Notation für das asymptotische Verhalten von Funktionen

Größe: px
Ab Seite anzeigen:

Download "Notation für das asymptotische Verhalten von Funktionen"

Transkript

1 Vorbemerkungen: Notation für das asymptotische Verhalten von Funktionen 1. Aussagen über die Komplexität von Algorithmen und von Problemen sollen (in der Regel) unabhängig von speziellen Maschinenmodellen und speziellen Eigenschaften eine Implementierung, ebenso von technologischen Details 2. Bei der Untersuchung von Komplexitätsfunktionen interessiert nicht so sehr der exakte Werteverlauf einer Funktion f : N R +, sondern deren Tendenz, d.h. das Wachstumsverhalten (asymptotisches Verhalten) für wachsendes Argument 1

2 Edmund Georg Hermann Landau ( ) Professor der Mathematik in Göttingen ( ) Wichtige Arbeiten zu Zahlentheorie und Analysis ( Analytische Zahlentheorie ) Mathematiker/landau.html 2

3 3

4 4

5 5

6 6

7 Landausche Symbole für asymptotisches Verhalten von Funktionen O(f) = g : N R + ; c R >0 n 0 N n N n0 : g(n) c f(n) g(n) O(f(n)) : f(n) ist asymptotische obere Schranke für g(n) Ω(f) = g : N R + ; c R >0 n 0 N n N n0 : g(n) c f(n) Ω (f) = g : N R + ; c R >0 m N n N >m : g(n) c f(n) g(n) Ω(f(n)) : f(n) ist asymptotische untere Schranke für g(n) Θ(f) = g : N R + ; g O(f) g Ω(f) g(n) Θ(f(n)) : f(n) hat gleiche Wachstumsordnung wie g(n) 7

8 o(f) = { g : N R + ; lim n } g(n) f(n) = 0 g(n) o(f(n)) : g(n) hat kleinere Wachstumsordnung als f(n) ω(f) = { g : N R + ; lim n } f(n) g(n) = 0 g(n) ω(f(n)) : g(n) hat grössere Wachstumsordnung als f(n) f(n) g(n) : lim n f(n) g(n) = 1 f(n) und g(n) sind asymptotisch äquivalent 8

9 Für Funktionen f, g : N R f O(g) f O( g ) wobei f : N R + : x f(x) Ebenso für die anderen Landauschen Symbole. 9

10 Rechenregeln 1. k, l N : k > l n l o(n k ) 2. k, l N : k > l n k + n l Θ(n k ) 3. für Polynome p(n) = k i=0 p i n i mit p k > 0, l eine Konstante 4. k N : n k o(2 n ) l [,, =, >, <] k p(n) [O, Ω, Θ, o, ω] (n l ) 5. Logarithmen zu verschiedenen Basen 6. k N ɛ R >0 : log k (n) o(n ɛ ) 7. n N : 2 n o(2 2n ) log a n Θ(log b n) (a, b > 1) 10

11 8. f O(g) g Ω(f) und f o(g) g ω(f) 9. f Ω(g) f Ω (g) 10. f Ω (g) f Ω(g) 11. Transitivität: f O(g) g O(h) f O(h) für O {O, Ω, Θ, o, ω} 12. f Ω (g) g Ω (h) f O(h) 13. f 1 O(g) f 2 O(g) f 1 + f 2 O(g) 14. falls g nur endlich-viele Nullstellen hat: f O(g) c R >0 : lim sup n f(n) g(n) c 15. falls g nur endlich-viele Nullstellen hat: f ω(g) c R >0 : lim inf n f(n) g(n) c 11

12 Das Wachstumsverhalten (asymptotisches Verhalten) einer Funktion f : N N bezeichnet man als a konstant, falls f(n) Θ(1) b logarithmisch, falls f(n) Θ(log(n)) c polylogarithmisch, falls f(n) O(log k (n)) für ein k N d linear, falls f(n) Θ(n) e quadratisch, falls f(n) Θ(n 2 ) f polynomiell, falls f(n) O(n k ) für ein k N g superpolynomiell, falls f(n) ω(n k ) für alle k N h subexponentiell, falls f(n) o(2 cn ) für alle c R >0 i exponentiell, falls f(n) O(2 cn ) für ein c R >0 12

13 Häufig in der Informatik: Abschätzung des Wachstumsverhaltens von Funktionen f(n), die gegeben sind durch Summen, wie z.b. H n = n i=1 1 i S k (n) = n i k log n! = i=1 n log i i=1 harmonische Zahlen Potenzsummen Fakultäten Rekursionsgleichungen, wie z.b. T (n) = T ( n/2 ) + T ( n/2 ) + Θ(n) T (n) = a T (n/b) + f(n) T (n) = (n 1) + 1 nx T (i 1) + T (n i) n i=1 mergesort divide-and-conquer quicksort 13

14 drei wichtige Beispiele harmonische Zahlen H n = n H n ln n + γ + 1 2n + O(1/n2 ) wobei γ = (Eulersche Konstante), also H n Θ(log n) Potenzsummen S k (n) = n j=1 jk für k > 1 n k+1 k + 1 S k(n) n k+1 also S k (n) Θ(n k+1 ) Fakultäten: Stirlings Formel ( n ) ( n n! 2πn e 12n + 1 ) 288n 2 + O(1/n3 ) also log n! Θ(n log n) 14

15 Wichtiges Hilfsmittel zum Abschätzen von Summationen: Integration Ist f[a, b] R stetig und monoton wachsend, a, b Z, so ist b 1 i=a f(i) b a f(x)dx b i=a+1 f(i) b 1 Z b f (i) f (x)dx i=a a Z b a f (x)dx b i=a+1 f (i) a a+1 a+2 a+3... b-2 b-1 b a a+1 a+2 a+3... b-2 b-1 b 15

16 Anwendung auf die drei wichtigen Beispiele harmonische Zahlen H n mit f : [1, n + 1] R : x 1/x ergibt sich und somit H n Θ(log n) ln(n + 1) H n 1 + ln n 16

17 Potenzsummen S k (n) mit k > 1 mit f : [0, n] R : x x k ergibt sich S k (n) nk+1 k + 1 also S k (n) Ω(n k+1 ) Zusammen mit S k (n) n n k = n k+1 ergibt sich S k (n) Θ(n k+1 ) Fakultäten mit f : [1, n] R : x ln x ergibt sich ln n! = n i=2 ln i [ x ln x x ] n 1 = n ln n n + 1 Ω(n ln n) Wegen ln n! n ln n ist ln n! O(n ln n) und somit ln n! Θ(n log n) 17

18 Zur Abschätzung der Fakultäten: n ln n n ln n! < (n + 1) ln(n + 1) n (n > 1) ergibt ( n ) ( ) n n+1 n + 1 < n! < e e e ( ) und wegen e = lim n n+1 n ( ) n+1 n + 1 e also (n + 1) n+1 e n n+1 n Somit ist ( n ) n ( n < n! < n e e Stirling s Formel macht das noch präziser: n! ( n ) n 2π n e ) n oder log 2 n! = n log 2 n n + o(n) 18

19 Eine Anwendung der Stirling-Formel: Wieviele verschiedene Binärbäume mit n inneren Knoten gibt es? BNF-Grammatik für Binärbäume: B = +, B, B =äusserer Knoten, = innerer Knoten t =, t l, t r t l t r 19

20 c n = Anzahl der Binärbäumen mit n inneren Knoten n c n c 100 = c 1000 =

21 Die Zahlen c n heissen Catalan-Zahlen, zur Ehre von Eugene Charles Catalan ( ) belgischer Mathematiker, Schüler von Liouville an der Ecole Polytechnique wegen linksextremer politischer Aktivitäten keine akademische Karriere Lehrer in Chalons-sur-Marne Beiträge zur Zahlentheorie der zeigte: c n = 1 n + 1 ( ) 2n n = (2n)! (n + 1)! n! 21

22 Wie gross ist c n? Einsetzen der Stirling-Approximation von n! ergibt c n = 1 ( ) 2n 4 n 4n πn Θ( n + 1 n (n + 1) n ) 3/2 22

V. Claus, Juli 2005 Einführung in die Informatik II 45

V. Claus, Juli 2005 Einführung in die Informatik II 45 Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,

Mehr

Informatik II. Algorithmen und Datenstrukturen. Vorläufige Version 1 c 2002 Peter Thiemann

Informatik II. Algorithmen und Datenstrukturen. Vorläufige Version 1 c 2002 Peter Thiemann Informatik II Algorithmen und Datenstrukturen Vorläufige Version 1 c 2002 Peter Thiemann 1 Einführung 1.1 Inhalt Wichtige Datentypen und ihre Implementierung (Datenstrukturen) Operationen auf Datenstrukturen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Organisatorisches Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD

Mehr

Komplexität von Algorithmen OOPM, Ralf Lämmel

Komplexität von Algorithmen OOPM, Ralf Lämmel Ganz schön komplex! Komplexität von Algorithmen OOPM, Ralf Lämmel 885 Motivierendes Beispiel Algorithmus Eingabe: ein Zahlen-Feld a der Länge n Ausgabe: Durchschnitt Fragen: sum = 0; i = 0; while (i

Mehr

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP12 Slide 1 Grundlagen der Programmierung Vorlesung 12 Sebastian Iwanowski FH Wedel GdP12 Slide 2 Entwurf von Algorithmen Wie klassifiziert man Algorithmen? offensichtlich nicht durch die Unterscheidung

Mehr

1 Minimumssuche k = n Maximumssuche n. Median

1 Minimumssuche k = n Maximumssuche n. Median Kapitel 1 Einführung Anhand des folgenden Problems soll deutlich gemacht werden, welche Schwierigkeiten beim Vergleich verschiedener Lösungsansätze auftreten können, um dann einige sinnvolle Kriterien

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin Maike.Buchin@rub.de Raum NA 1/70 Sprechzeiten:

Mehr

Algorithmen und Datenstrukturen 1-1. Seminar -

Algorithmen und Datenstrukturen 1-1. Seminar - Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1) für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach

Mehr

1 Grundbegriffe zur Asymptotik

1 Grundbegriffe zur Asymptotik 1 Grundbegriffe zur Asymptotik Es hat etwas zutiefst Befriedigendes, auf Fragen exakte Antworten zu geben oder Probleme präzise zu lösen. Es gibt jedoch auch Situationen, in denen Approximationen gefragt

Mehr

1 Lösungstypen für die divide-and-conquer- Rekursion t(n) = a t(n/b) + f(n)

1 Lösungstypen für die divide-and-conquer- Rekursion t(n) = a t(n/b) + f(n) 1 Lösungstypen für die divide-and-conquer- Rekursion t(n) = a t(n/b) + f(n) 1.1 Vorbemerkung Rekursiongleichungen dieses Typs werden in vielen Büchern über Komplexitätsanalyse behandelt. Besonders herauszuheben

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Organisatorisches. Theoretische Informatik 3 WS 2005/06. Empfohlene Literatur. Übersicht

Organisatorisches. Theoretische Informatik 3 WS 2005/06. Empfohlene Literatur. Übersicht Organisatorisches Theoretische Informatik 3 WS 2005/06 Volker Strehl Informatik 8 20. Oktober 2005 Vorlesungstermine Montags und Donnerstag, 16:00 17:30 Uhr im H9 Übungen in 7 Gruppen, Termine und Eintragung

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Algorithmik Kap. 2: Laufzeit von Algorithmen

Algorithmik Kap. 2: Laufzeit von Algorithmen 1. Motivation 1.1 Fallstudie: Sortieralgorithmen 1.2 Fallstudie: Selektionsalgorithmen 2. Laufzeit von Algorithmen 2.1 Grundlagen 2.2 3. Paradigmen des Algorithmenentwurfs 3.1 Dynamisches Programmieren

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Komplexität von Algorithmen SS 2011

Komplexität von Algorithmen SS 2011 Komplexität von Algorithmen SS 2011 Volker Strehl Informatik 8 4. Mai 2011 Organisatorisches Vorlesungstermine Mittwoch, 08:30 10:00 im H4 Freitag, 10:15 11:45 Uhr im H14 (Werkstoffwissenschaften) Organisatorisches

Mehr

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de 14. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/48 Der Sprung ins Wasser...

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

F3 Berechenbarkeit und Komplexität

F3 Berechenbarkeit und Komplexität F3 Berechenbarkeit und Komplexität Berndt Farwer Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg farwer@informatik.uni-hamburg.de F3 01/02 p.1/70 Zielgruppe 1.

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Martin Hofmann Sommersemester 2009 1 Überblick über die Vorlesung Was sind Algorithmen, wieso Algorithmen? Ein Algorithmus ist eine genau festgelegte Berechnungsvorschrift,

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen Beweis. (kombinatorisch): Links steht die Anzahl der k-partitionen einer n-elementigen Menge. Wie entstehen diese? Wir wählen wieder ein festes Element e n aus M. Man kann die k-partitionen von M dann

Mehr

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität) Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration

Mehr

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52

HEUTE. Beispiele. O-Notation neue Einführung Ideen und Eigenschaften Aufgaben 47 und 52 11.02.04 1 HEUTE 11.02.04 3 Beispiele 2, 2 2, 2 +, 1 2 2 log habe asymptotisch gleiches Wachstum: O-Notatio eue Eiführug Idee ud Eigeschafte Aufgabe 47 ud 2 Aufteilugs- ud Beschleuigugssatz Idee ud Awedug

Mehr

Inhalt Kapitel IV: Interpolation

Inhalt Kapitel IV: Interpolation Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

F3 Berechenbarkeit und Komplexität

F3 Berechenbarkeit und Komplexität F3 Berechenbarkeit und Komplexität Matthias Jantzen (nach Vorlage von Berndt Farwer) Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg jantzen@informatik.uni-hamburg.de

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/

Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/ Algorithmik Übung 2 Prof. Dr. Heiner Klocke Winter 11/12 23.10.2011 Themen: Asymptotische Laufzeit von Algorithmen Experimentelle Analyse von Algorithmen Aufgabe 1 ( Asymptotische Laufzeit ) Erklären Sie,

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Klassische elementare Analysis

Klassische elementare Analysis i Max Koecher Klassische elementare Analysis 1987 Birkhäuser Verlag Basel Boston Inhaltsverzeichnis Kapitel I Der goldene Schnitt Einleitung 11 1 Elementare Eigenschaften 11 1. Definition - 2. Konstruktion

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 15 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 16 Untere Schranken für das Vergleichsbasierte Sortieren TU

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Definition der Kolmogorov-Komplexität I

Definition der Kolmogorov-Komplexität I Definition der Kolmogorov-Komplexität I Definition: Die Komplexität K A (x) eines Wortes x V + bezüglich des Algorithmus A ist die Länge der kürzesten Eingabe p {0, 1} + mit A(p) = x, d.h. in formalisierter

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt Algebra, Analytische Geometrie. 1. Sei 1, 0, 9 A := 1, 2, 3,. 2, 2, 2, Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Algorithmen & Datenstrukturen

Algorithmen & Datenstrukturen Algorithmen & Datenstrukturen 1. Grundlagen 1.2 Analyse von Algorithmen 1 Einführung (1) Was ist ein Algorithmus? Der Begriff Algorithmus ist vom Namen des arabischen Mathematikers Muhammed al-chwarizmi,

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Funktionentheorie I : WS Die Γ Funktion

Funktionentheorie I : WS Die Γ Funktion Funktionentheorie I : WS -5 Die Γ Funktion Dr. Rolf Busam Materialien zur Vorlesung Funktionentheorie I, WS -5. Eine kleine Formelsammlung zur Γ Funktion. Definition: Ist H r := { z C ; Re z > } die rechte

Mehr

6 Weiterer Ausbau der Differentialrechnung

6 Weiterer Ausbau der Differentialrechnung 6 Weiterer Ausbau der Differentialrechnung 6.1 Mittelwertsätze, Extremwerte, Satz von Taylor Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

ADS: Algorithmen und Datenstrukturen

ADS: Algorithmen und Datenstrukturen ADS: Algorithmen und Datenstrukturen Akuter Denk-Stau Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Monotone Approximationen durch die Stirlingsche Formel Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Formel für n!: e n n e n n! e n n+/2 e n Genauer zeigen wir, dass die Folge

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G Studie zum Arbeitsverhalten von Studierenden unter Leitung

1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G Studie zum Arbeitsverhalten von Studierenden unter Leitung Organisatorisches Algorithmen und Datenstrukturen Kapitel 3: Divide & Conquer Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G-021. 2 Studie zum

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-10. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-01-10 Überblick 1 O-Notation Wiederholung Mastertheorem

Mehr

Studentisches Skript

Studentisches Skript Algorithmen und Datenstrukturen Studentisches Skript Kim Wittenburg 5wittenb@informatik.uni-hamburg.de Version vom 20. März 2017 Auf Basis der Vorlesung von Prof. Dr. Petra Berenbrink und Prof. Dr. Chris

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr