14 ERHALTUNGSGLEICHUNGEN

Größe: px
Ab Seite anzeigen:

Download "14 ERHALTUNGSGLEICHUNGEN"

Transkript

1 Theorie nd Nmeri von Differenialgleichngen mi MATLAB nd SIMULINK K. Taber Universiä Hambrg SS8 Erhalngsgleichngen 4 EHALTUNGSGLEICHUNGEN THEOIE UND NUMEIK 4. Einführng Gegensand des vorliegenden Kapiels sind Afgaben der Form f () = (x,) = (x) Typisch die heoreische Behandlng dieser Afgabe is eine gewisse Uneinheilichei. Verschiedene Zgänge sichern die Exisenz von Lösngen nd nerschiedliche Enropiebedingngen legen die Eindeigei der Lösngen fes. Die Gleichwerigei nd die Grenzen der einzelnen Zgänge sind den Nich-Spezialisen schwer erennbar. Wei verbreie is der Zgang von Krzov [97] über den Umweg einer (singlär gesören) parabolischen Afgabe f () = ε. In diesem Zsammenhang wird häfig ach behape, dass die erse Afgabe ers drch eine nich sachgemäße Vereinfachng der zweien Afgabe enseh. In lezer Zei erscheinen aber ach sar fnionalanalyisch gepräge Texe (Serre [999]) über diese Afgaben. Dami werden ach diese Afgaben in den üblichen ahmen der modernen Behandlng von parabolischen nd ellipischen Afgaben eingeordne. Die nmerischen Behandlng der Afgaben is i.a. sar herisisch gepräg nd häfig von einem ngewöhnlich leichferigen Umgang mi den mahemaischen Vorassezngen geennzeichne. Ach hier ha die Arbei von Krzov wohl z einer Umbesinnng geführ. Die Praxis ha zr CFL-Bedingng, dem Upwind-Schemaa, dem Godnov-Verfahren nd seine Varianen geführ. Allgemein wird behape, dass ge Verfahren die salare Gleichng ach g Syseme von Erhalngsgleichngen sind. 83

2 Wir berachen znächs die lineare Afgabe 4. Theorie. Beispiele nd Schwierigeien c =,,c>, x (x,) = (x). Als lassische Lösng einer solchen Afgabe wird man znächs eine Fnion (x,) bezeichnen, welche > nd x seig differenzierbar, nd x seig is nd aßerdem die Anfangsbedingng erfüll. Es sei (.,.) eine (lassische) Lösng der Afgabe nd Dann gil d d v().= (cx,). d v() = (c x, ) = c (c x, ) (c x, ) =. d Somi is v() onsan > nd nd mihin oder lim v() = v() (cx,) = v() = v() = (x,) = (x ) (x,) = (x-c,) = (x-c). Die Geraden x-c = ons heißen Charaerisien nd enlang dieser Geraden is die Lösng onsan. x-c=ons x Späer nüzlich sind noch die folgenden Beobachngen: Min (x) (x, ) Max (x). x x Ach beliebige (nichseige) is es naheliegend (x,) = (x-c) als Lösng der Anfangswerafgabe z bezeichnen. Als nächses berachen wir ez die (Brgers-) Gleichng 84

3 =, >, x (*) (x,) = (x). Klasssische Lösngen dieser Afgaben wird man wie oben definieren. Ach in diesem Fall gib es Krven (Charaerisien) (x(),) af denen die Lösng onsan is. Es sei (x,) eine lassische Lösng von (*) nd x(;x ) die Lösng von Es sei ez dann gil dx = (x, ), x() = x. d v() = (x(;x ),) d d dx v() = (x(; x ), ) (x(; x ), ) (x(; x ), ) ( )(x(; x ))! = = = d d d nd dami (x(,x ),) = (x(;x ),) = (x ). Ach in diesen Fall sind die Charaerisien also Geraden x() = x (x ) deren Seigngen edoch von den Anfangsweren (x ) abhängen. Wir berachen ez noch das iemann-problem =, >, x U L x < (x) = U x > mi Konsanen U L nd U. Der Fall U L = U is nineressan. Die beiden anderen Fälle führen edoch z Problemen: I. U L >U x=s II. U L <U 85

4 Im ersen Fall schneiden sich die Charaerisien. Charaerisien die lins von Nll saren d haben eine leinere Seigng = / U L als die Charaerisien welche rechs von Nll mi der dx d Seigng = / U saren. dx Es is sicherlich vernünfig die Fnion U L x < s (x,) = U x > s s = (/)(U L U ) (Schoc-Geschwindigei) als Lösng der Afgabe z bezeichnen. Im zweien Fall enseh eine Lüce nd es sell sich die Frage, wie diese Lüce vernünfigerweise aszfüllen is. Der Übergang U U U L U L führ zr Lösng (Verdünnngswelle) (x,) = x / U U L x < U U L < x < U x > U. L Das erse Beispiel läss erennen, dass lassische Lösngen der Brger-Gleichng nich global exisieren müssen. Wie bei den ellipischen nd parabolischen Differenialgleichngen führ man ach bei den Erhalngsgleichngen einen schwachen Lösngsbegriff ein. Definiion: Eine (loal) inegrierbare Fnion mi (loal) inegrierbaren f() heiß schwache Lösng von f () = (x,) = (x) wenn alle Φ C (,(, )) gil 86

5 (Φ f () Φ x )ddx Φ(x,)dx =. x Leider führ der schwache Lösngsbegriff nich z eindeigen Lösngen: Dieses zeig das iemann-problem =, >, x x (x) = x < x > mi den nendlich vielen schwachen Lösngen ( α (,)) (x,) = α α / < x / x / < α / ( α) / < < ( α) / x /. Es war wohl ein Verdiens von Krzov, hier eine weiergehende die Eindeigei erzwingende Forderng z sellen. Asgehend von f () = ε, ε wrde geforder: Eine schwache Lösng von heiß Enropie-Lösng, falls f () =, (x,) = (x) x (U() Φ F() Φ x )ddx x U( ) Φ(x,)dx alle Enropie-Paare (U,F) nd nichnegaive Φ C (,(, )). Dabei sei U eine onvexe Fnion nd F =U f. Saz. * Die salare Afgabe f () =, >, x (x,) = (x) besiz ede beschräne nd messbare Fnion gena eine Enropie-Lösng as L (x ) Von Bedeng die Nmeri sind weiergehende Eigenschafen der Enropielösngen. * Ein Beweis finde man in Serre [999] S

6 Diese Eigenschafen ergeben sich as dem Beweis des Sazes von Krzov. Die Lösngen haben noch die folgenden Eigenschafen:. TV-Abnahme. Is von beschräner Variaion, dann is ach (.,) von beschräner Variaion nd es gil TV((.,) TV( (x)).. Maximm-Prinzip oder L -Sabiliä. Es gil (x,) L (x) L. 3. Konservaiviä. Is -v L (), dann is ach (.,)-v(.,) L () nd es gil (x, ) v(x, ) d (x) v (x) dx. 4. Monoonie. Is (x) v (x) fas alle, dann gil (x,) v(x.). 5. Endlicher Abhängigeisbereich. Für alle > nd edes Inervall [a,b] gil b a b M v(x, ) (x, ) dx v (x) (x) dx. a M 4. Nmerische Mehoden Der vorangegangene Paragraph liefere einen Einblic in die Eigenschafen der Enropielösngen der Erhalngsgleichng f () =, (x,) = (x). Einen ersen Einblic in praiable nmerische Verfahren die Erhalngsgleichng liefer wieder die lineare Afgabe c =,,c>, x (,x) = (x). Zr nmerischen Behandlng dieser Afgabe wird x mi einem regelmäßigen Gier x = h, = überdec. Nahe liegende (nd von Vorennnissen völlig nbelasee) Differenzenverfahren sind dann mi γ = c( / h). = (/ ) γ( ) = ( γ) γ = ( γ) γ 88

7 Der Zsammenhang zwischen den Variablen (bis af die Konsane γ ) ann as den folgenden Sempeln erann werden: Lax-Friedrichs (Einseiiger) Eler (Einseiiger) Eler Aber ach andere Sempel sind denbar (LeVeqe 99) Implizier Eler Leap-Frog Lax-Wendroff Beam-Warming Sollen die angegebenen Verfahren das, die oninierliche Afgabe gülige, Maximm-Prinzip erfüllen, dann omm nr das zweie Verfahren in Frage nd zwar mi der zsäzlichen CFL- Bedingng γ = c( / h). Zr CFL-Bedingng omm man ach dann, wenn das zweie Verfahren af Konsisenz bezüglich lassischer Lösngen nersch wird: (x, ) (x, ) (x, ) (x h, ) c h c = c ( ) O(h h Das Verfahren liefer also eine Approximaion die Differenialgleichng ) f () = ε. Diese Afgabe is aber beannlich nr dann sachgemäß, wenn ε > is. Dieses bedee ( c h) / aber c h c h c h. Wie schwierig die Siaion im nichlinearen Fall is, zeig das iemann-problem =, >, x 89

8 (x) = x < x > Af den ersen Blic sprich dann nichs gegen das Verfahren Mi den Sarweren = = h ( < ) liefer das Verfahren (bei Verfeinerng des Giers) edoch ses (x,) = (x) nd mihin nich die Lösng der Afgabe. Andere Anfangsbedingngen führen z einer nangemessene Schoclage. Eine andere Möglichei beseh darin, die Afgabe dire z behandeln: (f()) x = = h (f ( (f ( ) f ( ) f ( )) )) f f <. Die Ableing f z besimmen wird nich immer möglich sein. Dieses führ z der folgenden pwind-variane mi (H( h =, ) H(, H(,v) = f (), f (v), wenn wenn )) f () f (v) v f () f (v). v Die folgende (in LeVeqe) angegebene Afgabe zeig, das ach hiermi nich immer ge eslae folgen: Afgabe Gegeben sei das iemann-problem x = (,x) = x < x >. Berache das angegebene Verfahren mi /h = /. 9

9 Für =/l nd h = /l liefer das Verfahren die schwache Enropie-Lösng Für =/(l) nd h = /(l ) liefer das Verfahren eine schwache Lösng Für =/l nd h = (/)l divergier das Verfahren Wir ommen nn z den Gdonov-Verfahren. Dieses nimm in besonderer Weise ücsich af die ichng der Asbreing des Signals: = (f ( h (/ ) ) f ( (/ ) )) mi folgenden egeln die Besimmng der Größen : (/ ) Es sei f ( ) f ( ) f = ( ξ (/ ) )( ). Dann ergib sich as: (/ ) = (/ ) falls f ( )> nd f ( ξ )> (/ ) = (/ ) falls f ( )< nd f ( ξ )< (/ ) is Nllselle von f () = sons. (/ ) Bevor das Gdonov-Verfahren weier nersch wird, soll noch das Verfahren von Lax-Friedrichs angegeben werden. Dieses Verfahren enseh as dem nbrachbaren Verfahren f ( ) f ( h ) = drch die Einführng einer ünslichen Visosiä ( / h = ) = ( )(f ( ) f ( )) h mi dem loalen Fehler O( ) / h =. Sowohl das Gdonov- als ach das Lax-Friedrichs-Verfahren lassen sich in der Form = H(,, ) = q(g(, ) g(, )) darsellen. Die lassische Konsisenzforderng ergib dann f() = g(,). Wir ommen nn wieder z dem enscheidenden Begriff, der wieder Monoonie heißen wird: 9

10 Definiion Das Schema = H(,, ) heiß Monoon, wenn H in allen Argmenen eine nich fallende Fnion is. Der enscheidende Voreil von monoonen Schemaa is: Für monoone Schemaa ann die Konvergenz der Näherngen gegen die Enropie-Lösng nachgewiesen werden. Monoone Verfahren haben die Eigenschafen,, nd 3. Wir schließen dieses Kapiel mi der folgenden schönen Bemerng ab: Das Lax-Friedrichs nd das Gdonov-Verfahren sind monoon ner einer Zsazbedingng. Beim Lax-Friedrichs Verfahren is diese Max h f '(). Lierar Evans, L.C., Parial Differenial Eqaions. Gradae Sdies in Mahemaics. Vol 9. American Mahemaical Sociey

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrshl für Ingeniermahemaik Universiä Bareh Opimale Seerng parieller Differenialgleichngen Opimal Conrol of Parial Differenial Eqaions (Teil 1: WS 2011/12) 12. Übng ( Opimale Seerng

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Übersich der Vorlesng 1. Einührng 2. Bilderarbeing 3. Morphologische Operaionen 4. Bildsegmenierng 5. Mermale on Objeen 6. Klassiiaion 7. Dreidimensionale Bildinerpreaion 8. Bewegngsanalse as Bildolgen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

3. Das Identifikationsproblem

3. Das Identifikationsproblem 3. Das Idenifikaionsroblem 3. 3. Idenifizierbarkei eines Modells Den Parameern des Modells können afgrnd der Beobachngswere für die Variablen eindeig Were zgewiesen werden. Zlässige Srkr des Modells: jede

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Kapitel 1: Einführung

Kapitel 1: Einführung Opimale Seerng /Prozessopimierng Kapiel : Einführng Prof. Dr.-Ing. P Li Fachgebie Simlaion nd Opimale Prozesse SOP Lf- nd Ramfahrindsrie Dynamische Vorgänge: Sar Landng Flgbahnregelng Chemieindsrie Dynamische

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar:

Rechteckgenerator mit Schmitt-Trigger Eine Anwendung des Schmitt-Triggers als Multivibrator stellt der Rechteckgenerator nach Bild 1 dar: echeckgeneraor mi Schmi-rigger echeckgeneraor mi Schmi-rigger Eine Anwendng des Schmi-riggers als Mlivibraor sell der echeckgeneraor nach Bild dar U sa 0 Bild -U sa- C echeckgeneraor mi inverierendem Schmi-rigger.

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Regelungs- und Systemtechnik 3

Regelungs- und Systemtechnik 3 Regelng Mecharonischer yseme, Regelngs- nd ysemechnik 3 Kaiel 5: Riccai-Oimal-Regler ro. Dr.-Ing. Li Fachgebie imlaion nd Oimale rozesse O Herleing nd nwendng des Riccai-Oimal-Reglers R l Vorkennnisse:

Mehr

1 Physikalische Grundlagen

1 Physikalische Grundlagen Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

4. Erhaltungssätze für Masse und Impuls

4. Erhaltungssätze für Masse und Impuls 4. Erhalngssäze für Masse n Impls Wie ie klassische Mechanik basier ie Srömngsmechanik af er Erhalng von Masse Impls Energie Die Erhalngsgeseze gelen für as infiniesimal kleine Flielemen n für reiimensionale

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

Grenzwertsätze für Zeitreihen

Grenzwertsätze für Zeitreihen KAPIEL 6 Grenzwersäze für Zeireihen In diesem Kapiel sellen wir wichige Grenzwersäze für saionäre Zeireihen {X n } in diskreer Zei zusammen. Sei µ = E(X ) und ρ(k) = E(X 1 µ)(x 1+k µ) = Cov (X 1, X 1+k

Mehr

Diplomarbeit. second sound

Diplomarbeit. second sound Universiä Konsanz Diplomarbei Nichlineare Wärmeleiung mi second sound Verfasser: Naalie Indlekofer eingereich am: 5. Dezember 7 Bereuer: Prof. Dr. Reinhard Racke Guacher: Prof. Dr. Reinhard Racke Prof.

Mehr

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt)

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt) ) Neoklassisches Wachsumsmodell (ohne echnischen Forschri).1) Problemsellung (Arbeismark) Das Problem, das von Solow - dem Begründer der neoklassischen Wachsumsheorie - angegangen wurde, bezog sich auf

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Physik A VL10 ( )

Physik A VL10 ( ) Physik A VL 3.. Ilse nd Sösse Ilse nd Ilserhalng Sossgeseze Bewegng bei koninierlicher assenänderng: Rakeenanrieb Der Ils oder rafsoß Ilse nd Sösse rafwirkngen af einen örer sind häfig zeilich begrenz

Mehr

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Unendliche Folgen und Reihen

Unendliche Folgen und Reihen . ) Zu Beginn befinde sich ein neu geborenes Kaninchenpaar K im Gehege (), ebenso zu Beginn des zweien Monas (), zu Beginn des drien Monas wird ein Kaninchenpaar K geboren (), zu Beginn des vieren Monas

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt.

Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. 2 Theorie der semanischen Typen 2.2.2 Semanik von TL Menge der omänen Zu jedem Typ gib es eine Menge von möglichen enoaionen der Ausdrücke dieses Typs. iese Menge wird omäne des bereffenden Typs genann.

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projek 2H 25/6 Formelzeel lekroechnik Teilübng: Kondensaor Lade-nladevorgänge Grppeneilnehmer: ajinovic, Pacar bgabedam: 23.2.26 ajinovic, Pacar Inhalsverzeichnis 2H INHLTSVZIHNIS 1. fgabensellng... 2

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Stochastische Analysis und Finanzmathematik

Stochastische Analysis und Finanzmathematik Sochasische Analysis und Finanzmahemaik Vorlesung im Winersemeser 211/212 von Dr. Markus Schulz Inhalsverzeichnis 1 Sochasische Prozesse 1 1.1 Grundlagen................................ 1 1.2 Die Brownsche

Mehr

3.2. Strömungstechnische Auslegung der PELTON Turbine

3.2. Strömungstechnische Auslegung der PELTON Turbine 3.. Srömngsehnishe Aslegng der PELTON Trbine 3... Geshindigkeisdreiek Legende: Indies: a - Axiale Rihng Umfangsrihng - Absolgeshindigkei des Srahls nah der Düse vor Lafrad - Umfangsgeshindigkei des Lafrades

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Leseprobe. Ines Rennert, Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie. ISBN (Buch):

Leseprobe. Ines Rennert, Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie. ISBN (Buch): Leseprobe Ines Renner, Bernhard Bundschuh Signale und Syseme Einführung in die Sysemheorie ISBN (Buch): 978-3-446-43327-4 ISBN (E-Book): 978-3-446-43328- Weiere Informaionen oder Besellungen uner hp://www.hanser-fachbuch.de/978-3-446-43327-4

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

The Matlab ODE Suite. Simone Bast Martin Vogt

The Matlab ODE Suite. Simone Bast Martin Vogt The Malab ODE Suie Simone Bas Marin Vog Gliederung Wiederholung BDF-Verfahren Verbesserung: NDF-Verfahren ode5s und ode3s User Inerface Vergleich der Löser Zusammenfassung ) Implizie Formeln für seife

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Multiple Regression: Übung 1

Multiple Regression: Übung 1 4. Muliple Regression Ökonomerie I - Peer Salder 1 Muliple Regression: Übung 1 Schäzung einer erweieren Konsumfunkion für die Schweiz Wir unersuchen die Abhängigkei der Konsumausgaben der Schweizer Haushale

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Wiederholung. Algorithmen und Datenstrukturen Kapitel 10. Motivation. Begriffe und Definitionen

Wiederholung. Algorithmen und Datenstrukturen Kapitel 10. Motivation. Begriffe und Definitionen Algorihmen nd Daenrkren Kapiel Frank Heimann heimann@informaik.ni-hambrg.de 6. Janar 2016 Frank Heimann heimann@informaik.ni-hambrg.de 1/ Graphen Grndlagen Definiion nd Darellng Tiefen- nd Breienche Topologiche

Mehr

Ferienkurs Analysis 3 für Physiker. Integralsätze

Ferienkurs Analysis 3 für Physiker. Integralsätze Ferienkrs Analysis 3 für Physiker Integralsätze Ator: Benjamin Rüth Stand: 17. März 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Differentialoperatoren 3 2 Integralsatz von Gaß 4 2.1

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Lokale Eigenschaften des Hilbert-Symbols

Lokale Eigenschaften des Hilbert-Symbols Lokale Eigenschaften des Hilbert-Symbols (Nach J.P. Serre: A Corse in Arithmetic) Bettina Böhme, Karin Loch 24.05.2007 Im Folgenden bezeichnet k entweder den Körer R der reellen Zahlen oder den Körer Q

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97 Inhalsverzeichnis Differenialgleichungen erser Ordnung 5. Allgemeine Definiion und Beispiele... 5.2 Lineare Differenialgleichungen......3 Lösungsmehoden für spezielle Typen von Dgln..Ordnung... 3.3. Die

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Arbitragefreie Preise

Arbitragefreie Preise Arbiragefreie Preise Maren Schmeck 24. Okober 2006 1 Einleiung P i () Preis von Anleihe i zur Zei, i = 1,..., n x i Anzahl an Einheien der Anleihe i V () = n i=1 x ip i () Wer eines Porfolios mi x i Einheien

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Semantik. Semantik. Die Sprache der Typtheorie sieht für jeden Typ eine Menge nichtlogischer

Semantik. Semantik. Die Sprache der Typtheorie sieht für jeden Typ eine Menge nichtlogischer Universiy of Bielefeld Beispiele: Prädikaskonsanen (Suden, verheirae, arbeie): Typ ; sie nehmen einen Eigennamen/ein Referenzobjek und liefern einen Saz/einen Wahrheiswer ab. Zweisellige Relaionskonsanen

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz

Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz Finanzmahemaik Wolfgang Müller 213 Insiu für Saisik Technische Universiä Graz Inhalsverzeichnis 1. Markmodelle in diskreer Zei 1 1.1. Das Binomialmodell................................ 1 1.2. Das allgemeine

Mehr