Übungen zur Zahlentheorie

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Zahlentheorie"

Transkript

1 J. Wolfart Sommersemester 2009 Übungen zur Zahlentheorie. Bestimmen Sie die größten gemeinsamen Teiler d der Zahlenpaare (a, b) = (0, 00), (000, 0000), (89, 44) und lösen Sie jeweils die Gleichung ax + by = d mit x,y Z. 2. Sei d der ggt von a,b Z und x,y Z seien spezielle Lösungen von ax + by = d. Wie sieht die Gesamtheit aller Lösungen aus? 3. Man bestimme durch Division mit Rest im Polynomring R[x] den ggt der beiden Polynome x 7 und x 4 + x 3 + x 2 + x Zeigen Sie: Wenn d der ggt der natürlichen Zahlen m,n ist, dann ist x d der ggt der beiden Polynome x m und x n im Polynomring R[x]. 5. Man zeige: Wenn 2 n eine Primzahl ist, dann auch n. Gilt die Umkehrung? 6. Man zeige: Wenn 2 n + eine Primzahl ist, dann ist n eine Zweierpotenz. 7. Sei p eine Primzahl und ν p (a) die p Ordnung von a Q, also die Multiplizität von p in der Primfaktorzerlegung von a. Beweisen Sie: Wenn ν p (a) ν p (b) für a,b Q, dann ist ν p (a + b) = min{ν p (a),ν p (b)}. Bleibt diese Aussage auch für ν p (a) = ν p (b) richtig? 8. Verifizieren Sie, dass für alle Primzahlen p und alle n N gilt ν p (n!) = [ n p ] + [ n p 2] + [ n p3] +... (Gaußklammer [a] : größte ganze Zahl a ) und zeigen Sie als Anwendung: Für alle m,n N ist (m+n)! eine ganze Zahl. Bekommt man diese Aussage auch einfacher? m!n! 9. F p bezeichne den Körper mit p Elementen ( p Primzahl). Bestimmen Sie die Anzahl der Primpolynome in F p [x] vom Grad und vom Grad Beweisen Sie, dass der Polynomring F p [x] unendlich viele Primpolynome besitzt. Zur Klausur sind Sie zugelassen, wenn Sie etwa die Hälfte der Aufgaben richtig lösen regelmäßig und aktiv an den Übungen teilnehmen (Sonderregelungen nur nach Absprache). Bitte vormerken: Die Abschlussklausur wird am Dienstag, den 4. Juli 09, von 8.5 bis 9.45 Uhr im Hörsaal I geschrieben. Genauere Regeln für die Klausur werden noch bekanntgegeben. Vorlesung jetzt immer in H5!

2 . Beweisen Sie: a) Jedes fünfte Glied der Fibonacci Folge ist durch 5 teilbar. b) Für jedes m N ist die Fibonacci Folge periodisch modulo m. 2. Zeigen Sie, dass die Gleichungen x 4 3y 4 = 3 und 8x 6 2y 2 = 3 keine ganzzahligen Lösungen x, y besitzen. Tipp: Hätten sie ganzzahlige Lösungen, dann auch Lösungen in Z/mZ. Wie wär s mit m = 5 oder 7? 3. 7 chinesische Piraten haben eine Kiste mit Goldstücken erbeutet. Beim Versuch, jedem Piraten gleichviele Münzen zuzuteilen, bleiben drei Münzen übrig. Um diese entbrennt heftiger Streit, bei dem ein Pirat getötet wird. Ein erneuter Versuch, den Schatz nun in 6 gleiche Teile zu teilen, führt zu einem Rest von 5 Münzen; wieder geht im Streit einer der Piraten über Bord. Nun gelingt es endlich, die Goldstücke gleichmäßig auf die verbliebenen 5 Piraten zu verteilen. Wieviele Münzen waren es mindestens? 4. Finden Sie die inverse Abbildung von (Z/45Z) (Z/45Z) : a a Finden Sie alle natürlichen Zahlen n mit der Eigenschaft ϕ(n) = n/3. 6. Zeigen Sie lim ϕ(n) ϕ(n) = und lim n n = 0. Tipp: Beides folgt aus der Existenz unendlich vieler Primzahlen. Für die zweite Aussage nutzen Sie Eulers Idee zum Beweis der Unendlichkeit der Primzahlmenge, um einzusehen, dass das Produkt ( ) über alle Primzahlen gegen 0 konvergiert. p 7. Zeigen Sie: Zu jeder ungeraden Primpotenz p s gibt es ϕ(ϕ(p s )) Primitivwurzeln. 8. Beweisen Sie: Für jede Primzahl p ist (p )! mod p. 9. Zerlegen Sie das Polynom x 8 3 F 3 in Primfaktoren! 20. Bestimmen Sie die Periodenlänge der Dezimalbruchentwicklungen der Brüche 27, 29 und 0 n + für alle n. 2. Die natürliche Zahl n sei aus m verschiedenen ungeraden Primfaktoren zusammengesetzt, a Z sei zu n teilerfremd, und die Kongruenz x 2 a mod n besitze eine Lösung. Wieviele Lösungen hat die Kongruenz dann in Z/nZ? 22. p sei eine Primzahl > 2. Zeigen Sie, dass die Kongruenz x 4 mod p genau dann lösbar ist, wenn p mod 8 ist. 23. Beweisen Sie: Für alle Primzahlen p > 2 ist jede Primitivwurzel ein quadratischer Nichtrest. Unter welchen Bedingungen an p ist umgekehrt jeder quadratische Nichtrest gleichzeitig Primitivwurzel? Kennen Sie solche Primzahlen?

3 24. Fortsetzung: Sei p eine Primzahl von der Form 2 2n + (eine sogenannte Fermatprimzahl, vgl. Aufgabe 6), hier mit n > 0. Zeigen Sie, dass 3 dann eine Primitivwurzel für p ist! Randbemerkung: Für n = 0,...,4 sind es tatsächlich Primzahlen, für n > 4 sind alle bisher untersuchten Zahlen dieser Bauart zusammengesetzt. 25. p mod 4 sei eine Primzahl und p := 2p + sei ebenfalls eine Primzahl (ob es unendlich viele solcher Primzahlpaare gibt, ist schon wieder ein offenes Problem). Beweisen Sie, dass 2 eine Primitivwurzel mod p ist. Unter welchen Bedingungen an p ist auch 5 eine Primitivwurzel? 26. Seien wieder p und p Primzahlen mit p := 2p +, jetzt aber p 3 mod 4. Zeigen Sie 2 p mod p und leiten Sie daraus ab, dass 2 und 2 23 keine Mersenne Primzahlen sein können (vgl. Aufgabe 5). 27. Man zeige: Für jede Primzahl p > 3 ist 3 quadratischer Rest mod p genau dann, wenn p ± mod 2, und quadratischer Nichtrest genau dann, wenn p ±5 mod Berechnen Sie die Legendresymbole ( 69), 257 (200), ( 00 ), (000) Beweisen Sie, dass zur Berechnung eines Jacobisymbols ( a ) nur O(log n) Schritte n benötigt werden. 30. Zeigen Sie, dass Carmichael Zahlen quadratfrei sind (d.h. keine Quadrate > als Teiler besitzen) und mindestens drei Primfaktoren besitzen. 3. Die (inzwischen durch Mihailescu gelöste) Catalansche Vermutung besagt, dass die Gleichung x 2 y 3 = in den natürlichen Zahlen > 0 nur die Lösung (x,y) = (3, 2) besitzt. Zeigen Sie: Aus der Gültigkeit der abc Vermutung würde folgen, dass die Gleichung jedenfalls nur endlich viele Lösungen besitzen kann. 32. Gibt es nichtkonstante teilerfremde Polynome a(x), b(x), c(x) R[x], welche a 2 + b 2 = c 2 erfüllen? Und wenn ja, wie konstruiert man sie? 33. Man zeige: Wenn sich n und m N jeweils als Quadratsumme a 2 +b 2 in Z schreiben lassen, dann auch ihr Produkt nm. 34. Ermitteln Sie alle Primzahlen π des Rings Z[i] der ganzen Gaußschen Zahlen mit Betrag π < 0. Multiplikation mit ± oder ±i führt natürlich wieder auf Primzahlen, darum genügt es, Primzahlen mit Realteil > 0 und Imaginärteil 0 zu ermitteln. 35. Ein Nachtrag zu den multiplikativen zahlentheoretischen Funktionen: µ bezeichne die Möbiusfunktion und ζ die Riemannsche Zetafunktion. Beweisen Sie ζ(s) = n= µ(n) n s für alle s >. Hinweis: Eulerprodukt ζ(s) = p ( p s ) 36. Sei p > 3 prim, n durchlaufe alle quadratischen Reste mod p. Man zeige n 0 mod p.

4 Tipp: Bedenken Sie, dass ein quadratischer Nichtrest m mod p existiert und berechnen Sie zunächst ( + m) n. 37. Gibt es Quadratzahlen c 2, c N, die sich in mehr als einer Weise als c 2 = a 2 + b 2 schreiben lassen? (Vertauschung von a und b oder Vorzeichenwechsel zählt nicht!) Wenn ja, finden Sie das kleinste solche c. 38. Benutzen Sie den Satz von Kronecker zu einem neuen Beweis dafür, dass rationale Zahlen periodische Dezimalbruchentwicklungen besitzen. Achtung! Wer aus den Hausaufgaben bis 34 noch keine 70 Punkte erwirtschaftet hat, wird für die letzten beiden Übungsblätter Aufgaben 35 bis 42 zu besonders großem Lösungseifer aufgefordert, sonst gibt s keine Klausurzulassung. Gegebenenfalls ist persönliche Rücksprache bei mir erforderlich. Klausur: Spielregeln Verboten ist die Verwendung von Mobiltelefonen, Laptops, Bücher und Skripten. Am besten gar nicht erst mitbringen! Wenn Sie den Tag nicht ohne Ihr Handy verbringen können, dann dieses ausschalten und tief in eine verschlossene Tasche versenken. Jeder Betrugsversuch hat Ausschluss aus der Klausur und Note 6 zur Folge. Jeder Teilnehmer muss bis zum Ende der Klausur auf seinem Platz bleiben. Toilettenbesuch nur einzeln und unter Zurücklassung allen Materials. Erlaubt ist ein eigenhändig handschriftlich hergestellter DIN A4 Spickzettel, beidseitig beschrieben (keine Kopie!). Mitzubringen sind mindestens zwei funktionsfähige Stifte als Schreibzeug sowie ausreichend Papier, am besten auch Bleistift und Radiergummi, ebenso Personalausweis, Studentenausweis oder Goethecard. Diese sichtbar auf den Tisch legen! Ein einfacher (nicht programmierbarer) Taschenrechner kann mitgebracht werden. Sitzordnung: Jede zweite Reihe bleibt frei, zwischen Ihnen und Ihren nächsten Nachbarn sind mindestens drei Plätze frei zu halten. Die Klausur wird aus sechs Aufgaben bestehen, jede Aufgabe bringt bei komplett richtiger Lösung 20 Punkte. In den ersten beiden Aufgaben sind nur die Ergebnisse anzugeben, und nur diese zählen, Rechenweg egal. Also einfach Resultat auf das Blatt eintragen, fertig. Bei den vier letzten ist eine Begründung bzw. ein Beweis gefragt, den Sie auf die Rückseite oder auf ein Extrablatt schreiben; bitte auf alle Blätter Ihren Namen!! Bewertung: Bis zu 20 Klausurpunkte können in der Klausur erreicht werden. Notenpunkte und Noten ergeben sich daraus wie folgt. Nicht bestanden ist die Klausur mit Klausurpunkten Notenpunkten Noten

5 Bestanden ist sie mit (Zeilen geben wieder Klausurpunkte, Notenpunkte, Note an) Die Klausurergebnisse werden nach Korrektur an meiner Zimmertür Robert Mayer-Str. 6 8, 2. OG, Zi. 205 und auf meiner Homepage anonymisiert für ca. 0 Tage aushängen. Übungsscheine alter Art (z.b. für Studierende nicht-modularisierter Studiengänge) gibt es dann direkt bei mir, ebenso kann ich Modulbescheinigungen für L Studiengänge ausstellen (Vordruck ausgefüllt mitbringen, gibt es zum Herunterladen auf der ZPL Homepage); meine Sprechstunden sind an meiner Zimmertür bzw. in meiner Homepage zu finden. Modulbescheinigungen für Bachelors stellt Fr. Weiglhofer im Prüfungsamt der Mathematik aus (wie oben Zi. 25). Der wichtigste Tipp für die Klausur: Lesen Sie die Aufgaben genau! Nichts ist ärgerlicher, als wenn man nachher merkt, dass man die Aufgabe falsch verstanden hat und z.b. die falsche Richtung der Behauptung bewiesen hat... Bedenken Sie, dass viele Klausuraufgaben kleine Varianten alter Hausaufgaben sein werden! Gilt alles genauso für die Nachklausur, wenn diese denn stattfindet sie wird bei geringem Bedarf durch mündliche Prüfungen ersetzt. Ankündigung auf meiner Homepage folgt noch. Es sei darauf hingewiesen, dass sowohl in den Bachelor wie in den L3 Modulen maximal drei Prüfungsversuche möglich sind, dass diese aber innerhalb von 5 Monaten absolviert sein müssen. Das heißt nicht, dass es nächstes Jahr wieder eine Zahlentheorie Veranstaltung geben wird; für den letzten Versuch müssen Sie dann gegebenenfalls ein Modul mit anderem Inhalt nehmen. 39. log bezeichne ausnahmsweise mal den Zehnerlogarithmus. Beweisen Sie, dass a) für alle natürlichen Zahlen n mit Ausnahme der Zehnerpotenzen log n irrational ist, b) { log n n N} dicht im Einheitsintervall liegt. 40. Für alle natürlichen m > ist k m k! transzendent. Warum? 4. Die Untermenge M von {, 2,...,2n} besitze n+ Elemente. Zeigen Sie mit Hilfe des Dirichletschen Schubfachschlusses, dass in M zwei zueinander teilerfremde Zahlen liegen. (Geht auch per Induktion, ist aber mühsamer.) 42. Unter den gleichen Voraussetzungen wie in 4. beweise man, dass in M zwei Zahlen k m existieren mit k m. Wenn Sie die richtigen Schubfächer finden, ist s ganz einfach! Grübel, grübel... Die Lösungen der Aufgaben 39 bis 4 sind abzugeben vor der Vorlesung am Freitag, 3. Juli 09.

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Inhaltsverzeichnis Vorlesung Zahlentheorie

Inhaltsverzeichnis Vorlesung Zahlentheorie J. Wolfart SoSe 2007 Inhaltsverzeichnis Vorlesung Zahlentheorie 1. Elementare Zahlentheorie, sehr summarisch Teilbarkeit, euklidischer Algorithmus, eindeutige Primfaktorzerlegung, einige einfache Konsequenzen:

Mehr

Übungen zur Geometrie (L3/Bachelor)

Übungen zur Geometrie (L3/Bachelor) J. Wolfart Sommersemester 2009 Übungen zur Geometrie (L3/Bachelor) 1. Beweisen Sie nicht mit Elementargeometrie, sondern mit Hilfe der Maschinerie der euklidischen Punkträume a) den Satz des Thales, b)

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise

KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE. 15. Februar 2017 MUSTERLÖSUNG. Aufgabe Summe. Allgemeine Hinweise Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA UND ZAHLENTHEORIE 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

1. Übung Elemente der Zahlentheorie SS2016

1. Übung Elemente der Zahlentheorie SS2016 1. Übung Elemente der Zahlentheorie SS2016 1. Sei n IN eine natürliche Zahl. Zeigen Sie mit Hilfe vollständiger Induktion: (a) 1+2+3+...+(n 1)+n = n(n+1), 2 (b) 1+4+9+...+(n 1) 2 +n 2 = n(n+1)(2n+1), 6

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Zahlentheoretische Variationen zum Satz des Pythagoras

Zahlentheoretische Variationen zum Satz des Pythagoras Zahlentheoretische zum Satz des nstitut für Mathematik Humboldt-Universität zu Berlin 17. Januar 2017 Aus Die Pythagoreer von Bartel L. van der Waerden Satz. Ein rechtwinkliges Dreieck mit den Katheten

Mehr

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA

ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA ZAHLENTHEORIE Skritum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Teilbarkeit in ganzen Zahlen. ggt und kgv............................2 Fundamentalsatz der Zahlentheorie............... 3.3

Mehr

Der Drei-Quadrate-Satz von Gauß

Der Drei-Quadrate-Satz von Gauß Der Drei-Quadrate-Satz von Gauß Bekanntlich ist eine ungerade Primzahl p genau dann Summe zweier Quadratzahlen, wenn p 1 mod 4. Daraus folgt, dass eine positive ganze Zahl n genau dann Summe zweier Quadratzahlen

Mehr

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x

Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07 Aufgabe 1. Es seien R ein kommutativer Ring mit 1 und D R. Wir schreiben { ) x Dy QR, D) = x, y R}. y x Dann ist QR, D) abgeschlossen bezüglich der

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

L-Funktionen in Geometrie und Arithmetik

L-Funktionen in Geometrie und Arithmetik Fachbereich Mathematik Technische Universität Darmstadt bruinier@mathematik.tu-darmstadt.de 30. Januar 2008 Leonhard Euler (1707 1783) Bernhard Riemann (1826-1866) Die rationalen Zahlen Prinzahlen Die

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 08.0.01

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie INSTITUT FÜR MATHEMATIK UNIVERSITÄT HANNOVER Prof. Dr. Sander Dr. Viergutz Marco Schwiering 21. Oktober 2004 Einführung in die Zahlentheorie 1. Übungsblatt Abgabe vor der nächsten Übung Aufgabe 1 ( 5+5

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 1. Dezember 2010 ZÜ DS ZÜ VI Übersicht: 1.

Mehr

Lösungsvorschlag zur Nachklausur. Zeigen Sie die folgenden voneinander unabhängigen Aussagen:

Lösungsvorschlag zur Nachklausur. Zeigen Sie die folgenden voneinander unabhängigen Aussagen: Lösungsvorschlag zur Nachklausur Aufgabe 1 Es seien G eine Gruppe und H, K zwei Untergruppen von G. Weiterhin gelte G = {hk h H, k K}. Zeigen Sie die folgenden voneinander unabhängigen Aussagen: a) Sind

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

UE Zahlentheorie. Markus Fulmek

UE Zahlentheorie. Markus Fulmek UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

384 = = = =

384 = = = = Aufgabe 1 (a) Sei n N. Charakterisieren Sie die Einheiten im Ring Z/nZ auf zwei verschiedene Arten. (b) Bestimmen Sie das inverse Element zur Restklasse von 119 in der Einheitengruppe von Z/384Z. (a) Die

Mehr

Mersennesche Primzahlen

Mersennesche Primzahlen Mersennesche Primzahlen Michael E. Pohst Technische Universität Berlin Die Zahlen von Mersenne Zu einer natürlichen Zahl n wird die zugehörige Mersennezahl M n als M n = 2 n 1 definiert. Für n = 2, 3,

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

5. Zahlentheoretische Funktionen

5. Zahlentheoretische Funktionen 5. Zahlentheoretische Funktionen 5.1. Definition. Unter einer zahlentheoretischen (oder arithmetischen Funktion versteht man eine Abbildung f : N 1 C. Die Funktion f : N 1 C heißt multiplikativ, wenn f(1

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Vorkurs Mathematik. Vorlesung 2. Primzahlen

Vorkurs Mathematik. Vorlesung 2. Primzahlen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Folien der 15. Vorlesungswoche

Folien der 15. Vorlesungswoche Folien der 15. Vorlesungswoche Mathematische Analyse von RSA I (1) Wir wählen zwei große Primzahlen p und q (p q) und setzen n = p q. Wir arbeiten von nun an in Z n und berücksichtigen, dass wie später

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Zerlegung in Quadratzahlen

Zerlegung in Quadratzahlen Zerlegung in Quadratzahlen Die Zerlegung von natürlichen Zahlen in die Summe von Quadratzahlen ist eine alte, abgeschlossene Theorie, die schon von FERMAT im 17. Jahrhundert und später von EULER, LAGRANGE

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Quadratische Reste und das quadratische Reziprozitätsgesetzt

Quadratische Reste und das quadratische Reziprozitätsgesetzt Quadratische Reste und das quadratische Reziprozitätsgesetzt Alexander Hölzle 03.04.007 Inhaltsverzeichnis I Motivation und Überblick 3 II Quadratische Reste 4 1 Grundlegendes und Beispiele...........................

Mehr

Proseminar Algebra und diskrete Mathematik. SS 2017

Proseminar Algebra und diskrete Mathematik. SS 2017 Proseminar Algebra und diskrete Mathematik. SS 2017 Bachelorstudium Lehramt Sekundarstufe (Allgemeinbildung) Lehramtsstudium Unterrichtsfach Mathematik Ganze Zahlen: 1. Zeigen Sie folgende Teibarkeiten

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x)

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x) Aufgabe 1 3 Punkte) Erinnerung: Die Addition s und die Multilikation m auf N sind die eindeutigen Funktionen s bzw. m: N N N, für die gilt S1) x N : sx,1) x S) x, y N : sx, y ) sx, y) M1) x N : mx,1) x

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt. Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Aktualisiert: 18. Juni 2016 vers

Aktualisiert: 18. Juni 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II - Lösungen Aktualisiert: 18. Juni 2016 vers. 2.0.10 Kongruenzen I 1. Ist m > 1 und a eine ganze Zahl, dann ist genau einer der Zahlen durch m teilbar.

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr