Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)"

Transkript

1 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines bestimmten Produktes sie im letzten Monat gekauft haben. Die folgende Tabelle enthält die Befragungsergebnisse in einer Häufigkeitsverteilung. Anzahl der gekauften Stückzahl x i h(x i ) f(x i ) (%) H(x i ) F(x i ) (%) ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% Summe ,0% - - Bestimmen bzw. berechnen Sie für die obige Häufigkeitsverteilung (0,5 ) den Modus:... (2) (0,5 ) den Median:... (1,5 ) das arithmetische Mittel:... Name, Vorname:... (3,0 ) die Standardabweichung:... verteilung Teil 1: Beschreibende Statistik Aufgaben maximal erreichbare Punktzahl BeStat-1 7 BeStat-2 7 BeStat-3 5 BeStat-4 6 BeStat-5 15 BeStat-6 5 BeStat-7 15 Summe 60 erreichte Punktzahl (1 Punkt) Welche Eigenschaften hat die obige Häufigkeitsverteilung? (vier Nennungen werden erwartet, pro Nennung 0,25 )) (6) (0,5 ) Wie viel % der Befragten haben im letzten Monat weniger als 4 Stück gekauft?.. Wie viele der Befragten haben im letzten Monat mehr als 3 Stück gekauft?.. BeStat-1: von 7

2 4 5 BeStat-2 (7 ) BeStat-3 (5 ) a) (2 ) Der Umsatz eines Unternehmens hat sich im Zeitraum wie folgt entwickelt: 05/06: +10%, 06/07: +12%, 07/08: -19%, 08/09: 0%, 09/10: -3%. Bestimmen Sie die durchschnittliche jährliche Wachstumsrate für den Zeitraum (mit 2 Nachkommastellen). a) (4 ) Bei einer empirischen Untersuchung wurden n = 40 Personen nach der Kaufhäufigkeit pro Monat des Produktes Alpha befragt. Die Ergebnisse der Befragung sind in folgendem Häufigkeitsdiagramm dargestellt. Überführen Sie die Daten in eine tabellarische Häufigkeitsverteilung mit absoluter und relativer Häufigkeit. durchschnittliche jährliche Wachstumsrate im Zeitraum :... b) (1,5 ) Die Produktionsmenge einer Brauerei betrug im Jahr 1997: hl Bier. Im Jahr 2010 wurden 3,7 Mio hl. Bier gebraut. Bestimmen Sie die durchschnittliche jährliche Wachstumsrate der Produktionsmenge im Zeitraum (mit 2 Nachkommastellen). durchschnittliche jährliche Wachstumsrate im Zeitraum :... c) (1,5 ) Erläutern Sie kurz, was es bedeutet, dass ein Messinstrument nicht reliabel ist, nicht valide ist. b) (1 Punkt) Bestimmen bzw. berechnen Sie für die obige Häufigkeitsverteilung d) (2 ) Nennen Sie vier wichtige Design-Entscheidungen, die bei einer empirischen Untersuchung gefällt werden müssen.. (2).. (0,25 ) den Modus:... (2) (0,25 ) den Median:... (0,25 ) die Schiefe:... (0,25 ) die Spannweite:.. BeStat-2: von 7 BeStat-3: von 5

3 BeStat-4 (6 ) 6 7 a) (4,5 ) In der folgenden Tabelle sind die Halbjahres-Umsätze eines Unternehmens für den Zeitraum gegeben. Zerlegen Sie diese Zeitreihe in Trend, Saison und Rest. Es wurde mit der Methode der kleinsten Quadrate für die Zeitreihe bereits die folgende lineare Trendfunktion ermittelt (Transformation t = 1 : 1.Halbjahr 2008, t = 2 :2.Halbj. 2008, t = 3 :1.Halbj. 2009, usw.): ŷ = t Bei der Ermittlung des Saisoneinflusses soll von einer konstanten Saisonkomponente ausgegangen werden. Tragen Sie die berechneten Trend-, Saison- und Rest-Werte in die folgende Tabelle ein t Zeitreihe = Trend + + Saison + + Rest Umsatz in Mio x t berechnet aus Trendfunktion (bestimmt nach der Methode der kleinsten Quadrate) x t - t t = s t + r t s t x t - t t - s t = r t (2) = (2) - (6) = - Januar - Juni 58 Juli - Dezember 120 BeStat-5 (15 ) Für ein Industrieunternehmen sind in der folgenden Tabelle die Gesamtkosten K und die Produktionsmengen X für die ersten fünf Monate eines Jahres angegeben. a) (4 ) Berechnen Sie auf der Basis der folgenden Daten mit der Methode der kleinsten Quadrate eine lineare Regressionsfunktion ˆK = a+ b x, die die Abhängigkeit der monatlichen Gesamtkosten K von der produzierten Menge X möglichst gut wiedergibt. b) (1,5 ) Berechnen Sie die entsprechenden Regressionswerte und Residualwerte und tragen Sie die Ergebnisse in die folgende Tabelle ein. produzierte Menge Gesamtkosten Monat (in Mio Stück) (Mio ) 2 2 i x i K i xi Ki x i K i Summe Regressionswerte Residualwerte 2009 Januar - Juni 80 Juli - Dezember Januar - Juni 120 Juli - Dezember 182 ˆK = a+ b x= c) (3,5 ) Zeichnen Sie in das folgende Koordinatensystem ein - die Beobachtungswertepaare durch, - die berechnete Regressionsfunktion, - die Regressionswerte ŷ i durch +. - Markieren Sie außerdem die Residualwerte. (farbig) b) (1,5 ) Erstellen Sie eine Umsatzprognose durch Fortschreibung für das 1. Halbjahr 2011 auf der Basis der obigen Zeitreihenzerlegung unter Berücksichtigung der 3 Komponenten. Umsatzprognose für das 1. Halbjahr 2011:... BeStat-4: von 6

4 d) (3 ) Berechnen Sie den Korrelationskoeffizienten und das Bestimmtheitsmaß. produzierte Menge Gesamtkosten Monat (in Mio Stück) (Mio ) 2 2 i x i K i xi Ki x i K i 8 BeStat-6 (5 ) a) (2 ) Bei einer Befragung im Rahmen einer Marktforschungsstudie wurden die folgenden Merkmale gemessen. Geben Sie jeweils an, welcher Merkmalstyp vorliegt und auf welcher der 5 Skalen sie gemessen werden. 9 Summe Merkmal Merkmalstyp Skala Zufriedenheit mit der Qualität eines Produktes gemessen auf einer 5-er Skala mit 1 = sehr zufrieden bis 5 = sehr unzufrieden Markenwahl Alter (klassiert abgefragt) Postleitzahl des Wohnortes b) (4 ) Ordnen Sie die folgenden 8 statistischen Fachbegriffe a) - h) a) absolute Häufigkeit, b) relative Summenhäufigkeit, c) Streuungsparameter, e) (1 Punkt) Interpretieren Sie das Bestimmtheitsmaß für dieses Anwendungsbeispiel. d) Merkmalsausprägung, e) Lageparameter, f) Merkmalswert g) relative Häufigkeit, h) Merkmal den fettgedruckten Worten bzw. Texten in - zu. Sie brauchen im Folgenden nur jeweils den entsprechenden Buchstaben ( a) - h) ) hinter dem Text einzutragen. f) (1 Punkt) Interpretieren Sie die beiden Regressionskoeffizienten a und b für dieses Anwendungsbeispiel. a:. b:. g) (1 Punkt) Was steckt inhaltlich hinter den Residualwerten? Beziehen Sie sich bei Ihrer Antwort auf das Anwendungsbeispiel in dieser Aufgabe. weiblich... 48% der Befragten sind Männer... Frau Müller ist 23 Jahre alt... 26% der Personen sind jünger als 65 Jahre Befragte sind verheiratet... Die Spannweite beim Alter beträgt 45 Jahre.... Das Durchschnittsalter beträgt 47,4 Jahre... Geschlecht... BeStat-5: von 15 BeStat-6: von 5

5 BeStat-7 (15 ) Im Rahmen einer Marktforschungsstudie wurden n = 16 Personen u.a. gefragt nach den zwei Merkmalen Geschlecht G (w = weiblich, m = männlich) und Markenwahl M (A = Produkt A, B = Produkt B, C = Produkt C). Die Erhebung ergab die folgenden 16 Beobachtungswertepaare: (m, B), (w, B), (m, B), (m, C), (w, A), (m, B), (w, A), (m, C), (w, C), (m, B), (w, C), (m, B), (w, B), (w, C), (m, B), (w, C). a) Erstellen Sie eine Kreuztabelle für die beiden Merkmale G und M. Tragen Sie in die Kreuztabelle ein (jeweils mit einer Nachkommastelle): (2 ) die absoluten Häufigkeiten der Merkmalsausprägungskombinationen, (2) (0,5 ) die beiden Randverteilungen (absolut und relativ in %), (1 Punkt) die relativen Spaltenhäufigkeiten in %, (1 Punkt) die relativen Zeilenhäufigkeiten in %, (1 Punkt) die relativen Häufigkeiten der Merkmalsausprägungskombinationen in %. M / G A B C weiblich männlich Σ Σ (2) (2) b) (5 x 0,5 = 2,5 ) Beantworten Sie ggf. mit Hilfe der Kreuztabelle die folgenden Fragen: Welches Merkmal wird man im obigen Beispiel als unabhängiges bzw. abhängiges Merkmal betrachten? abhängiges Merkmal:... unabhängiges Merkmal:... (2) Wie viel % der Personen, die Produkt C bevorzugen, sind Frauen?...%. Wie viel % der Befragten sind Frauen und bevorzugen Produkt C?...%. Wie viel % der Männer bevorzugen das Produkt A?...%. Wie groß ist für das obige Beispiel f(c m) =...? (2) (2) (2) 10 c) (1,5 ) Tragen Sie in die folgende Kreuztabelle die absoluten Häufigkeiten für die Merkmalsausprägungskombinationen ein, die sich bei der Marktforschungsstudie ergeben hätten, wenn die beiden Merkmale G und M unabhängig voneinander wären, d.h. kein Zusammenhang zwischen den Merkmalen bestehen würde. (Randverteilungen wie bei den empirischen Daten, siehe a)) M/G weiblich männlich Σ A B C Σ d) (2,5 ) Im Jahr 2010 gibt es in einer Branche 40 Unternehmen. Die vier umsatzstärksten Unternehmen haben jeweils einen Umsatz von 125 Mio. 16 Unternehmen haben jeweils einen Umsatz von 25 Mio. Die 20 kleinsten Unternehmen haben jeweils einen Umsatz von 5 Mio. Zeichnen Sie in das folgende Koordinatensystem die Lorenzkurve zur Visualisierung der Umsatzkonzentration in der Branche. Beschriften Sie die beiden Achsen entsprechend ihrer Bedeutung! 1 0,5 0 0,5 1 e) (1 Punkt) Berechnen und interpretieren Sie für die Umsatzverteilung aus Aufgabenteil d) die Konzentrationsrate K 6. f) (2 ) Gegeben ist eine Zeitreihe für den Umsatz eines Produktes und eine Messzahlenreihe für den Umsatz dieses Produktes. Berechnen Sie für diese Daten eine gemeinsame Messzahlenreihe für den Zeitraum zum Basisjahr 2006 (mit einer Nachkommastelle). Tragen Sie die Messzahlenreihe in die letzte Zeile der folgenden Tabelle ein: Jahr Umsatz (Mio ) (Zeitraum ) Messzahlenreihe zum Basisjahr 2008 (Zeitraum ) Messzahlenreihe zum Basisjahr 2006 (Zeitraum ) BeStat-7: von 15

6 Klausurteil 2: Schließende Statistik 12 Klausurteil 2: Schließende Statistik 13 Klausur-Nr = Sitzplatz-Nr Prüfung zu bzw. (Wirtschaftsstatistik) SchlStat-1 (13 ) Theo betreibt die Kneipe Zum lahmen Durst. Der morgige Tagesabsatz an Bier in dieser Kneipe sei eine normalverteilte Zufallsvariable mit µ = 350 Liter und σ = 80 Liter. Wie groß ist die Wahrscheinlichkeit, dass der Bierumsatz am morgigen Tag a) mehr als 450 Liter beträgt? (3 ) b) zwischen 230 und 330 Litern liegt? (3 Punkt) c) höchstens 110 Liter beträgt? (2 ) d) nicht zwischen 150 und 550 Litern liegt? (3 ) e) Angenommen σ wäre nicht gleich 80 Liter sondern größer, würde die Wahrscheinlichkeit aus d) größer oder kleiner werden? Begründen Sie ihre Antwort? (2 ) Klausurteil 2: Wahrscheinlichkeitrechnung und Schließende Statistik Name, Vorname:... verteilung Teil 2: Schließende Statistik Aufgaben maximal erreichbare Punktzahl SchlStat-1 13 SchlStat-2 12 SchlStat-3 11 SchlStat-4 12 SchlStat-5 12 Summe 60 erreichte Punktzahl SchlStat-1 von 13

7 Klausurteil 2: Schließende Statistik 14 Klausurteil 2: Schließende Statistik 15 SchlStat-2 (12 ) SchlStat-3 (11 ) Eine Bank hat sehr viele Kredite an ihre Kunden vergeben. Die Bank weiß durch empirische Untersuchungen, dass im Durchschnitt 7,5 von 1000 Krediten ausfallen. In einer Bevölkerung sind 20% Linkshänder. Wie groß ist die Wahrscheinlichkeit, dass von 15 Personen dieser Bevölkerung a) Mit welcher Wahrscheinlichkeit hat die Bank gar keinen Ausfall (je 1000 Kredite) zu verzeichnen? (2 ) b) Welche Anzahl von Ausfällen (je 1000 Kredite) ist am wahrscheinlichsten? (2 ) c) Mit welcher Wahrscheinlichkeit fallen mehr als 10 von 1000 Krediten aus? (3 ) d) Mit welcher Wahrscheinlichkeit fallen höchstens 15 von 1000 Krediten aus? (2 ) e) Mit welcher Wahrscheinlichkeit fallen mindestens 3 und weniger als 8 Kredite aus? (3 ) a) genau eine Person Linkshänder ist? (2 ) b) mindestens eine Person Linkshänder ist? (2,5 ) c) höchstens zwei Personen Linkshänder sind? (2 ) d) mehr als drei Personen Linkshänder sind? (2 ) e) mehr als fünf und weniger als zehn Personen Linkshänder sind? (2,5 ) SchlStat-2 von 12 SchlStat-3 von 11

8 Klausurteil 2: Schließende Statistik 16 Klausurteil 2: Schließende Statistik 17 SchlStat-4 (12 ) SchlStat-5 (12 ) Gegeben ist eine Urne mit 40 Kugeln von denen 5 rot und 35 weiß sind. Aus der Urne werden zufällig 6 Kugeln ohne Zurücklegen herausgenommen. Wie groß ist die Wahrscheinlichkeit bei dieser Entnahme a) genau vier rote Kugeln zu ziehen? (2 ) b) genau sechs rote Kugeln zu ziehen? (2 ) c) mehr als drei rote Kugeln zu ziehen? (3 ) d) mehr als eine und höchstens 3 rote Kugeln zu ziehen? (3 ) e) mindestens eine weiße Kugel zu ziehen? (2 ) Bei einer Marktumfrage kannten 22% aller Befragten das Produkt A, 30% kannten das Produkt B und 40% kannten mindestens eines der beiden Produkte. a) Wie viel Prozent aller Befragten kennen keines der beiden Produkte? (2 ) b) Wie viel Prozent aller Befragten kennen beide Produkte? (4 ) c) Wie viel Prozent aller Befragten kennen Produkt A aber nicht Produkt B? (3 ) d) Sind die beiden Ereignisse Befragter kennt Produkt A und Befragter kennt Produkt B (stochastisch) unabhängig? (Begründen Sie kurz Ihre Antwort!) (3 ) (Ergebnisse auf 5 Nachkommastellen genau) SchlStat-4 von 12 SchlStat-5 von 12

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Prüfung zu. (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik. BeStat-1 (7 Punkte)

Prüfung zu. (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik. BeStat-1 (7 Punkte) Klausurteil 1: Beschreibende Statistik 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu BeStat-1 (7 ) a) (1,5 ) Im Zeitraum 1975-006 hat sich der Umsatz eines Unternehmens verachtfacht. Bestimmen Sie die durchschnittliche

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik 2 Klausurteil 1: Beschreibende Statistik Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Modul 14 (BA Bw) bzw. Modul 3 (BA IB) bzw. Modul 4 (BA IBM): Wirtschaftsstatistik Teil 1: Beschreibende Statistik

Modul 14 (BA Bw) bzw. Modul 3 (BA IB) bzw. Modul 4 (BA IBM): Wirtschaftsstatistik Teil 1: Beschreibende Statistik Fachhochschule Dortmund Wintersemester 12/13 Fachbereich Wirtschaft Prof. Dr. Laufner Studiengänge BA Betriebswirtschaft und BA International Business (Management) Übungsaufgaben zur Woche 7. + 8. 1. 13

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

TÜV Service tested Prüfgrundlagen

TÜV Service tested Prüfgrundlagen TÜV Service tested Prüfgrundlagen 60 Grundsätzliche Prüfgrundlagen Für die Auszeichnung TÜV Service tested müssen drei Voraussetzungen erfüllt sein: 1. Die Gesamtzufriedenheit muss von den Kunden des Unternehmens

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Statistik-Klausur vom 11. Februar 2005

Statistik-Klausur vom 11. Februar 2005 Statistik-Klausur vom 11. Februar 005 Bearbeitungszeit: 90 Minuten Aufgabe 1 Ein Konzern erstellt einen Überblick über die Umsätze von drei Tochterunternehmen in der vergangenen Periode. Dazu werden die

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Deskriptive Statistik Aufgaben und Lösungen

Deskriptive Statistik Aufgaben und Lösungen Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................

Mehr

Deskriptive Statistik Erläuterungen

Deskriptive Statistik Erläuterungen Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Statistik Probeprüfung 1

Statistik Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Statistik Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur Orientierung:

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Funktionaler Zusammenhang. Lehrplan Realschule

Funktionaler Zusammenhang. Lehrplan Realschule Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3.

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3. SEMINAR FÜR STATISTIK Stand 17. April 23 UNIVERSITÄT MANNHEIM Aufgabensammlung zur Veranstaltung Deskriptive Statistik 1. Aufgabe Geben Sie für die Merkmale Einkommen Haarfarbe soziale Stellung Körperlänge

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Johann Wolfgang Goethe-Universität Frankfurt am Main

Johann Wolfgang Goethe-Universität Frankfurt am Main Johann Wolfgang Goethe-Universität Frankfurt am Main Fachbereich Wirtschaftswissenschaften Professur für Statistik und Ökonometrie (Empirische Wirtschaftsforschung) Prof. Dr. Reinhard Hujer Mertonstraße

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Modul 01: Einführung

Modul 01: Einführung Modul 01: Einführung 1 Modul 01: Einführung Was ist eine Statistik Wozu statistische Methoden dazu 7 kleine Fallstudien 2 1 Modul 01: Was ist eine Statistik eine systematische Zusammenstellung von Zahlen

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Nachklausur Statistik

Nachklausur Statistik Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils

Mehr

Marketing III - Angewandte Marktforschung (WS 2016/17)

Marketing III - Angewandte Marktforschung (WS 2016/17) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing III - Angewandte Marktforschung (WS 2016/17)

Mehr

Das Mathe- Viertelfinale

Das Mathe- Viertelfinale Das Mathe- Viertelfinale 1. Geben Sie für die folgenden Untersuchungen mögliche statistische Einheiten und Masse an und bestimmen die notwendigen Identifikationskriterien. Geben Sie ferner die zugrundeliegende

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 09.02.2009 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen möchte den Einfluss seiner Werbemaßnahmen auf den erzielten Umsatz quantifizieren. Hierfür werden die jährlichen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Rechnen

Mehr

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik

Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden.

a) Nennen Sie die verschiedenen Ebenen der amtlichen Statistik in Deutschland und die dafür zuständigen Behörden. Statistik I, SS 2005, Seite 1 von 9 Statistik I Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - selbst erstellte Formelsammlung für

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau Berechnung von Wahrscheinlichkeiten beim Ziehen mit und ohne Zurücklegenn Ziehen mit Zurücklegenn Wir betrachten folgendes Beispiel: In einer Urne sind 2 rote und 3 blaue Kugeln.. Wenn man hier eine Kugel

Mehr