Teil VIII Hypothesentests für zwei Stichproben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Teil VIII Hypothesentests für zwei Stichproben"

Transkript

1 Woche 9: Hypothesentests für zwei Stichproben Teil VIII Hypothesentests für zwei Stichproben WBL 15/17, Alain Hauser Berner Fachhochschule, Technik und Informatik Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 2 / 21 Lernziele Beispiel: Monoaminooxidase und Schizophrenie Sie können die richtige Wahl zwischen einem Ein- und einem Zweistichproben-Test (bzw. zwischen einem gepaarten und ungepaarten Test) treffen... einen 2-Stichproben-t-Test (ungepaarten t-test) durchführen, von Hand und in R... ein Vertrauensintervall für die Differenz zweier Erwartungswerte berechnen... einen Mann-Whitney-U-Test und einen Kolmogorov-Smirnov-Test in R durchführen Vorlesung basiert auf Kapitel 4.8 des Skripts Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 3 / 21 Monoaminooxidase (MAO): Enzym, das vermutlich eine Rolle spielt in der Regulierung des Verhaltens Studie: Aktivitätsniveau von 42 Patienten mit unterschiedlichem Typ von Schizophrenie untersucht MAO Aktivität I II III Schizophrenie Typ (Potkin et al., 1978) Haben Patienten mit unterschiedlichem Schizophrenie-Typ im Durchschnitt unterschiedliche MAO-Aktivitätsniveaus? Was ist der wesentliche Unterschied zum Datensatz mit der Durchblutung vor und nach Kaffee-Konsum? Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 4 / 21

2 MAO-Datensatz: zwei Stichproben vergleichen Situation beim MAO-Datensatz: zwei zu vergleichende Stichproben, deren Messwerte nicht gepaart werden können (d.h., deren Messungen nicht korrespondieren) Unterschied beim Durchblutungs-Datensatz: Messwerte der beiden Stichproben können gepaart werden; jeder Proband liefert Messwert vor und nach Kaffee-Konsum. Tests für zwei (ungepaarte) Stichproben: t-test für 2 Stichproben (oder ungepaarter t-test) Mann-Whitney-U-Test Kolmogorov-Smirnov-Test... und viele weitere, hier nicht behandelt Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 5 / 21 MAO-Datensatz: ungepaarter t-test 1. Modell: X i, Y i : MAO-Aktivität von Patienten mit Schizophrenie von Typ 1 bzw. 2. X 1,..., X n N (µ X, σ 2 ) Y 1,..., Y m N (µ Y, σ 2 ) 2. Nullhypothese: H 0 : µ X = µ Y Alternativhypothese: H A : µ X µ Y 3. Teststatistik: T = X Y s pool 1/n+1/m = , wobei s 2 pool = 1 n + m 2 ( (n 1)s 2 x + (m 1)s 2 y s 2 pool heisst gepoolte Stichproben-Varianz: es ist ein Schätzer für die (in beiden Stichproben als identisch angenommene) Varianz Verteilung von T unter H 0 : T t n+m 2 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 6 / 21 ) MAO-Datensatz: ungepaarter t-test MAO-Datensatz: ungepaarter t-test 4. Signifikanzniveau wählen: z.b. α = 5% 5. Verwerfungsbereich: K = (, t n+m 2,1 α/2 ] [t n+m 2,1 α/2, ) t k,α : α-quantil der t-verteilung mit k Freiheitsgraden (df) Hier: df = n + m 2 = 32; t n+m 2,1 α/2 = t 32,0.975 = p(t) t Quantile in R berechnen: > qt(0.975, n+m-2) [1] Testentscheid: H 0 wird verworfen, falls T K, andernfalls beibehalten Hier: T = , K = (, ] [2.0369, ); X K, daher wird H 0 verworfen p-wert: kleinstes Signifikanzniveau α, für welches H 0 verworfen wird Hier: p = 2 (1 F (T )), wobei F die kumulative Verteilungsfunktion mit n + m 2 Freiheitsgraden beschreibt. > 2*(1 - pt(t, n + m - 2)) [1] Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 7 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 8 / 21

3 Schneller geht s mit R... Annahmen prüfen > t.test(x, y, alternative = "two.sided", paired = FALSE, conf.level = 0.95) Welch Two Sample t-test data: x and y t = , df = , p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y Die Annahmen der Normalverteilung der beiden Variablen X und Y sollten (graphisch) geprüft werden: Empirische Quantile Q Q Plot: X Theoretische Quantile Empirische Quantile Q Q Plot: Y Theoretische Quantile Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 9 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 10 / 21 Nicht-parametrische Tests für zwei Stichproben Mann-Whitney-U-Test Was tun, wenn Voraussetzungen für gepaarten t-test nicht erfüllt sind? Alternative: nicht-parametrische Tests: Mann-Whitney-U-Test (auch Wilcoxon-Mann-Whitney-Test genannt) Kolmogorov-Smirnov-Test Beide Alternvativen lassen sich auf zwei unabhängige Stichproben X 1,..., X n und Y 1,..., Y m anwenden. Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 11 / Modell: Verteilung der Stichproben X i und Y i unterscheidet sich bloss um eine Verschiebung, ist sonst aber beliebig. Formal: wobei F Y (y) = F X (y a). X 1,..., X n F X, Y 1,..., Y m F Y, 2. Nullhypothese: H 0 : a = 0 (keine Verschiebung, d.h. identische Verteilungen) Alternativhypothese: H A : a 0 Teststatistik und deren Verteilung sind kompliziert, in der Praxis nur mit Software zu berechnen. Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 12 / 21

4 Mann-Whitney-U-Test in R Mann-Whitney-U-Test: Annahmen prüfen Mann-Whitney-U-Test ist auch in R-Funktion wilcox.test implementiert: > wilcox.test(x, y, alternative = "two.sided", paired = FALSE, conf.level = 0.95) Wilcoxon rank sum test with continuity correction data: x and y W = 221.5, p-value = alternative hypothesis: true location shift is not equal to 0 Annahme, dass sich Verteilung beider Stichproben höchstens durch eine Verschiebung unterscheiden, ist nicht einfach zu prüfen. Möglichkeit: beide empirischen kumulativen Verteilungsfunktionen plotten: Fn(x) Emp. kumul. Vert.fn. X Y x Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 13 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 14 / 21 Kolmogorov-Smirnov-Test Kolmogorov-Smirnov-Test in R 1. Modell: X 1,..., X n F X, Y 1,..., Y m F Y (keine weiteren Annahmen an Verteilungen von X und Y ) 2. Nullhypothese: F X = F Y (beide Grössen haben dieselbe Verteilung) Alternativhypothese: F X F Y 3. Teststatistik: d = maximale Differenz zwischen empirischen kumulativen Verteilungsfunktionen von X und Y. Verteilung von d unter Nullhypothese ist kompliziert. > ks.test(x, y, alternative = "two.sided") Two-sample Kolmogorov-Smirnov test data: x and y D = , p-value = alternative hypothesis: two-sided Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 15 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 16 / 21

5 Überblick: verschiedene Tests und p-werte für MAO-Datensatz Wie aussagekräftig sind p-werte? Test p-wert, 2-seitig t-test Mann-Whitney-U-Test Kolmogorov-Smirnov-Test Je weniger Annahmen ein Test macht, desto universeller einsetzbar ist er, desto kleiner ist aber seine Macht. Beispiel t-test: Nullhypothese macht Aussage über Erwartungswert (oder Differenz von Erwartungswerten), nicht über ganze Verteilung. Nullhypothese ist nie exakt richtig. Mit genügend grosser Stichprobe können wir jede Nullhypothese verwerfen, bzw. beliebig kleine p-werte erhalten. Wissenschaftliche Publikationen: gewisse Journals verbieten aus dem Grund sogar die Publikation von p-werten... Alternative zum t-test: Effektstärke berechnen Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 17 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 18 / 21 Effektstärke MAO-Datensatz: Effektstärke Situation: 2 Stichproben, eine aus bestimmtem experimentellem Setting ({X i } i ), eine aus Kontrollgruppe ({Y i } i ) (es gibt alternative Definitionen) p(x) Grosse Effektstärke Effektstärke d = X Y s pool p(x) Kleine Effektstärke control exp. Im MAO-Datensatz haben wir X = Y = s pool = 3.293, daher eine Effektstärke von d = = 1.07 Density X (Typ I) Y (Typ II) y x x Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 19 / 21 Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 20 / 21

6 Literatur Steven G Potkin, H Eleanor Cannon, Dennis L Murphy, and Richard Jed Wyatt. Are paranoid schizophrenics biologically different from other schizophrenics? New England Journal of Medicine, 298(2):61 66, Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences 21 / 21

Teil VII Hypothesentests für eine Stichprobe

Teil VII Hypothesentests für eine Stichprobe Woche 7: Hypothesentests für eine Stichprobe Teil VII Hypothesentests für eine Stichprobe WBL 15/17, 15.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner Fachhochschule

Mehr

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests Woche 8: Hypothesentests für eine Stichprobe Teil X Patric Müller Hypothesentests für eine Stichprobe ETHZ WBL 17/19, 19.06.2017 Wahrscheinlichkeit und Statistik Patric

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 7. Juni 2007 Statistisches Testen Inhaltsverzeichnis Schätzverfahren und Testverfahren sind Anwendungen der Stichprobentheorie.

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Gepaarter und ungepaarter t-test. Statistik (Biol./Pharm.) Herbst 2012

Gepaarter und ungepaarter t-test. Statistik (Biol./Pharm.) Herbst 2012 Gepaarter und ungepaarter t-test Statistik (Biol./Pharm.) Herbst 2012 Mr. X Krebs Zwei Krebstypen 1 Typ 1: Mild Chemotherapie nicht nötig 2 Typ 2: Schwer Chemotherapie nötig Problem: Typ erst nach langer

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Blockpraktikum zur Statistik mit R

Blockpraktikum zur Statistik mit R Blockpraktikum zur Statistik mit R 08. Oktober 2010 Till Breuer, Sebastian Mentemeier und Matti Schneider Institut für Mathematische Statistik Universität Münster WS 2010/11 Gliederung 1 Ein-Stichproben-Fall

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Inhalt Programmiersprache R Syntax Umgang mit Dateien Tests t Test F Test Wilcoxon Test 2 Test Zusammenfassung 2 Programmiersprache R Programmiersprache

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 3.2.2 bis 3.3 besser zu verstehen. Auswertung und Lösung Abgaben: 81 / 265 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.28 Frage

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Vergleich zweier Stichproben

Vergleich zweier Stichproben zurück zum Inhaltsverzeichnis Die Werte sind verbunden, abhängig oder korreliert. Beispiel: Eine Probe wird mit zwei Messgeräten bestimmt. Es gibt eine paarweise Zuordnung. Die Werte sind unabhängig also

Mehr

Klausur Stochastik und Statistik (WS 2008/09)

Klausur Stochastik und Statistik (WS 2008/09) Klausur Stochastik und Statistik (WS 2008/09) Aufgabe: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Pkt. mgl. 2 1 1 1 8 4 4 2 7 2 2 2 2 2 2 1 3 2 2 50 Pkt erreicht: Name, Vorname: Matrikelnummer: Fachrichtung:

Mehr

Metrische und kategoriale Merkmale

Metrische und kategoriale Merkmale Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)

Mehr

# Befehl für den Lilliefors-Test

# Befehl für den Lilliefors-Test 1/5 Matthias Rudolf & Diana Vogel R-Kurs Graduiertenakademie September 2017 Loesungsskript: Tests 1a library(nortest) 1b lillie.test Befehl für den Lilliefors-Test 2a, Datensatz "Schachbeispiel einlesen"

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

t-tests Lösung: b) und c)

t-tests Lösung: b) und c) t-tests 2015 Assessmentmodul 1 - Frage B10: Ein Team von Gesundheitspsychologinnen hat ein Programm entwickelt, das die Studierenden der Universität Zürich dazu anregen soll, mehr Sport zu treiben. In

Mehr

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung bei Trauerschnäppern..........................

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler 6./18. Mai 2010 Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Jonathan Harrington. Die t-verteilung

Jonathan Harrington. Die t-verteilung Jonathan Harrington Die t-verteilung Standard error of the mean (SE) ist die Standardabweichung von Mittelwerten Ich werfe 5 Würfel und berechne den Mittelwert der Zahlen µ = 3.5 der wahrscheinlichste

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer 2015 Schriftliche Prüfung (2 Stunden) Bemerkungen: Erlaubte Hilfsmittel: 10 hand- oder maschinengeschriebene A4 Seiten (=5 Blätter). Taschenrechner

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 007/008 Aufgabe 1 (I) Herr

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Januar 2010 Termine Letzte Vorlesung am 28.01.2010 Letzte Übung am 27.01.2010, und zwar für alle Anfangsbuchstaben

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Prüfung Statistik I Winter 2015 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten! Die Prüfung

Mehr

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko)

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko) AUFGABEN 1. In einer Studie wurde ein Blutparameter am Beginn und am Ende einer Therapie bestimmt. Es ergab sich, dass bei 35 Probanden eine Veränderung des Parameters eintrat, und zwar lag der Wert bei

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Analyse 2: Hypothesentests

Analyse 2: Hypothesentests Analyse 2: Hypothesentests Ashkan Taassob Andreas Reisch Inhalt Motivation Statistischer Hintergrund Hypothese Nullhypothesen Alternativhypothesen Fehler beim Hypothesentesten Signifikanz-LEVEL und P-value

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Aufgaben zu Kapitel 3

Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Aufgabe 1 a) Berechnen Sie einen t-test für unabhängige Stichproben für den Vergleich der beiden Verarbeitungsgruppen strukturell und emotional für die abhängige Variable neutrale

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik

Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik Kap. 2: Kurzwiederholung Wahrscheinlichkeitsrechnung und Statistik Empirische Fragestellung Datenanalyse: Schätzung, Test, Konfidenzintervall Grundbegriffe der Wahrscheinlichkeitsrechnung und Statistik

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Sie wissen noch, dass 18.99% der Surfer, die kein Smartphone haben, pro Monat weniger als 20 Stunden das Internet nutzen, d.h. f(y 1 X 2 ) =

Sie wissen noch, dass 18.99% der Surfer, die kein Smartphone haben, pro Monat weniger als 20 Stunden das Internet nutzen, d.h. f(y 1 X 2 ) = Aufgabe 1 In einer Umfrage wird der Besitz eines Smartphones (Merkmal X) und die Nutzungsdauer des Internets pro Monat (Merkmal Y ) untersucht. Merkmal X hat zwei Ausprägungen: X 1 : Besitz und X 2 : Nichtbesitz.

Mehr

Mathematik IV: Statistik

Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS16 Sie hören Vitamin String Quartet Daniel Stekhoven 14.04.2016 1 Daniel Stekhoven 14.04.2016 2 Überblick Lernziele Erledigt! Grundlagen Wahrscheinlichkeitsmodell

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden)

Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden) Prof. P. Bühlmann D-UWIS, D-ERDW, D-AGRL Frühling 2007 Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt.

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 10

Übung zur Vorlesung Statistik I WS Übungsblatt 10 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 10 7. Januar 2013 Aufgabe 29 (4 Punkte): Der Datensatz Blutdruckstudie.txt enthält das Ergebnis einer Studie, die die Wirksamkeit eine Medikaments

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Aufgabe Σ erreichbare Punkte

Aufgabe Σ erreichbare Punkte TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Stochastik Matrikel-Nr. Modulprüfung Prüfungsfach: Stochastik und Statistik für Ingenieure Prüfer: Prof. Hans-Jörg Starkloff

Mehr

Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R

Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R Mathias Stephan Panzenböck e0427417 12. Juni 2006 Beispiel 1 library(e1071) library(car) load('0427417.rdata') a) min(bsp1$x) # = 2.435354

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Anhang: Statistische Tafeln und Funktionen

Anhang: Statistische Tafeln und Funktionen A1 Anhang: Statistische Tafeln und Funktionen Verteilungsfunktion Φ(z) der Standardnormalverteilung Die Tabelle gibt die Werte Φ(z) der Verteilungsfunktion zu vorgegebenem Wert z 0 an; ferner gilt Φ( z)

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Lösungen zur Hausaufgabe Statistik für Hydrologen 2016

Lösungen zur Hausaufgabe Statistik für Hydrologen 2016 Dr. Wiltrud Kuhlisch SOS 2016 TU Dresden, Institut für Mathematische Stochastik Lösungen zur Hausaufgabe Statistik für Hydrologen 2016 Aufgabe 1: Das Merkmal Groesse hat metrisches Skalenniveau. Darstellung

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung K. Molt Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 3. Juni 2007 K. Molt (Fachgeb. IAC) 3. Juni 2007 1 / 41

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Schriftliche Prüfung (120 Minuten)

Schriftliche Prüfung (120 Minuten) Dr. D. Stekhoven Prüfung Mathematik IV Winter 2015 Schriftliche Prüfung (120 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

10. Statistische Verteilungen

10. Statistische Verteilungen 10. Statistische Verteilungen Übung Röntgenpraxis XVI Die Patienten der Röntgenpraxis unterscheiden sich durch unterschiedliche Fitness. Daher benötigen die MTRA unterschiedliche Zeiten, um die Patienten

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

4 Testen von Hypothesen

4 Testen von Hypothesen 4 Testen von Hypothesen Oft müssen zweiwertige Entscheidungen ( Ja oder Nein ) gefällt werden. Denken wir an die elektronisch gesicherten Waren, wo am Ausgang eines Geschäftes durch eine Maschine geprüft

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

I N F E R E N Z S T A T I S T I K Terminologie

I N F E R E N Z S T A T I S T I K Terminologie Seite 1 von 70 I N F E R E N Z S T A T I S T I K Terminologie i.i.d. independent and identically distributed bedeutet, unabhängig und in gleicher Weise verteilt, d.h., der gleichen Verteilung unterworfen.

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Blockpraktikum zur Statistik mit R

Blockpraktikum zur Statistik mit R Blockpraktikum zur Statistik mit R 11. Oktober 2013 Fabian Buckmann Institut für Mathematische Statistik Universität Münster WS 13/14 Gliederung 1 Testtheorie: Ziel und Überblick Testtheorie Andere Entscheidungsprobleme

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr