- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

Größe: px
Ab Seite anzeigen:

Download "- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2."

Transkript

1 - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel sei die Newtonsche Formulierung der klassischen Mechanik Kraft = Masse Beschleunigung angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes nach der Zeit, und das Gesetz lässt sich damit als F mb m dt schreiben. Die Kraft F kann eine Funktion des Ortes und der Geschwindigkeit (auch der Zeit) sein und von anderen Parametern des Sstems abhängen. Gesucht ist der Ort als Funktion der Zeit: Man nennt eine Gleichung, die eine oder mehrere Ableitungen einer gesuchten Funktion enthält, eine Differentialgleichung. Beispiel: Die Bewegung eines frei fallenden Körpers mit der Masse m im Schwerefeld wird in räumlich eindimensionaler Formulierung approimativ durch die Differentialgleichung ; beschrieben. Gesucht ist die Funktion (t) die durch die Differentialgleichung d /dt = -g bestimmt wird. Später werden wir lernen, wie solche Aufgaben sstematisch gelöst werden. Hier geben wir nur die Lösung an. Die freien Konstanten c1, cerlauben die Festlegung der Anfangswerte c (0) und c 1 (0).

2 - - Eine Differentialgleichung enthält Ableitungen einer Funktion. Wir suchen die Funktion selbst. Eine Differentialgleichung dient also zur Berechnung einer gesuchten Funktion. Im Gegensatz dazu dient eine algebraische Gleichung, z.b = 0, zum Bestimmen der Wurzeln, also von Zahlen. Die Differentialgleichung für die Berechnung der Funktion ( kann eine oder mehrere Ableitungen der gesuchten Funktion ( enthalten, die Funktion ( selbst und auch eplizit die unabhängige Variable. Terminologie Unabhängige und abhängige Variablen In dem Beispiel die abhängige Variable. F mb m ist die Zeit t die unabhängige Variable und der Ort () t dt Gewöhnliche (ODE) und Partielle (PDE) Differentialgleichungen Gewöhnliche Differentialgleichungen enthalten nur eine unabhängige Variable. Zum Beispiel wird die Funktion ( gesucht. Partielle Differentialgleichungen enthalten mehrere unabhängige Variablen. Zum Beispiel wird die Funktion (,,z,t) gesucht. Lineare und nichtlineare Differentialgleichungen Lineare Differentialgleichungen enthalten die abhängige Variable und ihre Ableitungen nur linear. Nichtlineare Differentialgleichungen enthalten nichtlineare Ausdrücke in der abhängigen Variablen und/oder ihrer Ableitungen. Ordnung Die Ordnung wird durch die höchste Ableitung bestimmt. Zwei Beispiele: 3 d 5 ( ( ) ( ) sin( 1. Ordnung, nichtlinear ( ) ( ( 0 3. Ordnung, linear 3 Wir schreiben auch F(,, (1), (),, (n) )=0 für eine Differentialgleichung n-ter Ordnung.

3 - 3 - Gekoppelte Differentialgleichungen (Differentialgleichungsssteme) Das folgende Beispiel d 1 1 d 1 ist ein gekoppeltes Sstem zweier linearer Differentialgleichungen zweiter Ordnung. Homogene und inhomogene Differentialgleichungen Wir beschränken die Darstellung auf lineare Differentialgleichungen. In homogenen Differentialgleichungen enthält jeder Term die abhängige Variable. In inhomogenen Differentialgleichungen tritt mindestens ein Term ohne die abhängige Variable auf: d ( ) ( ( sin( inhomogen ( ) ( ( 0 3 homogen 3 d Aufgabe 9.1: Charakterisieren Sie die Differentialgleichungen d ( ) ( d d ( ) sin( ( ) ( ( 0 ( ) ( ( ) 0 Differentialoperatoren Oft ist es sinnvoll, Abkürzungen einzuführen, z.b. schreiben wir d ( ( ( sin( auch in der Form ˆ ˆ d d L sin( mit L Lˆ nennen wir einen (linearen) Differentialoperator.

4 - 4 - Differentialgleichungen erster Ordnung Selbst Differentialgleichungen 1. Ordnung müssen nicht direkt durch Integration analtisch lösbar sein. Es gibt aber Sonderfälle, die direkt lösbar sind. Wir behandeln einige davon: Trennung der Variablen Haben wir eine Differentialgleichung (DGL) in der Form f (, g( ) dann können die Variablen und getrennt werden. Wir können nämlich schreiben g ( ) f ( Durch unmittelbare Integration erhalten wir die Lösung g( ) f ( C cos( Aufgabe 9.: Lösen Sie die DGL Variablentransformation Manchmal gelingt die Trennung der Variablen erst nach einer Variablentransformation, z.b. bei f Wir benutzen den Ansatz =u und schreiben u du f (u) du f ( u) u du ln C f ( u) u

5 - 5 - Integrierender Faktor In Erweiterung des bisherigen Vorgehens betrachten wir eine Form der linearen, inhomogenen DGL 1. Ordnung, bei der die Trennung der Variablen nicht vorliegt, aber durch einen Trick erreicht werden kann: ( P( ( G( wobei wir nach Multiplikation mit einem Faktor ( die linke Seite als ( d ( P( ( ( ( schreiben wollen. Der Faktor muss dann d( ( P( erfüllen. Eine spezielle Lösung davon ist (=e dzp( z) Können wir diesen Faktor bestimmen, so lautet die modifizierte ursprüngliche DGL d ( ( ( G( Nach Integration folgt die Lösung (= ( z) G( z) dz C ( Aufgabe 9.3: Lösen Sie die DGL e unter der Bedingung (0)=1 0 Aufgabe 9.4: Finden Sie die integrierenden Faktoren für cos( ) und lösen Sie die beiden DGLs.

6 - 6 - Eakte Differentiale *** Dieser Abschnitt erscheint hier in der allgemeinen Form nur aus Gründen der Vollständigkeit. Das Thema wird später nochmals behandelt! *** Wenn die Trennung der Variablen nicht funktioniert, kann manchmal ein Weg über eakte Differentiale helfen. Betrachten wir die DGL ( R(, ) S(, ) die wir in die Form R(, ) S(, ) 0 umschreiben. Eistiert nun eine Funktion (, ) mit (, ) (, ) R(, ), S(, ) [Achtung: Wer mit partiellen Ableitungen noch nicht so vertraut ist (wahrscheinlich die meisten von Ihnen!), sei auf später vertröstet!] so können wir schreiben (, ) (, ) R(, ) S(, ) d 0 Somit ist (, ) const. C eine Lösung der DGL. Eine Bedingung für die Eistenz von ist (, ) (, ) (, ) (, ) oder R S 0 Beispiel: 3 3 3, (, ), C0 4 Forderung: (1) 1 C 3 Lösung: 0 3 3

7 - 7 - Lösung inhomogener DGLs durch Variation der Konstanten Betrachten wir die inhomogene DGL a( b( Zuerst lösen wir die homogene Gleichung, bei der die Variablen getrennt werden können. Für die homogene Lösung setzen wir b( = 0: a( a( a( ln a( C 1 A( C 1 a( A( Ce Ce Um die inhomogene Gleichung mit b( 0 zu lösen, machen wir einen Ansatz, in dem die Konstante C von abhängt: C( e C'( e A( A( C( A'( e A( a( C( e A( b( Wir haben A' ( a(. Deswegen gilt C'( e A( b( C'( e A( b( A ( ') ( ) ( ') ' C e b c Die Lösung A( ') A( ( e b( ') ' c e ist, z.b. für c 0, eine spezielle Lösung der inhomogenen DGL. Man kann leicht nachprüfen: Die allgemeine Lösung der inhomogenen linearen DGL ergibt sich als Summe der allgemeinen Lösung der homogenen DGL plus spezieller Lösung der inhomogenen DGL (s. nächstes Kapitel) A( A( A( ') ( ) ( ') ' Ce e e b

8 - 8 - Allgemeine Schlussfolgerungen Wir haben gesehen, dass in den Lösungen frei wählbare Konstanten auftreten, die wir Integrationskonstanten nennen. Die Lösung einer Differentialgleichung, bei der die Integrationskonstanten noch nicht bestimmte, feste Werte besitzen, nennen wir allgemeine Lösung. Für die Zahl der Integrationskonstanten gilt der folgende Satz, auf dessen Beweis wir verzichten müssen. Die allgemeine Lösung einer Differentialgleichung n-ter Ordnung enthält n unbestimmte Integrationsvariablen. Eine anschauliche Hilfe gibt die Vorstellung, dass eine Differentialgleichung 1. Ordnung durch eine Integration gelöst wird und deshalb eine Integrationskonstante enthält. Bei einer Differentialgleichung. Ordnung müssen wir zweimal integrieren und die Lösung enthält deshalb zwei Integrationskonstanten. Eine spezielle Lösung einer Differentialgleichung erhalten wir aus der allgemeinen Lösung dadurch, dass wir einer oder mehreren Integrationskonstanten spezielle Werte geben. Die spezielle Lösung heißt auch partikuläre Lösung. Bei der partikulären Lösung ist also mindestens über eine der freien Integrationskonstanten verfügt. Wir interessieren uns vor allem für die allgemeine Lösung, in der als Spezialfälle alle anderen Lösungen enthalten sind. Das Problem, aus der allgemeinen Lösung eine spezielle Lösung zu bestimmen, ist nur lösbar, wenn zusätzliche Angaben (Nebenbedingungen) zur Verfügung stehen. Diese notwendigen Nebenbedingungen heißen Randbedingungen oder Anfangsbedingungen. (Das Problem ist ähnlich der Lösung einer Integrationsaufgabe. Auch dort gibt es die allgemeine Lösung "unbestimmtes Integral" und die spezielle Lösung "bestimmtes Integral". Das bestimmte Integral kann man nur berechnen, wenn man als zusätzliche Angaben die Integrationsgrenzen besitzt.) Die Zahl der freien Konstanten hängt mit der Zahl unabhängiger Lösungen linearer Differentialgleichungen zusammen. Im Allgemeinen gilt, dass eine DGL n-ter Ordnung n unabhängige Lösungen besitzt.

9 - 9 - Zweite Lösung mit Hilfe der Wronski Determinante bei homogenen linearen DGLs. Ordnung Nach dem eben Gesagten muss die DGL d ( ( P( Q( ( 0 zwei unabhängige Lösungen 1 und haben, und die allgemeine Lösung sollte sich in der Form ( C1 1( C ( schreiben lassen. Ein Wort zur Unabhängigkeit. Die beiden Lösungen heißen unabhängig, wenn die Wronski Determinante ( ( W 1 ( ) : 1( ) '( ) ( ) 1 '( ) 1'( '( nicht verschwindet. Aufgabe 9.5: Berechnen Sie für die beiden Lösungen cos( t), sin( t) der DGL Wronski Determinante verschwindet. k die 0 die Wronski Determinante. Zeigen Sie, dass für abhängige Lösungen 1 Für die Ableitung der Wronski Determinate W( nach gilt W ' '' '' 1 1 d ( ( Die ursprüngliche DGL P( Q( ( 0 schreiben wir für die beiden Lösungen 1 und an und multiplizieren anschließend von links mit 1 bzw. [ '' P ' Q ] 0 1 [ '' P ' Q ] Subtrahieren wir die beiden Gleichungen, so folgt nach kurzer Rechnung dw ( P( W ( 0

10 Die Variablen können getrennt werden und die Lösung der DGL für W lautet ( ) 0 W ( W0e dzp z Für W gilt: Einmal 0, immer 0, und umgekehrt! Wir nehmen nun an, dass wir nur eine Lösung 1 kennen. Wie findet man die zweite unabhängige Lösung? Mit der Quotientenregel zeigt man leicht d ( W ( 1( 1( Durch Integration gewinnt man dann die (noch) fehlende zweite Lösung W() z ( 1( dz 1 () z Aufgabe 9.6: Angenommen, Sie kennen nur die Lösung cos( t) der DGL 0. Bestimmen Sie mit der Wronski Determinante eine zweite unabhängige Lösung. Das eben geschilderte Verfahren zum Auffinden einer zweiten Lösung lässt sich auf inhomogene lineare DGLs d ( ( a( b( c( ( d( verallgemeinern (Variation der Konstanten). Wir verzichten jedoch an dieser Stelle auf eine weitere Diskussion. Aufgabe 9.7: Wie lautet die Wronski Determinante der Besselschen DGL (nullter Ordnung) '' ' 0?

11 Aufgabe 9.8: Lösen Sie die folgenden DGLs: Aufgabe 9.9: Finden Sie die allgemeinen Lösungen der folgenden DGLs:

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Homogene lineare Differentialgleichung 1. Ordnung

Homogene lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

16. EINIGE LÖSUNGSMETHODEN

16. EINIGE LÖSUNGSMETHODEN 134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

THM Studium Plus, SS 2014 Mathematik 2 für Wirtschaftsingenieure Dr. Frank Morherr Übungsblatt 9

THM Studium Plus, SS 2014 Mathematik 2 für Wirtschaftsingenieure Dr. Frank Morherr Übungsblatt 9 THM Studium Plus, SS 04 Mathematik für Wirtschaftsingenieure Dr. Frank Morherr Übungsblatt 9 Lösung Gewöhnliche Di erentialgleichungen, Trennung der Variablen, Variation der Konstanten, eulersche homogene

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R Tutor: Martin Friesen, martin.friesen@gm.de Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 1. Man berechne alle Lösungen der Differentialgleichung: (t) = t(t), t R Wir benutzten hier den

Mehr

Mathematische Methoden der Physik I

Mathematische Methoden der Physik I Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

3.7 Physik auf einem Karussell

3.7 Physik auf einem Karussell 3.7-1 3.7 Phsik auf einem Karussell 3.7.1 Geradlinig gleichförmige Bewegung auf einer sich drehenden Plattform Im Abschnitt 1.1 untersuchten wir einen Körper, der sich reibungsfrei mit konstanter Geschwindigkeit

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Computer und Software 1

Computer und Software 1 omputer und oftware 1. Köhler 6. aple Differentialgleichungen Folien: alint Aradi Differentialgleichungen Gewöhnliche Differentialgleichungen: f t, x t, x 1 t, x 2 t,..., x n t =0 x i t = d i x t dt i

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s

) auf dem Band auf Osiris zu, während Osiris sich auf dem Weg in die Unterwelt mit der Geschwindigkeit 0.35 Schoinen pro Stunde (v 2 = 1 m s 1 Das Rätsel vom Käfer auf dem Gummiband Die alten Ägypter glaubten angeblich, Osiris habe am Tempel in Luor ein unsichtbares Gummiband der Länge L = 1m befestigt, auf dessen Anfang er einen Scarabaeus

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1.

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1. INHALT Mengenlehre Komplexe Zahlen Intergalrechnung Doppelintegrale Partielle Differentiation Differentialgleichung 1. Ordnung Mathe-Party StudiumPlus 1 Sommersemester 017 Mathe-Party StudiumPlus Sommersemester

Mehr

13 Differentialgleichungen

13 Differentialgleichungen 3 Differentialgleichungen 282 3. Einführung Unter einer Differentialgleichung (=: DGL) versteht man eine Bestimmungsgleichung für eine unbekannte Funktion, in der die Funktion selbst und ihre Ableitungen

Mehr

Skalare Differenzialgleichungen

Skalare Differenzialgleichungen 3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya Integrationsregeln, Integration durch Substitution 1-E1 Ma 1 Lubov Vassilevskaya 1-E2 Ma 1 Lubov Vassilevskaya 1-E3 Ma 1 Lubov Vassilevskaya Integrationsregeln Faktorregel: b a b C f x dx = C a f x dx

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

1 Über die allgemeine komplexe und reelle Lösung

1 Über die allgemeine komplexe und reelle Lösung Lösen von Differentialgleichungen Inhaltsverzeichnis 1 Über die allgemeine komplexe und reelle Lösung 1 2 Integrierender Faktor 5 2.1 Eine Beispielrechnung.................... 5 2.2 Das allgemeine Vorgehen..................

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 7. Juni 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung Wenn

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr