Kap 4. 4 Die Mikroprogrammebene eines Rechners

Größe: px
Ab Seite anzeigen:

Download "Kap 4. 4 Die Mikroprogrammebene eines Rechners"

Transkript

1 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.). Diese einzelnen Schritte werden durch das Mikroprogramm gesteuert. Höhere Programmiersprache int a=1, b=2; a = a+2*b; Assembler und Maschinenprogramm lw $t0, a lw $t1, b add $t0, $t0, $t1 add $t0, $t0, $t1 sw $t0, a Register und Mikroprogramm Kap 4 Gatter & & & >1 Transistoren

2 Die Mikroprogrammebene eines Rechners Jörg Roth 257 Es gibt zwei unterschiedliche Rechnerarchitektur-Typen: CISC (Complex Instructions Set Computers): Ein Befehl auf Maschinenebene wird durch mehrere Befehle auf der Mikroprogrammebene dargestellt. Dadurch stellen Maschinen-Befehle kleine "Programme" dar, die z.b. Schleifen enthalten können. Es sind komfortable Befehle möglich. RISC (Reduced Instructions Set Computers): Ein Befehl auf Maschinenebene entspricht direkt einem Befehl der Mikroprogrammebene. Dadurch sind weniger komfortable Befehle möglich, diese werden aber sehr schnell abgearbeitet.

3 Die Mikroprogrammebene eines Rechners Jörg Roth 258 Typische Bestandteile einer CPU: Ein Satz von Registern (typisch: ca Stück), die Zwischenergebnisse speichern und als Operanden verwendet werden können. Meist ein einzelnes ausgezeichnetes Register, das als ein Operand und Speicher des Ergebnisses benutzt wird (genannt Akkumulator). Auch möglich: Speichern des Ergebnisses in ein beliebiges Register. Eine Arithmetisch Logische Einheit (ALU) berechnet logische Operationen (AND, XOR etc.) und arithmetische Operationen (Addition, Subtraktion, eventuell Multiplikation, Division).

4 Die Mikroprogrammebene eines Rechners Jörg Roth 259 Beispiel: 4-Bit-ALU (Bemerkung: ist ein eigener ALU-Baustein. Üblicherweise sind ALUs innerhalb der CPU integriert). Mögliche Funktionen: logische (AND, OR, XOR, Invertieren etc.) arithmetische (Addition, Subtraktion) Carry-Eingang, Carry-Ausgang (Carry Look-Ahead). Mehrere ALUs können hintereinandergeschaltet werden, um größere Bitbreiten zu realisieren Über 5 Eingänge (S0...S3, M) wird die Funktion selektiert Nicht alle 32 möglichen Funktionen haben eine unmittelbare Bedeutung z.b. (1, 0, 1, 0, 1) bedeutet (A UND B) PLUS (A ODER B) PLUS Carry

5 Die Mikroprogrammebene eines Rechners Jörg Roth 260 Die wichtigsten Funktionen: M S3 S2 S1 S0 Funktion M S3 S2 S1 S F = A F = A PLUS Carry F = A UND B F = A ODER B F = (1, 1, 1, 1) F = (Carry, Carry, Carry, Carry) F = A ODER B F = B F = (A = B) F = A MINUS B MINUS Carry F = A ODER B F = A UND B F = A XOR B F = A PLUS B PLUS Carry F = B F = A ODER B F = (0, 0, 0, 0) F = A UND B F = A UND B F = A F = A MINUS Carry

6 Die Mikroprogrammebene eines Rechners Jörg Roth 261 Typische Bestandteile einer CPU (Fortsetzung): Eine Schiebeeinheit (Shifter) führt rechts-, links-schieben, arithmetisches Schieben und Rotieren durch. Die Schiebefunktionen werden oft auch der ALU zugerechnet und nicht durch eine eigene Komponente realisiert. Ein Satz von Flags gibt über den Status einer Berechnung Auskunft: Carry: es ist ein Übertrag entstanden Overflow: es ist ein Überlauf entstanden Zero: es ist eine 0 entstanden (bzw. Gleichheit beim Vergleich) Negativ: es ist eine negative Zahl entstanden (bzw. kleiner-bedingung beim Vergleich)

7 Die Mikroprogrammebene eines Rechners Jörg Roth 262 Zusammenspiel zwischen ALU, Registern und Flags: Reg n... Reg 3 Reg 2 Akku... 2.Operand ALU & Shifter Funktion C O Z N

8 Die Mikroprogrammebene eines Rechners Jörg Roth 263 Typische Bestandteile einer CPU (Fortsetzung): Ein Register, das auf den nächsten Maschinen-Befehl im Speicher zeigt (Instruction Pointer, IP). Ein Register, das (z.b. für Unterprogrammaufrufe) auf die oberste Adresse eines Stapels zeigt (Stack Pointer, SP). Ein Satz von Registern, ist für die Kommunikation mit dem Hauptspeicher notwendig: ein Register hält die Speicheradresse (Memory Address Register, MAR), ein weiteres Register speichert den Inhalt zum Schreiben und Lesen (Memory Buffer Register, MBR). Ein Steuerwerk wertet die Maschinen-Befehle aus und steuert die Datenflüsse zwischen den einzelnen Komponenten in der geforderten Weise.

9 Die Mikroprogrammebene eines Rechners Jörg Roth 264 Weitere Komponenten einer CPU: Interrupt-Logik: Die CPU muss asynchron auf auftretende Ereignisse reagieren können (z.b. Netzwerkkarte meldet, dass ein Netzwerkpaket eingetroffen ist). Diese Ereignisse werden über spezielle Eingänge gemeldet und unterbrechen die aktuelle Programmabarbeitung. Cache-Speicher: Zum Beschleunigen der Speicherzugriffe werden Daten auf dem Prozessor-Chip zwischengespeichert. Liegen die Daten bei einem erneuten Zugriff noch vor, so ist der Zugriff wesentlich schneller. Fließkomma-Einheit: Traditionell sind Fließkomma-Einheiten nicht Bestandteil der CPU. Früher gab es dazu einen mathematischen Coprozessor (Floating Point Unit, FPU), der typische Fließkomma-Befehle bereitstellte. Heutzutage kann die FPU auf dem CPU-Chip integriert werden. Es gibt aber auch CPUs ohne jegliche Fließkomma-Funktionen. In diesem Fall muss die Fließkomma-Arithmetik über Software realisiert werden.

10 Die Mikroprogrammebene eines Rechners Jörg Roth 265 Schematischer Aufbau einer CPU: Register für Speicherzugriff Adresse/Daten Haupt- speicher- Adresse Haupt- speicher- Daten IP SP MAR MBR Reg n... Reg 3 Reg 2 Akku... 2.Operand Schreiben oder Lesen welches Register speichern/ laden ALU & Shifter Funktion C O Z N

11 Die Mikroprogrammebene eines Rechners Jörg Roth 266 Schematischer Aufbau einer CPU inklusive Steuerwerk: Register für Speicherzugriff Adresse/Daten Haupt- speicher- Adresse Haupt- speicher- Daten IP SP MAR MBR Reg n... Reg 3 Reg 2 Akku... 2.Operand Schreiben oder Lesen welches Register speichern/ laden ALU & Shifter Funktion Befehl C O Z N Steuerwerk

12 Die Mikroprogrammebene eines Rechners Jörg Roth 267 Funktionsweise des Steuerwerks: Anhand des geladenen Befehls wird an eine bestimmte Stelle des Mikroprogramm-Speichers verzweigt. Ein Mikroprogramm-Befehl besteht aus einem Bitvektor ( 1, 2,...). Dadurch werden die Multiplexer/Demultiplexer ("...") so angesteuert, wie es der Befehl erfordert. Üblicherweise erfordert ein Befehl mehrere Schritte im Mikroprogramm. Deshalb enthält ein Mikroprogramm-Befehl auch Anteile, die das Mikroprogramm selbst steuern (z.b. Mikroprogramm-Zähler um 1 weiterschalten).

13 Die Mikroprogrammebene eines Rechners Jörg Roth 268 Durch Berücksichtigen der Flags kann das Mikroprogramm unterschiedlich reagieren. Beispiel: Maschinenbefehl des Z80-Prozessors: JP Z,<adresse> // (Jump If Zero) Bedeutung: Springe zu einer Programmadresse, wenn die letzte Operation den Wert 0 ergab Pseudo-Code des zugehörigen Mikroprogramms: Werte das Zero-Flag aus Ist das Zero-Flag gesetzt, dann setze IP:=<adr> Ist das Zero-Flag nicht gesetzt, dann setze IP:=IP+1

14 Die Mikroprogrammebene eines Rechners Jörg Roth 269 Bemerkung: In der Regel ist das Mikroprogramm einer CPU fest. Es gibt einige wenige CPUs, deren Mikroprogramm neu geladen werden kann. Warum programmiert man nicht direkt auf Mikroprogramm-Ebene? Mikroprogramm-Befehle sind in der Regel sehr "breit" Mikroprogramm-Befehle erfordern viel Wissen über den internen Aufbau der CPU

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Von-Neumann-Rechner (John von Neumann : 1903-1957) C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Quelle: http://www.cs.uakron.edu/~margush/465/01_intro.html Analytical Engine - Calculate

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Das Von-Neumann-Prinzip Prinzipien der Datenverarbeitung Fast alle modernen Computer funktionieren nach dem Von- Neumann-Prinzip. Der Erfinder dieses Konzeptes John von Neumann (1903-1957) war ein in den

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch

Teil Rechnerarchitekturen M03. Darstellung von Zahlen, Rechnen, CPU, Busse. Corinna Schmitt corinna.schmitt@unibas.ch Teil Rechnerarchitekturen M03 Darstellung von Zahlen, Rechnen, CPU, Busse Corinna Schmitt corinna.schmitt@unibas.ch Darstellung von Zahlen Rechnen 2015 Corinna Schmitt Teil Rechnerarchitekturen - 2 Zwei

Mehr

Das Rechnermodell von John von Neumann

Das Rechnermodell von John von Neumann Das Rechnermodell von John von Neumann Historisches Die ersten mechanischen Rechenmaschinen wurden im 17. Jahhundert entworfen. Zu den Pionieren dieser Entwichlung zählen Wilhelm Schickard, Blaise Pascal

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Statt positive Zahlen von 0 bis 2 n -1mit einem Bitmuster der Länge n darzustellen und arithmetische Operationen darauf auszuführen,

Mehr

11.0 Rechnerarchitekturen

11.0 Rechnerarchitekturen 11.0 Rechnerarchitekturen Die Ziele dieses Kapitels sind: Kennen lernen der Rechnerklassifikation nach Flynn Betrachtung von Prozessorarchitekturen auf verschiedenen Abstraktionsebenen - Befehlsarchitektur

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Fehlerkorrektur Bild 3.190 Demoprozessor

Fehlerkorrektur Bild 3.190 Demoprozessor 7 Prozessor 3 0 Flags C V N Z A IP 0 SP AB 8 MS W/R DB 4 00h..6Fh Daten Speicher 70h..70h PA 71h..71h PB 72h..73h PC 74h..76h PD 80h..FFh Programm Speicher Fehlerkorrektur Bild 3.190 Demoprozessor Die

Mehr

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung: Syntaxbaum Ausgabeprogramm Starte mit Syntaxbaum: Darstellung des eingegebenen Programms Wähle Zielarchitektur Wähle abstrakte

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf:

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf: Fachhochschule Regensburg Fachbereich Elektrotechnik 1. Übung aus Digitaltechnik 2 1. Aufgabe Die folgende CMOS-Anordnung weist einen Fehler auf: A B C p p p Y VDD a) Worin besteht der Fehler? b) Bei welcher

Mehr

02.11.2001-11-06 Klasse: IA11. Der Prozessor, das Herzstück eines Computers

02.11.2001-11-06 Klasse: IA11. Der Prozessor, das Herzstück eines Computers Sascha Dedenbach Heinrich-Hertz Berufskolleg 02.11.2001-11-06 Klasse: IA11 Der Prozessor, das Herzstück eines Computers Inhaltsübersicht 1. Der Prozessor, das Herzstück eines Computers...Seite 3 2. Wie

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz Rechnerarchitektur M. Jakob Gymnasium Pegnitz 1. Februar 2015 Inhaltsverzeichnis 1 Aufbau eines Computersystems Praktische Grundlagen Von-Neumann-Rechner 2 Darstellung und Speicherung von Zahlen 3 Registermaschinen

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

9.0 Komplexe Schaltwerke

9.0 Komplexe Schaltwerke 9.0 Komplexe Schaltwerke Die Ziele dieses Kapitels sind: Lernen komplexe Schaltwerke mittels kleinerer, kooperierender Schaltwerke zu realisieren Verstehen wie aufgabenspezifische Mikroprozessoren funktionieren

Mehr

1.7 Assembler Programmierung

1.7 Assembler Programmierung 1.7 Assembler Programmierung Die nach außen sichtbare Programmierschnittstelle eines Prozessors ist der Befehlscode. Dies ist eine binäre Dateninformation, die vom Prozessor Byte für Byte abgearbeitet

Mehr

Lektion 3: Was ist und was kann ein Computer?

Lektion 3: Was ist und was kann ein Computer? Lektion 3: Was ist und was kann ein Computer? Helmar Burkhart Informatik burkhart@ifi.unibas.ch EINFÜHRUNG IN DIE INFORMATIK I 3-0 Übersicht Lektion 3 Hardware Software Aufbau eines Computers Rechnerkern

Mehr

Shangrila. One Instruction Set Computer

Shangrila. One Instruction Set Computer Shangrila One Instruction Set Computer Outline One Instruction Set Computer Die Idee Funktion Die Machine Shangrila VM Interfaces Tools Implementation Status & Zukunft OISC >> Die Idee CPU mit nur einer

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (0) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Was ist ein Rechner? Maschine, die Probleme für

Mehr

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.

Rechnerarchitektur. Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz. Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät für Informatik Fakultätsrechen- und Informationszentrum anmu@informatik.tu-chemnitz.de Rechnerarchitektur Dr. Andreas Müller TU Chemnitz Fakultät

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF ITS Teil 2: Rechnerarchitektur 1. Grundschaltungen der Digitaltechnik a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF b. Zähler (Bsp. 4-Bit Zähler) - Eingang count wird zum Aktivieren

Mehr

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Compiler: Vom Code zum Maschinen-Code C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Prof. Dr. Jan Dünnweber Zusammenhänge: C und Assembler Hochsprachen

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

5 Speicherverwaltung. bs-5.1 1

5 Speicherverwaltung. bs-5.1 1 5 Speicherverwaltung bs-5.1 1 Pufferspeicher (cache) realer Speicher Primärspeicher/Arbeitsspeicher (memory) Sekundärspeicher/Hintergrundspeicher (backing store) (Tertiärspeicher/Archivspeicher) versus

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

Technischen Informatik I, WS 2004/05

Technischen Informatik I, WS 2004/05 PHILIPPS-UNIVERSITÄT MARBURG Fachbereich Mathematik und Informatik Prof Dr R Loogen, Dipl-Inform J Beringer D-3532 Marburg Hans-Meerwein-Straße Lahnberge Klausur zur Technischen Informatik I, WS 24/5 3

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Funktionsweise von Computern Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/fischer Inhalt 1. Ein Blick zurück 2. Stand

Mehr

Elementare logische Operationen

Elementare logische Operationen RECHNERARCHITEKTUR 2 - ELEMENTARE LOGISCHE OPERATIONEN 1 Elementare logische Operationen Modifizieren, Testen,Vergleichen In diesem Abschnitt wollen wir zeigen, wie man mit den elementaren logischen Verknüpfungen

Mehr

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 95 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

ZENTRALEINHEITEN GRUPPE

ZENTRALEINHEITEN GRUPPE 31. Oktober 2002 ZENTRALEINHEITEN GRUPPE 2 Rita Schleimer IT für Führungskräfte WS 2002/03 1 Rita Schleimer TEIL 1 - Inhalt Zentraleinheit - Überblick Architekturprinzipien Zentralspeicher IT für Führungskräfte

Mehr

2. Rechnerarchitektur 2.1 einfache Computer

2. Rechnerarchitektur 2.1 einfache Computer Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 2. Rechnerarchitektur 2.1 einfache Computer Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

Rechnergrundlagen SS 2007. 11. Vorlesung

Rechnergrundlagen SS 2007. 11. Vorlesung Rechnergrundlagen SS 2007 11. Vorlesung Inhalt Evaluation der Lehre (Auswertung) Synchroner/asynchroner Systembus Kontrollfluss/Datenfluss RISC vs. CISC Speicherhierarchie Cache Lesen Schreiben Überschreiben

Mehr

Bitte in Druckschrift ausfüllen: Nachname: Vorname: Fachbereich: Matrikelnummer: Geheimwort: Bitte nicht ausfüllen:

Bitte in Druckschrift ausfüllen: Nachname: Vorname: Fachbereich: Matrikelnummer: Geheimwort: Bitte nicht ausfüllen: Prof. Dr. B. Seeger Klausur zur Informatik IIIa WS 99/00 Martin Schneider Beginn: Ende: 8:15 Uhr 10:45 Uhr Bitte in Druckschrift ausfüllen: Nachname: Fachbereich: Matrikelnummer: Geheimwort: Tragen Sie

Mehr

Midterm-Klausur Technische Grundlagen der Informatik

Midterm-Klausur Technische Grundlagen der Informatik Midterm-Klausur Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Wintersemester 2002/2003 7. Dezember 2002 Name: Vorname: Matrikelnummer: Hörsaal: Platz: Unterschrift: Ergebnis: Aufgabe Punkte

Mehr

Modellierung und Programmierung 1

Modellierung und Programmierung 1 Modellierung und Programmierung 1 Prof. Dr. Sonja Prohaska Computational EvoDevo Group Institut für Informatik Universität Leipzig 21. Oktober 2015 Automat versus Computer Ein Automat ist eine Maschine,

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Brückenkurs / Computer

Brückenkurs / Computer Brückenkurs / Computer Sebastian Stabinger IIS 23 September 2013 Sebastian Stabinger (IIS) Brückenkurs / Computer 23 September 2013 1 / 20 Content 1 Allgemeines zum Studium 2 Was ist ein Computer? 3 Geschichte

Mehr

Informatik II. Sequentielle Schaltwerke. sequentielle Schaltwerke. sequentielle Schaltwerke. Rainer Schrader. 14. November 2005

Informatik II. Sequentielle Schaltwerke. sequentielle Schaltwerke. sequentielle Schaltwerke. Rainer Schrader. 14. November 2005 nformatik Rainer chrader equentielle chaltwerke Zentrum für Angewandte nformatik Köln 4. November 5 / 57 / 57 wir haben gesehen, dass es notwendig ist, den Ablauf von chaltvorgängen und ihre Reihenfolge

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

Übung -- d001_7-segmentanzeige

Übung -- d001_7-segmentanzeige Übung -- d001_7-segmentanzeige Übersicht: Der Steuerungsablauf für die Anzeige der Ziffern 0 bis 9 mittels einer 7-Segmentanzeige soll mit einer speicherprogrammierbaren Steuerung realisiert werden. Lehrziele:

Mehr

Die Maschinenprogrammebene eines Rechners Jörg Roth 294

Die Maschinenprogrammebene eines Rechners Jörg Roth 294 Die Maschinenprogrammebene eines Rechners Jörg Roth 294 5.E Die SPIM-Umgebung SPIM ist ein Simulationswerkzeug für MIPS-Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem

Mehr

7 Ein einfacher CISC-Prozessor

7 Ein einfacher CISC-Prozessor 7 Ein einfacher CISC-Prozessor In diesem Kapitel wird ein einfacher Prozessor vorgestellt. Die Architektur, die wir implementieren, wurde von R. Bryant und D. O Hallaron entworfen und verwendet eine Untermenge

Mehr

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754.

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. a) Stellen Sie die Zahl 7,625 in folgender Tabelle dar! b) Wie werden denormalisierte

Mehr

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 1 / 53 Inhaltsverzeichnis 1 Einführung 2 Assembler Syntax, Register und Flags 3 Hauptspeicher 4 Stack 5 Assemblerbefehle

Mehr

01.11.2012. Vorlesung Programmieren. Inhalt. Funktionsweise von Computern. Ein Blick zurück. 1. Ein Blick zurück. 2.

01.11.2012. Vorlesung Programmieren. Inhalt. Funktionsweise von Computern. Ein Blick zurück. 1. Ein Blick zurück. 2. Vorlesung Programmieren Funktionsweise von Computern Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Inhalt 1. Ein Blick zurück 2. Stand

Mehr

Angewandte Informatik

Angewandte Informatik Angewandte Informatik Teil 2.1 Was ist Hardware? Die Zentraleinheit! 1 von 24 Inhaltsverzeichnis 3... Was ist Hardware? 4... Teile des Computers 5... Zentraleinheit 6... Die Zentraleinheit 7... Netzteil

Mehr

Automatisierungstechnik AP1

Automatisierungstechnik AP1 Automatisierungstechnik AP1 Übersicht 1 Lernziele: Automatisierungstechnik AP1 Einführung in die Prozessorarchitektur und Maschinenprogrammierung Grundlagen des Aufbaus und der Wirkungsweise von Prozessoren

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Umsetzung in aktuellen Prozessoren

Umsetzung in aktuellen Prozessoren Kapitel 8: Umsetzung in aktuellen Prozessoren 4 Realisierung elementarer Funktionen Reihenentwicklung Konvergenzverfahren 5 Unkonventionelle Zahlensysteme redundante Zahlensysteme Restklassen-Zahlensysteme

Mehr

Betriebssysteme Teil 6: Hardware-Schicht II

Betriebssysteme Teil 6: Hardware-Schicht II Betriebssysteme Teil 6: Hardware-Schicht II 13.11.15 1 Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2]

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16 Kapitel 5 Arithmetische Operatoren Seite 1 von 16 Arithmetische Operatoren - Man unterscheidet unäre und binäre Operatoren. - Je nachdem, ob sie auf einen Operanden wirken, oder eine Verknüpfung zweier

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher

Informatik II SS 2006. Von Neumann Prinzipien (1946) Bestandteile eines von Neumann Rechners. Speicher Von Neumann Prinzipien (1946) Informatik II SS 2006 Kapitel 3: Rechnerarchitektur Teil 2: von Neumann Architektur Dr. Michael Ebner Dr. René Soltwisch Lehrstuhl für Telematik Institut für Informatik 1.

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Klausur. Technische Grundlagen der Informatik Prof. Dr. Arndt Bode

Klausur. Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Klausur Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Wintersemester 2000/2001 3. Februar 2001 Name: Vorname: Matrikelnummer: Geburtsdatum: Hörsaal: Platz: Unterschrift: Ergebnis: Aufgabe 1

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Rechnerorganisation II 1. Übungsblatt

Rechnerorganisation II 1. Übungsblatt Rechnerorganisation II 1. Übungsblatt Entwerfen Sie eine möglichst einfache Schaltung auf Register-Transfer-Ebene für einen 16-Bit Minimalprozessor MPROZ mit folgenden Vorgaben: a) Schnittstellen des Prozessors

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

HC680 PROGRAMMER'S REFERENCE MANUAL

HC680 PROGRAMMER'S REFERENCE MANUAL HC680 PROGRAMMER'S REFERENCE MANUAL Programmieranleitung Mnemonic Assembler Maschinenbefehl Wirkung /Bedeutung Register (0 bis 3 allg. Reg.) Ope- Opcode/Binärcode - Adressierungsart - Nr Bez. xx Bin Art

Mehr

Betriebssysteme Kap B: Hardwaremechanismen

Betriebssysteme Kap B: Hardwaremechanismen 1 Betriebssysteme Kap B: Hardwaremechanismen 2 Beispielprozessor Ein- / Ausgabe p[ ] ir Leitwerk pc Register a f sp Rechenwerk Speicher m[ ] Spezielle Register Flagregister f f.i: Interrupt-Enable-Flag

Mehr

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7 1 Vortrag Atmega 32 Von Urs Müller und Marion Knoth Urs Müller Seite 1 von 7 Inhaltsverzeichnis 1 Vortrag Atmega 32 1 1.1 Einleitung 3 1.1.1 Hersteller ATMEL 3 1.1.2 AVR - Mikrocontroller Familie 3 2 Übersicht

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen 2.5 Unterbrechungen

Mehr

Funktionaler Aufbau eines Computers Untersuchung von Delphi-Compilaten

Funktionaler Aufbau eines Computers Untersuchung von Delphi-Compilaten Funktionaler Aufbau eines Computers Im Folgenden soll der Weg untersucht werden, wie ein Programm, das von einem Compiler/Interpreter in Maschinencode übertragen wurde, schließlich vom Prozessor abgearbeitet

Mehr

Wie arbeiten Computer?

Wie arbeiten Computer? Autor: Ortmann, Jürgen. Titel: Wie arbeiten Computer? Quelle: Einführung in die PC-Grundlagen. München, 8. Auflage, 2003. S. 29-41. Verlag: Addison-Wesley Verlag. Die Veröffentlichung erfolgt mit freunlicher

Mehr

Technische Informatik 2 Befehlsausführung, Pipelining und Steuereinheit

Technische Informatik 2 Befehlsausführung, Pipelining und Steuereinheit Technische Informatik 2 Befehlsausführung, Pipelining und Steuereinheit Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute Programmierkonzepte Sequenzierung von

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Entwiklunggehihte der Mikroprozeoren Jhr µp-typ 1. Genertion 1971 Intel 4004 4-Bit ALU, 16x4Bit Regiter, 12 Bit Adreu, 45 Befehle, 2250 Trnitoren 1972 Intel 8008 8-Bit ALU, 6x8 Bit Regiter, 14 Bit Adreu,

Mehr

Klausur "Informationstechnische Grundlagen" WS 2012/2013

Klausur Informationstechnische Grundlagen WS 2012/2013 PD Dr. J. Reischer 11.02.2013 Klausur "Informationstechnische Grundlagen" WS 2012/2013 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) Bitte füllen Sie zuerst den

Mehr