing und Data Mining 6

7 Startpunkt Sei P={k 0... k n TOP} Man berechnet F(TOP) aus F(k n ), F(k n ) aus F(k n-1 ), etc. Wie berechnet man F(k 0 )? Definition. Gegeben Dimension D, Pfad P={k 0... TOP} in D Ein Klassifikationsknoten x 0 knoten(k 0 ) und punkte(x 0 )={z 1,...,z n } Aggregatfunktion f, Measure F Dann gilt: F(x 0 )=f(f(z 1 ),...,F(z n )) Mit F(z) als dem Wert des Measures F von Datenpunkt z x punkte(x) Januar Februar... Dezember 32,50 17, ,50 Ulf Leser: Data Warehousing und Data Mining 7

8 Berechnung Die letzte Definition ist prinzipiell anwendbar für alle Klassifikationsknoten bzw. stufen eines Pfades Also können wir F(x) für x aus beliebiger Klassifikationsstufe aus den Datenpunkten berechnen Aber Es ist schneller, die Aggregation aus der nächst-feineren Stufe zu berechnen Weniger Werte Das setzt voraus, dass man die auch hat Präaggregation Geht nicht für alle Aggregatfunktionen - Summierbarkeit OLAP Operationen wandern immer nur eine Stufe in einem Pfad herauf oder herab deshalb definieren wir Aggregation von Ebene zu Ebene Ulf Leser: Data Warehousing und Data Mining 8

9 Würfelinhalt Ein Würfel W=(G,F) Granularität G=(D 1.k 1,...,D n.k n ) Measures F={F 1,...,F m } mit Aggregationsfunktionen f 1,...,f m Schreibweise für Zellen eines Würfels W(x 1, x 2,..., x n ) = (F 1,...,F m ) x i sind die Koordinaten im Würfel bzgl. G: x i knoten(k i ) Pro Punkt in W gibt es m (evt. aggregierte) Measures F 1,..., F m Betrachten wir den einfachen Fall: n=m=1 Dimension D mit Knoten x, ein Measure F mit Aggregatfunktion f Dann: W(x) = F(x) = f( {F(y) y kinder(x)} ) Bemerkung Auf unterster Ebene ist kinder(x)=punkte(x) Ulf Leser: Data Warehousing und Data Mining 9

10 Würfelinhalt, allgemeiner Fall Ein Würfel W=(G,F) Granularität G=(D 1.k 1,...,D n.k n ) Measures F={F 1,...,F m } mit Aggregationsfunktionen f 1,...,f m Allgemeiner Fall W(x 1,...,x n ) = (F 1,...,F m ) = (F 1 (punkte(x 1 ) punkte(x 2 )... punkte(x n )), F 2 (punkte(x 1 ) punkte(x 2 )... punkte(x n )),... F m (punkte(x 1 ) punkte(x 2 )... punkte(x n ))) mit x i knoten(k i ) Bemerkung Jedes Measure wird gesondert aggregiert Ulf Leser: Data Warehousing und Data Mining 10

11 Beispiel Z.Tag Z.Monat B.Abteilung B.Sparte Skoda.Reparatur Skoda.Ersatzteile VW Skoda München Wedding Nantes Koordinaten der Fakten Lyon R.Shop Bayern Aggregierte Fakten Berlin Department1 Department2 R.Bundesland ( , Wedding, Ersatzt.) = (...) ( , Wedding, Ersatzt.) = (...) (1.1999, Berlin, Skoda) = (...) (4.1999, Bayern, VW) = (...) Ulf Leser: Data Warehousing und Data Mining 11

12 Operationen auf Würfeln OLAP Operationen überführen einen Würfel W=(G,F) in einen Würfel W =(G,F ) Dabei gilt Aggregation: G < G Verfeinerung G > G Eine einfache Operation verändert nur die Klassifikationsstufe einer Dimension in G Komplexe Operationen können auf natürliche Weise aus einfachen Operationen durch Verkettung zusammengesetzt werden Wir betrachten im folgenden nur einfache Operationen Ulf Leser: Data Warehousing und Data Mining 12

13 OLAP Operation: Aggregation (Roll-Up) Definition Gegeben ein Würfel W=(G,F) mit G=(D 1.k 1,..., D i.k i,...,d n.k n ) und F=(F 1,..,F m ) Sei P={k 0... k i k i k i... TOP} ein Pfad in D i Die einfache Aggregation in W entlang P mit Aggregatfunktion f überführt W in W = ( (D 1.k 1,..., D i.k i,..., D n.k n ), (F 1,..., F m )) (F 1,..., F m ) = (F 1 (punkte(k 1 )... punkte(k i )... punkte(k n )),..., F m (punkte(k 1 )... punkte(k i )... punkte(k n ))) Ulf Leser: Data Warehousing und Data Mining 13

14 Beispiel Aggregation Z.Tag Z.Monat B.Abteilung B.Abt Skoda.Reparatur Skoda.Ersatzteile Skoda.Repa. Skoda.Ersatz München Wedding Nantes Lyon R.Shop München Wedding Nantes Lyon R.Shop Ulf Leser: Data Warehousing und Data Mining 14

15 Verfeinerung (Drill-Down) Definition Gegeben ein Würfel W=(G,F) mit G=(D 1.k 1,..., D i.k i,...,d n.k n ) und F=(F 1,..,F m ) Sei P={k 0... k i k i k i... TOP} ein Pfad in D i Die einfache Verfeinerung in W entlang P mit Aggregatfunktion f überführt W in W = ( (D 1.k 1,..., D i.k i,..., D n.k n ), (F 1,..., F m )) Mit (F 1,..., F m ) =... Bemerkung Ein Aufbrechen einmal aggregierter Daten ist für die meisten Aggregatfunktionen nicht möglich Stattdessen: Zugriff auf Daten (Datenpunkte / Präaggregate) Ulf Leser: Data Warehousing und Data Mining 15

16 Beispiel Verfeinerung Z.Tag Z.Monat B.Abteilung B.Abt Skoda.Reparatur Skoda.Ersatzteile Skoda.Repa. Skoda.Ersatz München Wedding Nantes Lyon R.Shop München Wedding Nantes Lyon R.Shop Ulf Leser: Data Warehousing und Data Mining 16

17 Auf einen Blick MDDM: Klassifikationsstufen, Knoten, Pfade, Dimensionen Die Daten bestehen aus verschiedenen Measures, jeweils mit Koordinaten in den jeweiligen Dimensionen Koordinaten (Dimensionen) sind hierarchisch gegliedert (entlang der Pfade); jeder Datenpunkt hat eine Koordinate in jeder Klassifikationsstufe Die Koordinaten in einem Pfad sind voneinander abhängig Würfel stellen aggregierte Daten gemäß der Würfelgranularität dar OLAP Operationen (Aggregation, Verfeinerung) sind entlang der Pfade möglich OLAP Operationen verändern die Granularität und damit den Aggregationslevel der Fakten Ulf Leser: Data Warehousing und Data Mining 17

18 Aggregation bis TOP Summe Umsatz pro Tag und Abteilungen über alle Shops Z.Tag B.Abteilung Skoda.Reparatur Skoda.Ersatzteile München Wedding Nantes Lyon R.Shop Summe Umsatz pro Shop und Tag, über alle Abteilungen Ulf Leser: Data Warehousing und Data Mining 18

19 ... in mehreren Dimensionen Z.Tag B.Abteilung Skoda.Reparatur Skoda.Ersatzteile München Wedding Nantes Lyon R.Shop G=(Z.TOP, R.TOP, B.TOP) Ulf Leser: Data Warehousing und Data Mining 19

20 Inhalt dieser Vorlesung Operationen im multidimensionalen Datenmodell Aggregation Verfeinerung Weitere Operationen ME/R: Graphische multidimensionale Datenmodellierung Aggregierbarkeit Ulf Leser: Data Warehousing und Data Mining 20

21 Weitere Operationen Aggregation ist die spannendste OLAP Operation Die restlichen führen keine Berechnungen durch, sondern selektieren bzw. ändern Ausschnitte des Würfels Hat keinen Einfluss auf die Granularität, aber auf die Datenbasis Teilweise wird nur die Darstellung (Visualisierung) beeinflusst, ohne Daten zu ändern Vermischung von Präsentations- und Datenschicht In der Literatur werden viele exotischere Operationen angeführt (und tw. widersprüchlich definiert) Drill-Across: Zugriff über mehrere Würfel hinweg Drill-Through: Zugriff auf Daten unter dem Würfel Ulf Leser: Data Warehousing und Data Mining 21

22 Rotation (Pivoting) Unterschiedliche Sichtweisen auf einen Datenbestand Jahr Jahr Kontinent Marke Asien Südamerika BMW Ford Peugeo t BMW VW Ford Automarke Asien Europa S-Amerika Australien Kontinent Ulf Leser: Data Warehousing und Data Mining 22

23 Selektion einer Scheibe (Slicing) Verkäufe von Peugeot pro Jahr und Kontinent Verkäufe in Asien pro Jahr und Marke Jahr Asien Südamerika Kontinent BMW Peugeot VW Ford Automarke Ulf Leser: Data Warehousing und Data Mining 23

24 Auswahl von Unterwürfeln (Dicing) Verkäufe von (Peugeot, VW) in (2000, 2001) pro Kontinent Jahr Asien Südamerika Kontinent BMW Peugeot VW Ford Automarke Ulf Leser: Data Warehousing und Data Mining 24

25 Inhalt dieser Vorlesung Operationen im multidimensionalen Datenmodell ME/R: Graphische multidimensionale Datenmodellierung Aggregierbarkeit Ulf Leser: Data Warehousing und Data Mining 25

26 Datenbankentwurf Konzeptionelles Modell Logisches Modell Physische Implementierung Designer, Requirements Engineering Entwickler, Administrator Administrator Produktsupport E/R, UML: Klassen, Attribute, Assoziationen Relationen, Attribute, Keys, SQL Files, Indexe, Verteilung, Buffermanagement Ulf Leser: Data Warehousing und Data Mining 26

27 ME/R [SPHD98] Unser MDDM ist ein logisches, formales Modell Fakten, Klassifikationsstufen, Dimensionen,... Ein konzeptionelles Modell fehlt noch E/R nicht ausreichend ME/R: Erweitertes E/R Modell ME/R MDDM ROLAP Implementierung MOLAP: multidimensionale Implementierung Ulf Leser: Data Warehousing und Data Mining 27

28 ME/R Elemente und Notation Ausgangspunkt: Das klassische E/R Modell Was fehlt? Klassifikationsstufen (Dimension Level) Würfel (Fact) Halbordnung zwischen Klassifikationsstufen (Roll-Ups) Manko: Dimensionen werden nicht gesondert definiert Constraint: Keine Zyklen in den ROLL-UP Beziehungen Entspricht dem Verbot von Abhängigkeiten Klassifikationsstufe Roll-Up Würfel Ulf Leser: Data Warehousing und Data Mining 28

29 Beispiel Jahr Monat Tag Menge Shop_name Preis Produktgruppe Produkt Verkauf Shop Product_name Top Top Top Kunde Region TOP Produktgruppe Land Land Jahr Region Land Produkt Region Region Monat Land Kunde Shop Tag Ulf Leser: Data Warehousing und Data Mining 29

30 Besser: Wiederverwendung von Stufen... Menge Shop_name Preis Produktgruppe Produkt Verkauf Shop Product_name Kunde Region Umsetzung unkritisch Kundenregionen müssen gleich organisiert sein wie Shopregionen Fremdschlüssel in Kunde und Shop verweisen auf PK von Region... aber nicht unproblematisch Vermischung von Dimensionen Eventuell implizite Constraints Land Wenn Kunden in mehr Regionen wohnen dürfen als es Shops gibt Aggregation über Shops bis auf Region gibt viele leere Regionen Ulf Leser: Data Warehousing und Data Mining 30

31 ME/R Bewertung Minimale, konservative Erweiterung Mehrere Würfel sind möglich Klare Semantik durch Metamodell in Extended E/R Greift eher kurz Keine Eigenschaften von Fakten (Summierbarkeit) Keine Besonderheiten von Klassifikationspfaden Übersprungene Stufen, unbalancierte Hierarchien Keine expliziten Dimensionen Um Parallel-Rollups zu vermeiden Toolunterstützung? Ulf Leser: Data Warehousing und Data Mining 31

32 Weitere Ansätze muml UML-Erweiterung basierend auf UML Metamodell (Constraints, Stereotypen) -> Werkzeugunterstützung vorhanden Klassifikationsstufe: <<Dimensional class>> Fakten: <<Fakt class>> Würfel: <<Dimension>> Hierarchie: <<Roll-Up>>... Multi-dimensional Modelling Language (MML)... Keine der Methoden hat sich (bisher) durchgesetzt Ulf Leser: Data Warehousing und Data Mining 32

33 Inhalt dieser Vorlesung Operationen im multidimensionalen Datenmodell ME/R: Graphische multidimensionale Datenmodellierung Aggregierbarkeit Klassen von Aggregatfunktionen Überlappungsfreiheit und Vollständigkeit in Hierarchien Typverträglichkeit Ulf Leser: Data Warehousing und Data Mining 33

34 Aggregierbarkeit Verdichtung geht nicht immer Numerische versus kategorische Fakten Numerisch: Umsatz, Verkäufe, Messwerte,... Kategorisch: Geschlecht, Kundensegment,... Kann man als Dimension modellieren, muss man aber nicht Bestands-Fakten Nicht alle Aggregatfunktionen sind hierarchisch anwendbar Level 0 Level 1 Level 2 1 Summe: Avg:? Summe: 12 Summe: 10 Avg:? Avg:? Ulf Leser: Data Warehousing und Data Mining 34

35 Beispiel Level 0 Level 1 Level 2 1 Summe: Avg: 1 Summe: 12 Summe: 10 Avg: 11/2 12/3 Avg: 10 Ulf Leser: Data Warehousing und Data Mining 35

36 Klassen von Aggregatfunktionen [LS97] Definition Gegeben eine Menge X und eine Partitionierung (X 1,X 2,..., X n ) von X. Eine Aggregatfunktion f heißt: distributiv gdw g: f(x) = f( g(x 1 ), g(x 2 ),... g(x n )) algebraisch gdw f(x) berechenbar aus fester Menge von g s Deren Zahl und Art unabhängig von X ist holistisch gdw f(x) kann nur aus den Grundelementen von X berechnet werden Menge von g s nur durch X begrenzt Bemerkungen X: Klassifikationsknoten, (X 1,X 2,..., X n ) seine Kindern Bei holistischen Funktionen ist Prä- aggregation unmöglich, bei algebraischen speicherplatzintensiv Ulf Leser: Data Warehousing und Data Mining 36

37 Beispiele Distributiv Algebraisch Holistisch Ulf Leser: Data Warehousing und Data Mining 37

38 Beispiele Distributiv Summe, Count (SUM von counts), Max, Min,... Algebraisch Holistisch AVG (mit g 1 =SUM und g 2 =CNT) STDDEV, MaxN,... MEDIAN, RANK, PERCENTILE Highest Frequency,... Highest Frequency Merke Werte und jeweilige Frequenz: ( (v 1,f 1 ), (v 2,f 2 ),...) Merge zweier Sets möglich Aber: Keine feste Grenze für Platzbedarf, da Anzahl unterschiedlicher Werte nicht fest Ulf Leser: Data Warehousing und Data Mining 38

39 Aggregierbarkeit Wann darf man Werte hierarchisch aggregieren? Nur numerische Fakten Art der Aggregatfunktion beachten Das reicht im Allgemeinen nicht als Bedingung Summe der Lagerbestände pro Produkt über Jahre? Gesamtsumme Studenten als Summe über Studenten pro Studiengang? Weitere notwendige Kriterien Typverträglich von Fakt und Aggregatfunktion Überlappungsfreiheit der Zuordnung von Klassifikationsknoten Vollständigkeit der Zerlegung pro Klassifikationslevel Ulf Leser: Data Warehousing und Data Mining 39

40 Typen von Fakten Flow (Ereignis zu Zeitpunkt T) Verkäufe, Umsatz, Lieferungen, diplomierte Studenten,... Stock (Zustand zu Zeitpunkt T) Lagerbestand, eingeschriebene Studenten, Einwohnerzahlen,... Value-per-Unit (Eigenschaft zu Zeitpunkt T) Preis, Herstellungskurs, Währungskurs,... Ulf Leser: Data Warehousing und Data Mining 40

41 Typverträglichkeit Stock Flow Value-per- Unit MIN/MAX SUM Zeit: nein Sonst: Nie AVG Zuordnung muss beim Design erfolgen Metadaten Beschreibung der Measures Ulf Leser: Data Warehousing und Data Mining 41

42 Beispiel Aktuelle Studentenzahl nach Jahr der Einschreibung und Studiengang Gesamt Informatik BWL Gesamt Wie kann das stimmen? Wie lange dauern Studiengänge? Studenten nur in einem Studiengang eingeschrieben? Ulf Leser: Data Warehousing und Data Mining 42

43 Überlappungsfreiheit Definition Eine Klassifikationshierarchie ist überlappungsfrei gdw jeder Klassifikationsknoten mit Level i höchstens einem Klassifikationsknoten in Level i+1 zugeordnet ist jeder Datenpunkt höchstens einem Klassifikationsknoten mit Level 0 zugeordnet ist Produktfamilie Bekleidung Produktgruppe Damen Herren Produktart Rock Jeans Anzug Verkauf: (Jeansrock, 79.00) Ulf Leser: Data Warehousing und Data Mining 43

44 Vollständigkeit Definition Eine Klassifikationshierarchie ist vollständig gdw jeder Klassifikationsknoten mit Level i mindestens einem Klassifikationsknoten in Level i+1 zugeordnet ist jeder Datenpunkt mindestens einem Klassifikationsknoten mit Level 0 zugeordnet ist Produktfamilie Bekleidung Produktgruppe Damen Herren Produktart Rock Jeans Anzug Verkauf: (Sonstiges, ) Ulf Leser: Data Warehousing und Data Mining 44

45 Was tun? Wir sind immer von vollständigen und überlappungsfreien Klassifikationsschemata ausgegangen Summierbarkeit ist ein wichtiger Grund dafür Entspricht nicht der Realität Konzeptionelle Modellierung ist ein ungelöstes Problem Logische Umsetzung auch nicht unproblematisch Abhilfen (rettet das Modell, aber nicht die Semantik) Artifizielle Klassifikationsknoten Virtuelle Knoten: Others, Rest, Nicht zugewiesen Knotenaufspaltung: Herrenjeans, Damenjeans Gewichtete Zuordnung Türkei ist 10% Europa, 90% Asien Ulf Leser: Data Warehousing und Data Mining 45

46 Literatur Lenz, H.-J. and Shoshani, A. (1997). "Summarizability in OLAP and Statistical Databases". 9th International Conference on Scientific and Statistical Database Management, Olympia, Washington. pp Vassiliadis, P. (1998). "Modeling Multidimensional Databases, Cubes, and Cube Operations". 10th International Conference on Scientific and Statistical Database Management, Capri, Italy. pp Sapia, C., Blaschka, M., Höfling, G. and Dinter, B. (1998). "Extending the E/R Model for the Multidimensional Paradigm". Workshop on Data Warehousing and Data Mining, Singapore. pp Ulf Leser: Data Warehousing und Data Mining 46

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining OLAP Operationen Ein konzeptionelles MDDM Aggregierbarkeit Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Operationen im multidimensionalen Datenmodell

Mehr

Data Warehousing. Operationen im multidimensionalen Datenmodell Graphische MDDM Summierbarkeit. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Operationen im multidimensionalen Datenmodell Graphische MDDM Summierbarkeit. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Operationen im multidimensionalen Datenmodell Graphische MDDM Summierbarkeit Ulf Leser Wissensmanagement in der Bioinformatik Begriffe Klassifikationsschema Jahr Stufen einer Dimension

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Das multidimensionale Datenmodell Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Vom Spreadsheet zum Würfel Multidimensionales Datenmodell (MDDM)

Mehr

Data Warehousing. Modellierung im DWH Das multidimensionale Datenmodell. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Modellierung im DWH Das multidimensionale Datenmodell. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Modellierung im DWH Das multidimensionale Datenmodell Ulf Leser Wissensmanagement in der Bioinformatik Zusammenfassung: Hubs and Spokes Mart 1 Mart 2 Mart 3 Mart 4 DWH Quelle 1 RDBMS Quelle

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier Realisierung von OLAP Operatoren in einem visuellen Analysetool Vortrag von Alexander Spachmann und Thomas Lindemeier Gliederung Ausgangssituation/Motivation Was ist OLAP? Anwendungen Was sind Operatoren?

Mehr

Logische Modelle für OLAP. Burkhard Schäfer

Logische Modelle für OLAP. Burkhard Schäfer Logische Modelle für OLAP Burkhard Schäfer Übersicht Einführung in OLAP Multidimensionale Daten: Hypercubes Operationen Formale Grundlagen Zusammenfassung Einführung in OLAP Verfahren zur Analyse großer

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Ausführung von OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Variante 1 - Snowflake Year id year Productgroup id pg_name Month Id Month year_id Day Id day month_id

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Fortgeschrittene OLAP Analysemodelle

Fortgeschrittene OLAP Analysemodelle Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen

Mehr

Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese

Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese Seminar Data Warehousing Sommersemester 2005 vorgelegt

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de Data Warehouses Sommersemester 2011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Data Warehouse Architektur Data-Warehouse-System Teilsichten

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein 1 Definitionen 1.1 Datenbank Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert Integriert, selbstbeschreibend, verwandt 1.2 Intension/Extension Intension: Menge der Attribute Extension:

Mehr

Fundamentals of Software Engineering 1

Fundamentals of Software Engineering 1 Folie a: Name Fundamentals of Software Engineering 1 Grundlagen der Programmentwurfstechnik 1 Sommersemester 2012 Dr.-Ing. Stefan Werner Fakultät für Ingenieurwissenschaften Folie 1 Inhaltsverzeichnis

Mehr

Themenblock: Data Warehousing (I)

Themenblock: Data Warehousing (I) Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining Agenda Einführung Data Warehouses Online Transactional Processing (OLTP) Datenmanipulation mit SQL Anfragen mit SQL Online

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Multidimensionales Datenmodell

Multidimensionales Datenmodell Multidimensionales Datenmodell Grundbegriffe fi Fakten, Dimensionen, Würfel Analyseoperationen fi Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung fi ME/R, ADAPT Relationale

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Repetitorium. Data Warehousing und Data Mining 11/12. Sebastian Wandelt 13./16. Februar 2012

Repetitorium. Data Warehousing und Data Mining 11/12. Sebastian Wandelt 13./16. Februar 2012 Repetitorium Data Warehousing und Data Mining 11/12 Sebastian Wandelt 13./16. Februar 2012 Inhalt Data Warehousing und Data Mining auf 40 Slides Weder in-, noch exklusiv! Subjektive Zusammenfassung pro

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Sprachen für OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung OLAP Operationen MDX: Multidimensional Expressions SQL Erweiterungen

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Speicherung multidimensionaler Daten Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Relationales OLAP (ROLAP) Snowflake-, Star- und Fullfactschema

Mehr

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Kapitel DB:III. III. Konzeptueller Datenbankentwurf

Kapitel DB:III. III. Konzeptueller Datenbankentwurf Kapitel DB:III III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen Abstraktionskonzepte

Mehr

Datenbankmodelle 1. Das Entity-Relationship-Modell. Prof. Dr. Bernhard Schiefer 2-1

Datenbankmodelle 1. Das Entity-Relationship-Modell. Prof. Dr. Bernhard Schiefer 2-1 Datenbankmodelle 1 Das Entity-Relationship-Modell Prof. Dr. Bernhard Schiefer 2-1 Datenbankmodelle ER-Modell hierarchisches Modell Netzwerkmodell relationales Modell objektorientierte Modelle Prof. Dr.

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr

Konzeptuelle und logische Modellierung eines Data-Warehouse-Systems

Konzeptuelle und logische Modellierung eines Data-Warehouse-Systems Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 Konzeptuelle und logische Modellierung eines Data-Warehouse-Systems Ling Kong 09.07.2003 Inhaltsverzeichnis 1. Einleitung... 1 2. Multidimensionales

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Motivation. Dimensionen. Motivation /2. 3. Multidimensionales Datenmodell

Motivation. Dimensionen. Motivation /2. 3. Multidimensionales Datenmodell 3. Multidimensionales Datenmodell Grundbegriffe Dimensionen, Fakten/Kennzahlen, Würfel Analyseoperationen Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung ME/R, ADAPT, graphbasierte

Mehr

Motivation. Motivation /2. Dimensionen. Einfache Hierarchien. Hierarchien in Dimensionen. 3. Multidimensionales Datenmodell

Motivation. Motivation /2. Dimensionen. Einfache Hierarchien. Hierarchien in Dimensionen. 3. Multidimensionales Datenmodell 3. Multidimensionales Datenmodell Grundbegriffe Dimensionen, Fakten/Kennzahlen, Würfel Analyseoperationen Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung ME/R, ADAPT, graphbasierte

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Entwurf von Datenbanken

Entwurf von Datenbanken Bisher: was sind Datenbanken? Wie funktionieren sie? Im Folgenden: wie entwickle ich eine Datenbank? Was ist eine gute Datenbank? Der Datenbankentwurfsprozess Das Entity Relationship (ER) Modell Abbildung

Mehr

Modellierung von OLAP- und Data- Warehouse-Systemen

Modellierung von OLAP- und Data- Warehouse-Systemen Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Datenbanken: ER-Modell

Datenbanken: ER-Modell Beispiel: Lastenheft: Für eine Hochschule soll eine Verwaltungssoftware geschrieben werden, die alle relevanten Daten in einem relationalen Datenbanksystem speichert. Zu diesen Daten zählen die Stamm-

Mehr

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis DOAG Konferenz 2010 Claus Jordan Senior Consultant, Trivadis GmbH 16.11.2010 Basel Bern Lausanne Zürich Düsseldorf

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen 3. Spezielle ER-Modelle und Tabellenableitung Spezialfälle von ER-Modellen Grundlage, was sind Relationen Transformation von ER-Diagrammen in Relationen 56 Lesebeispiel Access (Realisierungmodell!) 57

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Orientierte Modellierung mit der Unified Modeling Language

Orientierte Modellierung mit der Unified Modeling Language UML-Basics: Einführung in Objekt- Orientierte Modellierung mit der Unified Modeling Language Michael Hahsler Ziel dieses Seminars Verständnis von Objekt-Orientierung Was sind Klassen? Was ist Vererbung?

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Erhalt von Imperfektion in einem Data Warehouse

Erhalt von Imperfektion in einem Data Warehouse Erhalt von Imperfektion in einem Data Warehouse Heiko Schepperle, Andreas Merkel, Alexander Haag {schepperle,merkela,haag}@ipd.uni-karlsruhe.de Abstract: Üblicherweise werden in einem Data-Warehouse-System

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Multidimensionales Datenmodell. Motivation. Motivation /2. Grundbegriffe. Analyseoperationen. Notationen zur konzeptuellen Modellierung

Multidimensionales Datenmodell. Motivation. Motivation /2. Grundbegriffe. Analyseoperationen. Notationen zur konzeptuellen Modellierung Multidimensionales Datenmodell Grundbegriffe Dimensionen, Fakten/Kennzahlen, Würfel Analyseoperationen Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung ME/R,ADAPT,graphbasierteAnsätze

Mehr

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Data Warehousing, Gliederung Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Dimensionen und Measures Schematypen für Data Warehousing Groupy und Data Cubes Operatoren für den Data Cube

Mehr

Anfragen in Operativen Systemen und Data Warehouses

Anfragen in Operativen Systemen und Data Warehouses Data Warehouses Sommersemester 011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Anfragen in Operativen Systemen und Data Warehouses Anfragen Operative

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Einführung in Datenbanken Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de aum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Grundlegende Begriffe der Datenbanktechnologie

Mehr

Inhaltsverzeichnis. 1. Fragestellung

Inhaltsverzeichnis. 1. Fragestellung Inhaltsverzeichnis 1. Fragestellung... 1 2. Herleitung zum Thema... 1 3. Das Entity Relationship Modell (ERM)... 2 4. Praktisches Beispiel zum ERM... 7 5. Anhang...Fehler! Textmarke nicht definiert. 1.

Mehr

Gliederung Datenbanksysteme

Gliederung Datenbanksysteme Gliederung Datenbanksysteme 5. Datenbanksprachen 1. Datendefinitionsbefehle 2. Datenmanipulationsbefehle 3. Grundlagen zu SQL 6. Metadatenverwaltung 7. DB-Architekturen 1. 3-Schema-Modell 2. Verteilte

Mehr

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Andreas Ditze MID GmbH Kressengartenstraße 10 90402 Nürnberg a.ditze@mid.de Abstract: Data Lineage

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Logische Optimierung Ulf Leser Wissensmanagement in der Bioinformatik Inhaltsübersicht Vorlesung Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung

Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung Multidimensionales Datenmodell, Anfrageverarbeitung und Anfrageoptimierung Grundbegriffe Dimensionen, Fakten/Kennzahlen Eigenschaften von multidimensionalen Anfragen Relationale Umsetzung von Anfragen

Mehr

Datenbanken I - Einführung

Datenbanken I - Einführung - Einführung April, 2011 1 von 30 Outline 1 Organisatorisches 2 Vorlesungsinhalt 3 Begrisklärung 4 Motivation 5 Abstraktion 6 Datenmodelle 7 Literaturangabe 2 von 30 Scheinkriterien Belegübung Regelmäÿige

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Multidimensionale Datenbanksysteme

Multidimensionale Datenbanksysteme Multidimensionale Datenbanksysteme Modellierung und Verarbeitung Von Dr.-Ing. Wolfgang Lehner IBM Almaden Research Center, San Jose, USA Technische Universität Darrr:ctadi FACHBEREICH INFORMATIK BIBLIOTHEK

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Sichten II logische Datenunabhängigkeit (Sichten stabil bei Änderungen der Datenbankstruktur) Beschränkung von Zugriffen (Datenschutz) Definition

Mehr

Datenbanken. Dateien und Datenbanken:

Datenbanken. Dateien und Datenbanken: Dateien und Datenbanken: Professionelle Anwendungen benötigen dauerhaft verfügbare, persistent gespeicherte Daten. Datenbank-Systeme bieten die Möglichkeit, Daten persistent zu speichern. Wesentliche Aspekte

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Abschnitt 16: Objektorientiertes Design

Abschnitt 16: Objektorientiertes Design Abschnitt 16: Objektorientiertes Design 16. Objektorientiertes Design 16 Objektorientiertes Design Informatik 2 (SS 07) 610 Software-Entwicklung Zur Software-Entwicklung existiert eine Vielfalt von Vorgehensweisen

Mehr

SQL/OLAP und Multidimensionalität in der Lehre

SQL/OLAP und Multidimensionalität in der Lehre SQL/OLAP und Multidimensionalität in der Lehre Vortrag auf der DOAG 2008 Prof. Dr. Reinhold von Schwerin Hochschule Ulm, Fakultät für Informatik 1. Dezember 2008 Prof. Dr. Reinhold von Schwerin SQL/OLAP

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Clustering Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Einführung Clustergüte Ähnlichkeiten Clustermitte Hierarchisches Clustering Partitionierendes

Mehr

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen Seminar Data Warehousing Thema: Speichermodelle für Data-Warehouse-Strukturen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Lehrstuhl für Datenbanken

Mehr

Datenbankmodelle 1. Das Entity-Relationship-Modell

Datenbankmodelle 1. Das Entity-Relationship-Modell Datenbankmodelle 1 Das Entity-Relationship-Modell Datenbankmodelle ER-Modell hierarchisches Modell Netzwerkmodell relationales Modell objektorientierte Modelle ER Modell - 2 Was kann modelliert werden?

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering

Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering Helmut Balzert Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering 3. Auflage Unter Mitwirkung von Heide Balzert Rainer Koschke Uwe Lämmel Peter Liggesmeyer Jochen Quante Spektrum

Mehr

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010 Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld München, 26. Januar 2010 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme Grundwissen Informatik 1. und Datenflüsse; Tabellenkalkulationssysteme Zellbezug relativer Zellbezug absoluter Zellbezug iterative Berechnungen Datentypyen z. B. A4 A ist der Spaltenbezeichner 4 ist die

Mehr

TeleTrusT-interner Workshop. Nürnberg, 21./22.06.2012

TeleTrusT-interner Workshop. Nürnberg, 21./22.06.2012 TeleTrusT Bundesverband IT-Sicherheit e.v. TeleTrusT Bundesverband IT-Sicherheit e.v. Der IT-Sicherheitsverband e.v. TeleTrusT-interner Workshop Nürnberg, 21./22.06.2012 TeleTrusT Bundesverband IT-Sicherheit

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Objektorientierte Datenmodelle und - verwaltung

Objektorientierte Datenmodelle und - verwaltung Schlagworte der 90er: Objektorientiertes GIS OpenGIS Case-Tool Geoökologe Legt Problemstellung fest (Art, Anzahl, Dimension, Skalierung) Wählt Koordinatensystem Wählt Fachattribute OOUI (object-oriented

Mehr

Vorlesung "Software-Engineering"

Vorlesung Software-Engineering Vorlesung "Software-Engineering" Rainer Marrone, TUHH, Arbeitsbereich STS Vorige Vorlesung Pflichtenheft (requirements specification document) Charakterisierung von Software-Qualität Detaillierte Anforderungsanalyse

Mehr

Solution for Business Intelligence. MID Insight 2013

Solution for Business Intelligence. MID Insight 2013 Solution for Business Intelligence MID Insight 2013 A G E N D A 1. Solution für Business Intelligence (BI) 2. Die Gründe und Hintergründe 3. Die Methode 4. Vorteile MID GmbH 2013 2 Solution für Business

Mehr

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2 Was ist Slicing?? (I) Program

Mehr