:. (engl.: first harmonic frequency)

Größe: px
Ab Seite anzeigen:

Download ":. (engl.: first harmonic frequency)"

Transkript

1 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man die "n-fache harmonische Schwingung" Bsp.: f = 2 f 0 : : Bsp.: f = 3 f 0 : : u.s.w. 1

2 5.3 Reelle Fourier-Reihen Jean Baptist Fourier (1807): "Jede beliebige periodische Zeitfunktion f (t) kann durch die Überlagerung von harmonischen Schwingungen dargestellt werden. Die Frequenzen der harmonischen Einzel-Schwingungen sind dabei ganzzahlige Vielfache der periodischen Grundfrequenz." 2

3 Hochschule für echnik und Wirtschaft Dresden 5.4 Beispiel: Darstellung der Dreiecksfunktion aus abellen: reelle Fourier-Koeffizienten: für n = ungerade für n = gerade Überlagerung der folgenden 3 Schwingungen: ergibt eine Dreieckfunktion: 3

4 Hochschule für echnik und Wirtschaft Dresden 5.5 Beispiel: Darstellung der Rechteckfunktion aus abellen: reelle Fourier-Koeffizienten: für n = ungerade für n = gerade Überlagerung der folgenden 3 Schwingungen: Überschwingen an Ecken: ergibt eine (miserable) Rechteckfunktion: - genannt "Gibbs-Phänomen" - bei senkrechten Flanken: Überschwingen = konstant 9 % von x - wird geringer wenn Flanken nicht senkrecht sondern flacher sind 4

5 5.6 Darstellung von Standard-Funktionen Um eine beliebige periodische Zeitfunktion f (t) mittels Fourier-Reihen Überlagerung darzustellen, ist allein die Kenntnis der 3 (reellen) Fourier-Koeffizienten a 0, a n und b n notwendig. Standard-Funktionen und deren reelle Fourier-Koeffizienten: 5

6 5.7 Konvergenz Wann konvergiert eine Fouriere Reihe? D.h. wie viele erme sind nötig, um eine f (t) mittels Fourier-Reihenüberlagerung korrekt darzustellen? - bei Dreieck-Fkt: rel. flache Flanken = relativ "langsame" Signal-Veränderungen Fkt.-Synthese benötigt vor allem niedrige Frequenzen - bei Recheck-Fkt: steile Flanken = "schnelle" Signal-Veränderungen Fkt.-Synthese benötigt viele hohe Frequenzen (benötigt viele erme der Fourier-Reihe für eine Konvergenz Konvergenzkriterium: ypischerweise bricht man die Fourier-Reihe ab, wenn die Amplitude einer Harmonischen.. der Amplitude der Grundschwingung beträgt (und somit nur noch unwesentlich zur Signaldarstellung beiträgt). Für Dreiecke (schnelle Konvergenz): f max = 5 f 0 (3 erme: n = 1, 3, 5) Für Rechtecke (langsame Konvergenz): f max = 20 f 0 (11 erme: n = 1, 3, 5, 21) 6

7 5.8 Darstellung beliebiger Signalformen Fourier: "Jede beliebige periodische Zeitfunktion f (t) kann durch die Überlagerung von harmonischen Schwingungen dargestellt werden." Beispiele: 7

8 5.9 Bestimmung der reellen Fourier Koeffizienten Sind die Fourier-Koeffizienten einer f (t) nicht bekannt, so können sie bestimmt werden. Allgemein gilt: 1 a0 = f ( t) dt 0 a n 2 = 0 f ( t) cos ( n ω t ) dt b n 2 = 0 f ( t) sin ( n ω t ) dt Zusätzlich gelten folgende Vereinfachungen: a) Ist f (t) eine "gerade" Funktion: dann gilt: - die Fourier-Reihe enthält nur cos-erme (b n = 0) - es genügt, nur über die halbe Periodendauer (/2) zu integrieren und das Ergebnis der Integration zu verdoppeln a n 4 = 0 2 f ( t) cos ( n ω t ) dt b) Ist f (t) eine "ungerade" Funktion:. dann gilt: - die Fourier-Reihe enthält nur sin-erme (a n = 0) - es genügt, nur über die halbe Periodendauer (/2) zu integrieren und das Ergebnis der Integration zu verdoppeln b n 4 = 0 2 f ( t) sin ( n ω t ) dt c) Besitzt f (t) Halbwellen-Symmetrie : dann gilt: - die Fourier-Reihe enthält nur ungerade harmonische erme d.h. nur ungerade n-erme (alle gerade n-erme = 0) 8

9 9

10 5.10 Das Spektrum eines Signals (auch: Frequenz-Spektrum oder Amplituden-Spektrum) Die Aufzeichnung der Amplituden ( xˆ ) aller harmonischen Schwingungen über n,bzw. über f oder ω, nennt man das Spektrum eines Signals (oder auch ein Frequenz-Spektrum / Amplituden- Spektrum). Je geringer die Amplitude einer Harmonischen, desto weniger trägt diese Harmonische zur Signaldarstellung bei. Bsp.-1: Bsp.-2: f (t) : Rechteckimpulsfolge: 10

11 11

12 5.11 Komplexe Fourier-Reihen Die Darstellung von Signalen mit Hilfe von komplexen Fourier-Reihen ist schlicht eine andere Form der Signaldarstellung. a) Überführung reelle Form komplexe Form reelle Form der Fourier-Reihe: Für die Überführung in die komplexe Form wird die Euler'sche-Formel benutzt: cos ( ω t) = e j ω t + e 2 j ω t sin ( ω t) = e j ω t e 2 j j ω t Mit Euler'scher Formel: Substitution aller sin- und cos-erme in der Fourier-Reihe: Nun: Klammern ausmultiplizieren: 12

13 Nun: ordnen nach Exponenten-Ordnung: Mit den C-Koeffizienten geschrieben: und zusammengefasst: Darstellung einer Fourier-Reihe in komplexer Form: mit den komplexen Fourier-Koeffizienten: C 0 und C n Vorteile: Nachteil: - es werden nur zwei Fourier-Koeffizienten benötigt: C 0 und C n - pro Frequenzanteil ist nur eine Rechenoperation notwendig komplexe Fourier-Reihen benötigen zur Signaldarstellung auch das negative Komplementär einer jeden beteiligten Frequenz. 13

14 b) negative Frequenzen Mit der Einführung der komplexen Fourier-Reihe wird das Amplitudenspektrum formal auf negative Frequenzen ausgedehnt. c) Beispiel: für Rechteckimpulsfolge mit / i = 2 komplexes Amplitudenspektrum: 14

15 d) Umrechnungen von gegebenen reellen Koeffizienten nach komplexe Koeffizienten: von gegebenen komplexen Koeffizienten nach reelle Koeffizienten: e) Bestimmung der komplexen Fourier-Koeffizienten Sind weder die reellen, noch die komplexen Fourier-Koeffizienten bekannt, so können die komplexen Fourier-Koeffizienten folgendermaßen berechnet werden (in Analogie zur Bestimmung der reellen Fourier-Koeffizienten, siehe 5.9.) : 5.12 Darstellung aperiodischer Signale als komplexe Fourier-Reihe Die vorherigen Kapitel befassten sich ausschließlich mit der Darstellung von periodischen Signalen mittels Fourier-Reihen Überlagerung. Wie viele Frequenzanteile sind nötig, um periodische Signale darzustellen? - theoretisch: viele Frequenzen - praktisch: Frequenzanteile begrenzt durch Konvergenzkriterium es wird zur Signaldarstellung eine diskrete Anzahl von Frequenzen benötigt diese Frequenzen waren ganzzahlige Vielfache der Grundfrequenz f 0 Lassen sich auch aperiodische Signale durch eine Fourier-Reihenüberlagerung darstellen? z.b. ein einzelner Impuls? 15

16 Hochschule für echnik und Wirtschaft Dresden Beispiel: Rechteckimpulsfolge 1.) mit folgenden Einstellungen: 2.) mit folgenden Einstellungen: 3.) mit folgenden Einstellungen: Schlußfolgerung: x = 1, i = 2 s, = 4 s x = 1, i = 2 s, = 12 s x = 1, i = 2 s, = 32 s /i = 2 /i = 6 /i = 16 Steigt das Verhältnis / i, so werden mehr und mehr Frequenzen benötigt, um dieses Signal durch eine Fourier-Reihen Überlagerung darzustellen. 16

17 Im Grenzfall (d.h. nur noch ein einzelner Impuls) geht die diskrete Anzahl notwendiger Frequenzen in eine kontinuierliche Frequenz-Verteilung (eine sog. Amplituden-Dichteverteilung) über. Für die Darstellung aperiodischer Signale werden alle Frequenzen benötigt. 1 Impuls im Zeitbereich: komplexes Amplitudenspektrum (im Frequenzbereich): Zusammenfassung: Für periodische Signale ergab sich die Darstellung als Fourier-Reihe als eine diskrete Summe aller benötigten Frequenzanteile: f ( t) = + - C n e j n ω t Im Grenzfall geht diese Summe in ein Integral über: mit ω dω lim f + - j ω t ( t) = F (jω) e dω Man sagt: die diskrete Amplitudenverteilung C n geht in die Amplitudendichte F (jω) über. 17

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

9 Fourier-Transformation

9 Fourier-Transformation 9 Fourier-Transformation Zoltán Zomotor Versionsstand: 5. September 2015, 18:26 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Fourieranalyse und -synthese in Experiment und Simulation

Fourieranalyse und -synthese in Experiment und Simulation in Experiment und Simulation 1. Theoretische und technische Grundlagen Analysiert man einen Sinuston am Oszilloskop (erzeugt vom Funktionsgenerator), so erkennt man einen reinen sinusförmigen Verlauf.

Mehr

Integraltransformationen

Integraltransformationen Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Messung der Schallgeschwindigkeit über Resonanz

Messung der Schallgeschwindigkeit über Resonanz Messung der Schallgeschwindigeit über Resonanz Lautsprecher Mirofon Frequenzgenerator/Wechselspannung und Verstärer Oszillosop mit Darstellung der Anregung (Kanal 1) und des Mirofon- Signals (Kanal 2)

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

HTBLA Neufelden Fourierreihen Seite 1 von 14. Peter Fischer

HTBLA Neufelden Fourierreihen Seite 1 von 14. Peter Fischer HTBLA Neufelden Fourierreihen Seite von 4 Peter Fischer pe.fischer@atn.nu Fourierreihen Mathematische / Fachliche Inhalte in Stichworten: Fourierreihe, Fourierkoeffizienten, gerade und ungerade Funktionen,

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Technische Schwingungslehre, WS2009/10

Technische Schwingungslehre, WS2009/10 Institut für Technische Mechanik Prof. Dr.-Ing. C. Proppe Prof. Dr.-Ing. W. Seemann Technische Schwingungslehre, WS9/ Übungsblatt Nr. Thema: Darstellung von Schwingungen Formelsammlung: Grundbegriffe der

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

16 Fourier-Reihe mit komplexer Exponentialfunktion

16 Fourier-Reihe mit komplexer Exponentialfunktion 16 Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 21. März 2014, 21:45 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse

Mehr

Orthogonalität von Kosinus und Sinus

Orthogonalität von Kosinus und Sinus Orthogonalität von Kosinus und Sinus Die Funktionen 1, cos(kx), sin(kx), k >, bilden ein Orthogonalsystem im Raum der quadratintegrierbaren π-periodischen Funktionen: cos(jx) cos(kx) dx = cos(jx) sin(lx)

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

Die Zylinderfunktionen

Die Zylinderfunktionen Die Zylinderfunktionen Betrachten Schwingungen einer Pauke. Auslenkung v = v(t, x, y) des Trommelfells ist Lösung der Wellengleichung 2 v t = v := 2 v 2 x + 2 v 2 y 2 als Produkt aus zeitabhängiger und

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36 Lösungsvorschläge zu Blatt ) ZV X := Produkt der Augenzahlen bei einem Wurf mit Würfeln Mögl. Werte k des Produktes Wurfergebnis P X = k), ) /6, ),, ) /6, ),, ) /6, ),, ),, ) /6 5, 5), 5, ) /6 6, 6),,

Mehr

Fourier-Reihe und -Spektrum

Fourier-Reihe und -Spektrum SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung

Mehr

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19 Globale Operationen Operationen / Funktionen, die alle Pixel des Eingabebildes benötigen, bevor sie ein Pixel oder eine Aussage für das Ergebnisbild ermitteln, nennt man global. (Beispiel: Erkennung /

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

7.1 Überlagerung von Schwingungen, Fourier Zerlegung

7.1 Überlagerung von Schwingungen, Fourier Zerlegung Kapitel 7 Schwingungen und Wellen 7. Überlagerung von Schwingungen, Fourier Zerlegung Im Abschnitt über die Bewegungen einzelner Teilchen haben wir uns sehr intensiv mit den Harmonischen Schwingungen beschäftigt,

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Fourier-Reihenentwicklung mit MAPLE

Fourier-Reihenentwicklung mit MAPLE Fourier-Reihenentwicklung mit MAPLE Das Maple-Programm ( B.Grabowski, 5/2003) Hinweis: Die Prozedur fourier erwartet als Argumente a) Funktion mit t als unabhängige Variable, z. B. f :=2*t b) Periode c)

Mehr

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008 Fourier Reihe Fourier Transformation Entwicklung einer Funktion in eine Potenzreihe Eine beliebig oft differenzierbare Funktion f (x) kann in eine unendliche Reihe von Potenzfunktionen x n entwickelt werden

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Mathematik III Die Fourier-Transformation in Bildern

Mathematik III Die Fourier-Transformation in Bildern Mathematik III Die Fourier-Transformation in Bildern Cornelia Busch D-CHAB 20. Dezember 2018 Eine periodische Funktion f (t)... ... wird zerlegt: f (t) = sin(3t) + cos(5t). f (t) = cos(2t) + sin(3t) +

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik 1 für Naturwissenschaften Modul 112 Lineare Differenzialgleichungen zweiter Ordnung Hans Walser: Modul 112, Lineare Differenzialgleichungen zweiter Ordnung ii Inhalt 1 Lineare Differenzialgleichungen

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden,

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2.1 Darstellung und Eigenschaften harmonischer Schwingungen Wegen der elementaren Bedeutung der harmonischen Funktionen werden sowohl

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

Kapitel 2: Fourieranalyse. Analoge, periodische Signale

Kapitel 2: Fourieranalyse. Analoge, periodische Signale ZHW, NM, 5/, Rur Kapitel : Fourieranalyse Analoge, periodische Signale Inhaltsverzeichnis. EINLEIUNG.... LINEARER MIELWER... 3. LEISUNG UND EFFEKIVWER...3 4. WINKELFUNKIONEN...3 5. FOURIERREIHE...4 6.

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Campus Duisburg Grundlagen der Elektrotechnik 3 Fakultät für Ingenieurwissenschaften Abteilung Elektrotechnik und Informationstechnik Fachgebiet Allgemeine und Theoretische Elektrotechnik Bismarckstraße

Mehr

Fourier-Reihen Beispiele Periodenintervall T Quadratische Abweichung Amplitudenspektrum Weg zum Nichtperiodischen Komplexe Schreibweise

Fourier-Reihen Beispiele Periodenintervall T Quadratische Abweichung Amplitudenspektrum Weg zum Nichtperiodischen Komplexe Schreibweise Fourier-Reihen Beispiele Periodenintervall T Quadratische Abweichung Amplitudenspektrum Weg zum Nichtperiodischen Komplee Schreibweise Fourier-Transformation Konvergenz einer Fourier-Reihe Dirichlet-Kerne

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1)

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1) Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Grundlagen der Rechnernetze. Physikalische Schicht

Grundlagen der Rechnernetze. Physikalische Schicht Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische

Mehr