Kleine Formelsammlung Technische Thermodynamik

Größe: px
Ab Seite anzeigen:

Download "Kleine Formelsammlung Technische Thermodynamik"

Transkript

1 Hans-Joachim Kretzschmar Ingo Kraft Kleine Formelsammlung Technische Thermodynamik 5., aktualisierte Auflage

2 Ergänzung imweb Kapitel 13 Ideale Gasgemische Anhang B Zustandsdiagramme B5 B6 B7 lg p,h-diagramm für Propan h 1+x,x w -Diagrammfür feuchte Luft mit Millimeterraster Periodensystem der Elemente AnhangC Stoffwert-Bibliotheken undsoftware C1 FluidEXL für Excel C2 FluidMAT für Mathcad C3 FluidLAB für MATLAB C4 FluidCASIO für Taschenrechner CasioCFX-9750, -9850, CFX-9860, FX1.0, Algebra FX 2.0 C5 FluidHP für Taschenrechner HP 48 und 49 C6 FluidTI für Taschenrechner TI 83, 84, 89, 92, voyage 200 mit den Stoffwert-Bibliotheken LibIF97 für Wasser und Wasserdampf LibNH3 für Ammoniak LibR134a für das Kältemittel R134a LibIDGAS für Verbrennungsgasgemische nach VDI-4670 LibIdGasMix für ideale Gasgemische LibFLUFT für feuchte Luft und den Berechnungsprogrammen LibWUET für Betriebscharakteristika von Wärmeübertragern LibGroeber zur Berechnung von instationärerwärmeleitung für symmetrische Verhältnisse mit dem Verfahren von Gröber AnhangD Fluid PropertyCalculator Online-Berechnung von Stoffdaten

3 Kretzschmar/Kraft Kleine Formelsammlung Technische Thermodynamik

4

5 Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker ( ) 5., aktualisierte Auflage Fachbuchverlag Leipzig im Carl Hanser Verlag

6 Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar Hochschule Zittau/Görlitz Prof. Dr.-Ing. Ingo Kraft Hochschule für Technik, Wirtschaft und Kultur Leipzig Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über abrufbar. ISBN E-Book-ISBN Dieses Werk ist urheberrechtlichgeschützt. Alle Rechte, auch die der Übersetzung, des Nachdrucks und der Vervielfältigung des Buches oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigtoder verbreitet werden. Fachbuchverlag Leipzig im Carl Hanser Verlag 2016 Carl Hanser Verlag München Lektorat: Ute Eckardt Herstellung: Karin Wulst Druck/Bindung: Friedrich Pustet, Regensburg Printed in Germany

7 Vorwort zur fünften Auflage Die Kleine Formelsammlung Technische Thermodynamik ist inzwischen etabliert. Die vorliegende fünfte Auflage wurde überabreitet und ergänzt. Sie enthält die wichtigsten Formeln und Berechnungsalgorithmen der Technischen Thermodynamik einschließlich Wärmeübertragung für die Studiengänge und Studienrichtungen Maschinenbau Energie-, Verfahrens- und Umwelttechnik Technische Gebäudeausrüstung und Versorgungstechnik Heizungs-, Lüftungs- und Klimatechnik Kälte- und Wärmepumpentechnik Wirtschaftsingenieurwesen an Universitäten, Fachhochschulen, Berufsakademien und Fachschulen. Erfasst werden die folgenden Gebiete der Technischen Thermodynamik Energielehre und thermodynamische Stoffeigenschaften, einfache Prozesse und Kreisprozesse, Wärmeübertragung und Thermodynamik der feuchtenluft. Diese Formelsammlung kann somit als Grundlage für die Berechnung von Maschinen, Apparatenund Anlagen dienen. Die Darstellung der Energielehre orientiert sich amlehrkonzept von Prof. em. Dr.-Ing. habil. Dr.-Ing. e. h. W. Wagner, Lehrstuhl für Thermodynamik der Ruhr-Universität Bochum. Beibehalten wurde die anwendungsorientierte Darstellung. Zur schnellen Nutzung sind die Formelzeichen unmittelbar unter der betreffenden Formel erläutert. Eine ausführliche Stoffwert- und Diagrammsammlung im Anhang ermöglicht die sofortige Anwendung Gleichungen. Das Kapitel "Ideale Gasgemische", weitere Abschnitte sowie Stoffwert- Bibliotheken und ergänzende Software für Excel, MATLAB Mathcad und verschiedene Taschenrechner stehen auf der Website zum Download bereit. Des Weiteren können hierstoffwerte online berechnet werden. Die Autoren danken Frau Dr.-Ing. I. Stöcker sowie Herrn Dr.-Ing. S. Herrmann und Herrn Dipl.-Ing. (FH) M. Kunick für dieerstellung der Bilder, Diagramme und Tabellen. Hans-Joachim Kretzschmar und Ingo Kraft

8 Inhaltsverzeichnis 1 Thermodynamische Größen Größenarten Größen und Einheiten Umrechnung von Einheiten Zustandsverhalten reiner Stoffe Einphasengebiete und Phasenübergänge Zweiphasengebiet flüssig gasförmig Bereiche für Zustandsberechnung Bereiche für Zustandsberechnung im p,t-diagramm Bereiche für Zustandsberechnung im p,v-diagramm Bereiche fürzustandsberechnung im T,s-Diagramm Bereiche für Zustandsberechnung im h,s-diagramm Thermische Zustandsgrößen Temperatur Druck Dichte und spezifisches Volumen Definitionen Ermittlungvon v und ρ für realefluide Ermittlung von v und ρ für ideale Gase Ermittlung von v und ρ für inkompressible (ideale) Flüssigkeiten und Festkörper Ermittlungvon v und ρ für Nassdampf Normzustand und Normvolumen EnergetischeZustandsgrößen Wärmekapazitäten Definitionen Ermittlungvon c p und c v für reale Fluide Ermittlung von c p und c v für ideale Gase Ermittlung von c p und c v fürinkompressible (ideale) Flüssigkeiten und Festkörper c p und c v für Nassdampf Isentropenexponent undisentrope Schallgeschwindigkeit...37

9 Inhaltsverzeichnis Definitionen Ermittlungvon und w für reale Fluide Ermittlung von und w für ideale Gase und w für inkompressible (ideale) Flüssigkeiten und w für Nassdampf Enthalpie und innere Energie Definitionen Ermittlungvon h und u für realefluide Ermittlung von h und u für ideale Gase Ermittlung von h und u für inkompressible (ideale) Flüssigkeiten und Festkörper Ermittlung von h und u für Nassdampf Entropie Definition Ermittlungvon s für reale Fluide Ermittlungvon s für idealegase Ermittlungder spezifischenentropie s für inkompressible (ideale) Flüssigkeiten Ermittlung von s für Nassdampf Exergie Exergie (der Enthalpie) Exergie der inneren Energie Massebilanz Stoffmenge, Masse und Volumen Massestrom und Volumenstrom Massebilanz beigeschlossenen Systemen Massebilanz beioffenen stationären Systemen Massebilanz beioffenen instationären Systemen Energiebilanz 1. Hauptsatz der Thermodynamik Ruhendes geschlossenes System Energiebilanz zwischen Zustand 1und Volumenänderungsarbeit Äußere Nutzarbeitund Kolbenarbeit Dissipierte Arbeiten Wärme Instationäre Energiebilanz... 75

10 8 Inhaltsverzeichnis 6.2 Ruhendesoffenes System Stationäre Energiebilanz Technische Arbeit Allgemeine instationäre Energiebilanz Berechnung derdifferenzen von spezifischerenthalpie und spezifischer innerer Energie Reale Fluide Ideale Gase Inkompressible (ideale) Flüssigkeiten Nassdampf Entropiebilanz 2. Hauptsatz der Thermodynamik Ruhendes geschlossenes System Entropiebilanz zwischen Zustand 1und Entropie der Wärme Entropieproduktion Dissipationsenergie Ruhendes offenes System Berechnung der Differenzen der spezifischen Entropie Reale Fluide Ideale Gase Inkompressible (ideale) Flüssigkeiten Nassdampf Exergiebilanz Ruhendes geschlossenes System Exergiebilanzzwischen Zustand 1und Exergie der Wärme Exergieverlust Ruhendes offenes System Berechnungder Differenzen der spezifischenexergie Einfache Prozesse Grundlagen derthermodynamischen Modellierung technischer Prozesse Technische Anwendungen Fluide in Behältern mit starren Wänden Fluide unter konstantemdruck Mischen von Fluidströmen...120

11 Inhaltsverzeichnis Verdichten undpumpen Entspannung in Turbinen Drosselentspannung Kreisprozesse Grundlagen Gasturbinenanlagen-JOULE-Prozess Dampfturbinenanlagen-CLAUSIUS-RANKINE-Prozess Kältemaschinen-und Wärmepumpen-Prozess Wärmeübertragung Transporteigenschaften der Stoffe Stationäre Wärmeleitung Grundlagen Ebene Wand Zylinderwand (Rohrwand) Kugelwand Konvektiver Wärmeübergang Temperaturfeld Wärmestrom und Wärmeübergangskoeffizient Ähnlichkeitskennzahlen Freie Konvektion Erzwungene Konvektion Wärmestrahlung Energiebilanz Zweiflächenstrahlungsaustausch Strahlungsaustauschkoeffizient (resultierender Strahlungskoeffizient) für ausgewählte Anwendungsfälle Wärmedurchgang Thermodynamik der feuchten Luft Konstanten für die Zustandsberechnung Arten der feuchten Luft Zusammensetzung der feuchtenluft Allgemeine Zusammensetzung der feuchten Luft Wassergehalt Ungesättigte feuchte Luft Relative Feuchte Gesättigte feuchte Luft

12 10 Inhaltsverzeichnis Übersättigte feuchte Luft (Nebel) Luftspezifisches Volumen und Dichte Spezifische Wärmekapazitäten Isentropenexponent und isentrope Schallgeschwindigkeit Luftspezifische Enthalpie und luftspezifische innere Energie Taupunkttemperatur Feuchtkugeltemperatur (Kühlgrenztemperatur) Das h 1+x,x W -Diagramm Bilanzierung von Prozessen mit feuchter Luft Anwendung der Zustandsberechnung von feuchterluft auf feuchte Gase Literaturverzeichnis Anhang A Stoffwertsammlung A1 Stoffunabhängige Konstanten A2 Stoffspezifische Konstanten A3 Stoffwerte von Gasen imidealgaszustand A4 Stoffwerte von siedendem Wasser und gesättigtem Wasserdampf A5 Stoffwerte von Wasser (reales Fluid) A6 Stoffwerte von Wasserflüssigkeit (ideal) A7 Stoffwerte von Luft (reales Fluid) A8 Stoffwerte von Luft bei p =0, MPa A9 Transportgrößen von Feststoffen(Mittelwerte) A10 Gesamtemissionsverhältnissevon Stoffen (Mittelwerte) A11 Heizwerte und Brennwerte A12 Sättigungspartialdruck von Wasser Sachwortverzeichnis B B1 B2 B3 B4 Zustandsdiagramme (als Beilage) Mollier h,s-diagramm von Wasserdampf T,s-Diagramm von Wasser und Wasserdampf lg p,h-diagramm von Ammoniak h 1+x,x W -Diagramm von feuchterluft

13 1 Thermodynamische Größen 1.1 Größenarten Für eine allgemeine Größe Z gilt: Größenart Definition Umrechnung Beispiele Spezifische Größen -auf Masse m bezogen: Kleinbuchstabe Molare Größen -auf Stoffmenge n (Molmenge) bezogen: Kleinbuchstabe quer überstrichen Volumenbezogene Größen -auf Volumen V bezogen: Kleinbuchstabe mit Schlangenlinie(Tilde) Flächenbezogene Größen -auf Fläche A bezogen: Kleinbuchstabe mit Dach Zeitbezogene Größen (Ströme, Leistungen) -auf Zeit t bezogen : Großbuchstabe mit Punkt Zeit- und flächenbezogene Größen (Stromdichten) -auf Zeit und Fläche A bezogen: Kleinbuchstabe mit Punkt und Dach Z z m z Z m Z z V Z zˆ A Z Z t ˆ Z z A Z n z z M z M A2 z 3.3 Z m z m 5.2 v, h, s, q, w v, h, s, q, w, q ˆq V, H, Q, W P, m, n ˆm, ˆq

14 12 1Thermodynamische Größen undeinheiten 1.2 Größen und Einheiten Größe SI-Einheit Empfohlene Einheit Länge z 1m 1m Fläche A 1m 2 1m 2 Volumen V 1m 3 1m 3 Zeit t 1s 1s Geschwindigkeit c 1ms 1 1ms 1 Masse m 1 kg 1 kg Stoffmenge n (Molmenge) 1mol 1kmol =1000 mol Molare Masse M 1kgmol 1 1kgkmol 1 Thermodynamische Temperatur T 1K 1K Celsius-Temperatur 1 C 1 C =0,001 kg mol 1 Kraft F 1N=1kg ms 2 1kN=1000 N Druck p Enthalpie H innere Energie U freie Energie F freie Enthalpie G Exergie E Wärme Q Arbeit W 1Pa=1Nm 2 1bar =10 5 Pa =0,1 MPa 1J=1Nm =1Ws 1kPa =1000 Pa 1kPa =0,01 bar 1kJ=1000 J

15 1Thermodynamische Größen undeinheiten 13 Größe SI-Einheit Empfohlene Einheit spezifische Enthalpie h spezifische innere Energie u spezifische freie Energie f spezifische freie Enthalpie g spezifische Exergie e spezifische Wärme q spezifische Arbeit w spezifische Wärmekapazitäten c p, c v spezifische Entropie s spezifische Gaskonstante R Enthalpiestrom H Exergiestrom E Wärmestrom bzw. Wärmeleistung Q Arbeitsleistung P= W Entropiestrom S Wärmekapazitätsstrom C Wärmeleitkoeffizient λ Wärmeübergangskoeffizient α Wärmedurchgangskoeffizient k 1Jkg 1 =1Nmkg 1 =1m 2 s 2 1kJkg 1 =1000 Jkg 1 =1000 m 2 s 2 1Jkg 1 K 1 =1Nmkg 1 K 1 1kJkg 1 K 1 =1000 Jkg 1 K 1 1W=1Js 1 =1Nms 1 1kW=1000 W =1000 Js 1 1WK 1 =Nms 1 K 1 1kWK 1 =1000 Nm s 1 K 1 1Wm 1 K 1 1Wm 1 K 1 1Wm 2 K 1 1Wm 2 K 1

16 14 1Thermodynamische Größen undeinheiten 1.3 Umrechnung von Einheiten Einheit Umrechnung insi-einheit Inch 1in(") = 0,0254 m Foot (12 in) 1ft = 0,3048 m Yard (3 ft) 1yd = 0,9144 m Gallon (U.S.) 1 gal = 0, m 3 Gallon (U.K.) 1 gal = 0, m 3 Barrel Petrol (U.S.) 1barrel Petrol = 0, m 3 Foot per minute 1 ft min 1 = 0,00508 ms 1 Yard per second 1yds 1 = 0,9144 ms 1 Mile per hour 1mile h 1 = 1,6093 km h 1 Square foot per second 1ft 2 s 1 = 0, m 2 s 1 Pound 1lb = 0, kg Cubic foot per pound 1ft 3 lb 1 = 0, m 3 kg 1 Pound per cubic foot 1lbft 3 = 16,0185 kg m 3 Pound-force per square inch 1psi (1 lbf in 2 ) = 6, kpa Pound per foot and second 1lbft 1 s 1 = 1,48816 Pa s Horsepower 1hp = 0,74570 kw British thermal unit 1Btu = 1, kj Btu per hour 1Btu h 1 = 0, W Btu per pound 1Btu lb 1 = 2,326 kj kg 1 Btu per pound and Rankine Btu per hour, foot, and Rankine Btu per hour, square foot, and Rankine 1Btu lb 1 R 1 = 4,1868 kj kg 1 K 1 1Btu h 1 ft 1 R 1 = 1,73073 Wm 1 K 1 1Btu h 1 ft 2 R 1 = 5, Wm 2 K 1

17 2 Zustandsverhalten reiner Stoffe 2.1 Einphasengebiete und Phasenübergänge Einphasengebiete im p,t-diagramm p Schmelzdruckkurven p melt(t) überkritisches Fluid Wasser andere Fluide kritischer Punkt c p c feste Phase Feststoff flüssige Phase Flüssigkeit Dampfdruckkurve p (T) s p t Tripelpunkt t gasförmige Phase Gas (überhitzter Dampf) Phasenübergänge Sublimationsdruckkurve p subl (T) T t T c T Übergang Bezeichnung Druckbereich flüssig gasförmig gasförmig flüssig fest flüssig flüssig fest fest gasförmig gasförmig fest pt Tripelpunktdruck, Verdampfen Kondensieren Schmelzen Erstarren(Gefrieren) Sublimieren Desublimieren pc kritischer Druck p p p t p p t p p t c

18 16 2Zustandsverhalten reinerstoffe Tripelpunkt eines Stoffes Am Tripelpunkt liegt ein Stoff gleichzeitig in allen drei Phasen (Feststoff, Flüssigkeit und Dampf) im Sättigungszustand vor. Erist für jeden Stoff gegeben durch einen bestimmten Druck pt und eine bestimmte Temperatur T t. Zustandsgrößen im Einphasengebiet z p T z f( p, T) Zustandsgröße Druck Temperatur 2.2 Zweiphasengebiet flüssig gasförmig Fluides Zweiphasengebiet imp,v-diagramm p p c T =const kritischer Punkt Siedelinie c Taulinie p s (T) -Dampfdruck p t - Tripelpunktdruck x - Dampfanteil p c - kritischer Druck p s (T) Flüssigkeit x =0 x=1 T=const Zweiphasengebiet Nassdampf Gas (überhitzter Dampf) T =const p t v' v'' Siedelinie: Zustände siedender Flüssigkeit Taulinie: Zustände trocken gesättigten Dampfes v

19 2Zustandsverhalten reinerstoffe 17 Fluidbezeichnungen Zustand Temperatur Bezeichnung T s Flüssigkeit < T ( p ) (unterkühlte) Flüssigkeit T = T s ( p) siedende Flüssigkeit Zweiphasengemisch T = T s ( p) Nassdampf T = T s ( p) (trocken) gesättigter Dampf, auch Sattdampf genannt Dampf (Gas) T > T s ( p) überhitzterdampf, auch Heißdampf genannt T Temperatur T s ( p ) Siedetemperatur beim Druck p A4, [S6] Werte für Wasser Zweiphasengemisch Nassdampf Nassdampf ist das Zweiphasengemisch bestehend aus siedender Flüssigkeit und (trocken) gesättigtem Dampf Zustand Bezeichnung Siedende Flüssigkeit: Zeiger:' Gesättigter Dampf: Zeiger: " Nassdampf (spezifische Zustandsgrößen): Index: x Nassdampf imgeschlossenen System Masse m Nassdampf mit p T s (p) v x m'' - gesättigter Dampf mit v'' m' -siedende Flüssigkeit mit v'

20 18 2Zustandsverhalten reinerstoffe Nassdampf im offenen System Massestrom Nassdampf mit p T s (p) v x m m' -Tropfen siedende Flüssigkeit mit v' Zweiphasenströmung m" - gesättigter Dampf mit v'' Nassdampfmasse und Nassdampfmassestrom Dampfanteil m m m m m m m m m m x x m m m m m m x Dampfanteil (Dampfmasseanteil) mm, Nassdampfmasse bzw. -massestrom m, m Masse bzw. Massestrom der enthaltenen siedenden Flüssigkeit m, m Masse bzw. Massestrom des enthaltenen gesättigten Dampfes Definitionsbereich des Dampfanteilsx 0 x 1 x 0 bei siedender Flüssigkeit (Siedelinie) 0 x 1 bei Nassdampf x 1 bei gesättigtemdampf (Taulinie) Siedetemperatur und Dampfdruck T s ( p ) Siedetemperaturbeim Druck p A4, [S6] Werte für Wasser p s ( T) Dampfdruck beitemperatur T A4, [S6] Werte für Wasser

21 2Zustandsverhalten reinerstoffe 19 Spezifische Zustandsgrößen des Zweiphasengemisches Nassdampf (Sättigungszustand) Für z v, h, u, s, e gilt zx x z z z z x z z x spezifische Zustandsgröße des Nassdampfes Dampfanteil (Dampfmasseanteil) spezifische Zustandsgröße der siedenden Flüssigkeit oder f z f T p spezifische Zustandsgröße des gesättigten Dampfes oder f z f T p 2.3 Bereiche für Zustandsberechnung Unterteilung des fluiden Zustandsbereiches für Berechnung der Zustandsgrößen Reales Fluid gesamtes fluides Einphasengebiet (Flüssigkeit und Gas) Sonderfall: ideales Gas Zustandsbereich, indem die Zustandsgrößen eines Gases mit guter Näherung wie die eines idealen Gases berechnet werden können Sonderfall: inkompressible (ideale) Flüssigkeit Zustandsbereich,indem eine Flüssigkeit mit guter Näherung als inkompressibel (ideal) betrachtet werden kann Nassdampf einschl. siedender Flüssigkeit und gesättigten Dampfes Zweiphasengemisch aus siedender Flüssigkeit und gesättigtem Dampf Die Diagramme der folgenden Abschnitte zeigen die Bereiche für die Zustandsberechnung.

22 20 2Zustandsverhalten reinerstoffe Bereiche für Zustandsberechnung im p,t-diagramm p,t-diagramm mit Bereichen für die Zustandsberechnung p p c 22,064 MPa Schmelzdruckkurven p melt (T) andere Fluide Wasser Feststoff Flüssigkeit überkritisches Fluid kritischer Punkt c Dampfdruckkurve p s (T) reales Fluid p s (T) p t 0,6117 kpa Tripelpunkt t inkompressible Flüssigkeit ideales Gas Sublimationsdruckkurve p subl (T) Gas überhitzter Dampf Werte von Wasser T t 273,16 K T T c 647,096 K T Bereiche für Zustandsberechnung reales Fluid Berechnung in 3.3.2, 4.1.2, 4.2.2, 4.3.2, 4.4.2, 4.5 ideales Gas Berechnung in 3.3.3, 4.1.3, 4.2.3, 4.3.3, 4.4.3, 4.5 inkompressible (ideale) Flüssigkeit Berechnung in 3.3.4, 4.1.4, 4.2.4, 4.3.4, 4.4.4, 4.5 Nassdampf einschl. siedender Flüssigkeit und gesättigten Dampfes Berechnung in 3.3.5, 4.1.5, 4.2.5, 4.3.5, 4.4.5, 4.5

23 2Zustandsverhalten reinerstoffe Bereiche für Zustandsberechnung im p,v-diagramm p,v-diagramm mit Bereichen für die Zustandsberechnung p überkritisches Fluid Siedelinie x=0 -Zustand siedender Flüssigkeit (Zeiger ) p Flüssigkeit p inkompressible Flüssigkeit c T < T x = 0 T > T c Tc c reales Fluid kritischer Punkt T c Ts() p Nassdampf x = 1 T=const Taulinie x=1 -Zustand trocken gesättigten Dampfes (Zeiger ) überhitzter Dampf ideales Gas x = 0,5 t p t t v t v( p) vc v ( p) v t log v x = 0,2 Bereiche für Zustandsberechnung reales Fluid Berechnung von v in ideales Gas Berechnung von v in inkompressible (ideale) Flüssigkeit Berechnung von v in Nassdampf einschl. siedender Flüssigkeit und gesättigten Dampfes Berechnung von v in 3.3.5

24 22 2Zustandsverhalten reinerstoffe Bereiche für Zustandsberechnung im T,s-Diagramm T,s-Diagramm mit Bereichen für die Zustandsberechnung T T max Diagramm für Wasser in Beilage B2 pmax h = const p = const v = const v = const p = const kritischer Punkt v c reales Fluid T c inkompressible Flüssigkeit Flüssigkeit x = 0 h c c h = const p c x = 1 überhitzter Dampf ideales Gas T s (p) t' h'(p) v = const x= 0,2 v = const Nassdampf h"(p) Tt s t ' s' p s c s"(p) s t " x= 0,4 p = const x= 0,6 x= 0,8 v"(p) p = const v t " p t t" s Bereiche für Zustandsberechnung reales Fluid Berechnung von s in ideales Gas Berechnung von s in inkompressible (ideale) Flüssigkeit Berechnungvon s in Nassdampf einschl. siedender Flüssigkeit und gesättigten Dampfes Berechnung von s in 4.4.5

25 2Zustandsverhalten reinerstoffe Bereiche für Zustandsberechnung im h,s-diagramm h,s-diagramm mit Bereichen für die Zustandsberechnung h Ausschnitt in für Wasserdampf Anlage B1 für in Beilage Wasserdampf B1 p c v = const T max T = const v"(p) p = const h"(p) h " t h c h'(p) inkompressible Flüssigkeit p t,t t kritischer Punkt Flüssigkeit p max x = 0 v = const x = 0,4 c x = 0,8 überhitzter Dampf p,t s (p) Ts (p) p t,t t h ' t' t s t ' s ' ( p) s c s " ( p) s" t T c x = 1 v t " p t t" T t Bereiche für Zustandsberechnung reales Fluid Berechnungvon h in 4.3.2, s in ideales Gas Berechnung von h in 4.3.3, s in inkompressible (ideale) Flüssigkeit Berechnungvon h in 4.3.4, s in Nassdampf einschl. siedender Flüssigkeit und gesättigten Dampfes Berechnung von h in 4.3.5, s in 4.4.5

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Technische Thermodynamik

Technische Thermodynamik Hans-Joachim Kretzschmar Ingo Kraft Kleine Formelsammlung Technische Thermodynamik 4., aktualisierte Auflage Ergänzung im Web www.thermodynamik-formelsammlung.de Kapitel 13 Ideale Gasgemische Anhang B

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

2.3.4 Bereiche für Zustandsberechnung im h,s-diagramm...23. 2.3.3 Bereiche für Zustandsberechnung im T,s-Diagramm...22

2.3.4 Bereiche für Zustandsberechnung im h,s-diagramm...23. 2.3.3 Bereiche für Zustandsberechnung im T,s-Diagramm...22 Inhaltsverzeichnis 1 Thermodynamische Größen...11 1.1 Größenarten...11 1.2 Größen und Einheiten...12 1.3 Umrechnung von Einheiten...14 2 Zustandsverhalten reiner Stoffe...15 2.1 Einphasengebiete und Phasenübergänge...15

Mehr

Technische Thermodynamik

Technische Thermodynamik Hans-Joachim Kretzschmar Ingo Kraft Kleine Formelsammlung Technische Thermodynamik 4., aktualisierte Auflage Inhaltsverzeichnis 1 ThermodynamischeGrößen...11 1.1 Größenarten...11 1.2 Größen und Einheiten...12

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Technische Thermodynamik / Energielehre. 3. Band eines Kompendiums zur Lehrveranstaltung. Formelsammlung

Technische Thermodynamik / Energielehre. 3. Band eines Kompendiums zur Lehrveranstaltung. Formelsammlung Fakultät Maschinenwesen Institut für Energietechnik Technische Thermodynamik / Energielehre 3. Band eines Kompendiums zur Lehrveranstaltung Formelsammlung für das Grundstudium Maschinenbau, Verfahrenstechnik

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von Arbeitsfluiden in fortschrittlichen Energieumwandlungsprozessen

Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von Arbeitsfluiden in fortschrittlichen Energieumwandlungsprozessen Hochschule Zittau/Görlitz (FH) Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de H.-J. Kretzschmar, I. Stöcker, I. Jähne, D. Seibt, M. Kunick Berechnung der thermodynamischen Zustandsgrößen

Mehr

-10% -5% -3% -2% -1% -0,5% -0,1% 0,1% Temperatur [ C]

-10% -5% -3% -2% -1% -0,5% -0,1% 0,1% Temperatur [ C] Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von feuchten Verbrennungsgasen, feuchter Luft und Absorptionskältemittelgemischen in fortschrittlichen Energieumwandlungsprozessen

Mehr

Technische Thermodynamik. FB Maschinenwesen. SolvayEXL Version für Studierende

Technische Thermodynamik. FB Maschinenwesen. SolvayEXL Version für Studierende Programmbibliothek für thermophysikalische Stoffdaten von SOLKANE Kältemitteln SolvayEXL Version für Studierende Prof. Dr.-Ing. habil. H.-J. Kretzschmar Dr.-Ing. I. Stöcker Dipl.-Inf. I. Jähne Dipl.-Ing.

Mehr

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen 1. Allgemeine Grundlagen... 1 1.1 Energie-undStoffumwandlungen... 1 1.1.1 Energieumwandlungen... 2 1.1.2 Stoffumwandlungen... 6 1.1.3 Energie- und Stoffumwandlungen in technischen Prozessen... 9 1.1.4

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Titelei_Breidenbach.fm Seite IX Dienstag, 26. November 2002 1:19 13. Inhaltsverzeichnis. Cyan Prozeß 15,0 150,0 LPI

Titelei_Breidenbach.fm Seite IX Dienstag, 26. November 2002 1:19 13. Inhaltsverzeichnis. Cyan Prozeß 15,0 150,0 LPI Titelei_Breidenbach.fm Seite IX Dienstag,. November 00 : 0 Cyan Prozeß,0,0 LPI Titelei_Breidenbach.fm Seite IX Dienstag,. November 00 : IX 0 Hinweise für die Benutzung des Buches.................... Warum

Mehr

Stoffwertprogrammbibliothek für Ammoniak NH 3. FluidMAT

Stoffwertprogrammbibliothek für Ammoniak NH 3. FluidMAT Fakultät MASCHINENWESEN Fachbereich TECHNISCHE THERMODYNAMIK Stoffwertprogrammbibliothek für Ammoniak NH 3 FluidMAT mit LibNH3 für Mathcad Version für Studierende Prof. Dr.- Ing. habil. H.-J. Kretzschmar

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences University of Applied Sciences Übungsaufgaben Technische Thermodynamik Wärmeübertragung Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH)

Mehr

Technische Thermodynamik. FB Maschinenwesen. LibButan_n FluidEXL Graphics. Stoffwertprogramm-Bibliothek für n-butan. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. LibButan_n FluidEXL Graphics. Stoffwertprogramm-Bibliothek für n-butan. University of Applied Sciences University of Applied Sciences Stoffwertprogramm-Bibliothek für n-butan LibButan_n FluidEXL Graphics Prof. Dr.-Ing. habil. H.-J. Kretzschmar Dr.-Ing. I. Stöcker Dipl.-Inf. I. Jähne Cand.-Ing. R. Krause

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN .6 EINHEITEN UND UMRECHNUNGSFAKTOREN Grundeinheiten des SI-Systems Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrischer Strom Ampere A Temperatur Kelvin K Lichtstärke Candela cd Umrechnungsfaktoren

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Hilfe. Wasserdampftafel und Prozesse Excel Makros. Version 1.19-10/2007. Josef BERTSCH Gesellschaft m.b.h & Co

Hilfe. Wasserdampftafel und Prozesse Excel Makros. Version 1.19-10/2007. Josef BERTSCH Gesellschaft m.b.h & Co Wasserdampftafel und Prozesse Excel Makros Hilfe Version 1.19-10/2007 Josef BERTSCH Gesellschaft m.b.h & Co Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Zentrale: A-6700 Bludenz, Herrengasse

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

Berechnung von ORC-Prozessen mit Kältemitteln

Berechnung von ORC-Prozessen mit Kältemitteln Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Berechnung von ORC-Prozessen mit Kältemitteln Diplomarbeit Christoph Wiesner Matr.-Nr.: 1858108 1. Betreuer: Prof.

Mehr

5. Entropie *), 2. Hauptsatz der Thermodynamik

5. Entropie *), 2. Hauptsatz der Thermodynamik 5. Entropie *), 2. Hauptsatz der Thermodynamik Was also ist Zeit? Wenn niemand mich danach fragt, weiß ich es; wenn ich es jemandem auf seine Frage hin erklären soll,, weiß ich es nicht zu sagen. Augustinus,

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Technische Thermodynamik. FB Maschinenwesen. LibFLUFT FluidEXL. Stoffwertprogramme für feuchte Luft. Version für Studierende

Technische Thermodynamik. FB Maschinenwesen. LibFLUFT FluidEXL. Stoffwertprogramme für feuchte Luft. Version für Studierende University of Applied Sciences Stoffwertprogramme für feuchte Luft LibFLUFT FluidEXL Version für Studierende Prof. Dr.-Ing. habil. H.-J. Kretzschmar Dr.-Ing. I. Stöcker Dipl.-Ing. (FH) K. Knobloch Dipl.-Inf.

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM In diesem Kapitel werden kurz einige wichtige Begriffe definiert. Ebenso wird das Beheizen von Anlagen mit Dampf im Vakuumbereich beschrieben. Im Sprachgebrauch

Mehr

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien Willkommen bienvenu welcome Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik Dipl.-Ing. Christian Backes backes@howatherm.de Dr.-Ing. Christoph Kaup

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Technische Thermodynamik. FB Maschinenwesen. FluidHP für HP 48

Technische Thermodynamik. FB Maschinenwesen. FluidHP für HP 48 University of Applied Sciences Stoffwertprogramme für die neue Industrie-Formulation IAPWS-IF97 von Wasser und Wasserdampf FluidHP für HP 48 Version für Studierende Prof. Dr.-Ing. habil. H.-J. Kretzschmar

Mehr

Thermodynamik II WS 2005/2006

Thermodynamik II WS 2005/2006 Thermodynamik II WS 2005/2006 Prof. Dr.-Ing. G. Wilhelms Aufgabensammlung Exergie/Anergie (EA) EA 1 - Exergie und Anergie der Enthalpie EA 2 - Exergie und Anergie der inneren Energie EA 3 - Exergie der

Mehr

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse Hochschule Zittau/Görlitz, Fakultät Maschinenwesen, Fachgebiet Technische Thermodynamik M. Kunick, H. J. Kretzschmar, U. Gampe Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben Kälte- und Wärmepumpentechnik. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben Kälte- und Wärmepumpentechnik. University of Applied Sciences University of Applied Sciences Übungsaufgaben Kälte- und Wärmepumpentechnik Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik 1 2 1 Kompressionskältemaschinen und -wärmepumpen

Mehr

Thermodynamik 2. Peter Junglas 27. 6. 2013

Thermodynamik 2. Peter Junglas 27. 6. 2013 Thermodynamik 2 Irreversible Prozesse Kreisprozesse des idealen Gases in der Anwendung Thermodynamisches Verhalten realer Stoffe Dampfkraftanlagen Aufgaben Anhang Peter Junglas 27. 6. 2013 1 Inhaltsverzeichnis

Mehr

Praxisleitfaden Projektmanagement

Praxisleitfaden Projektmanagement Joachim Drees Conny Lang Marita Schöps Praxisleitfaden Projektmanagement Tipps, Tools und Tricks aus der Praxis für die Praxis Joachim Drees / Conny Lang / Marita Schöps Praxisleitfaden Projektmanagement

Mehr

Technische Thermodynamik / Energielehre. 2. Band eines Kompendiums zur Lehrveranstaltung. Aufgabensammlung

Technische Thermodynamik / Energielehre. 2. Band eines Kompendiums zur Lehrveranstaltung. Aufgabensammlung Fakultät Maschinenwesen Institut für Energietechnik Technische Thermodynamik / Energielehre 2. Band eines Kompendiums zur Lehrveranstaltung Aufgabensammlung für das Grundstudium Maschinenbau, Verfahrenstechnik

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

Leseprobe. Thomas Hummel, Christian Malorny. Total Quality Management. Tipps für die Einführung. ISBN (Buch): 978-3-446-41609-3

Leseprobe. Thomas Hummel, Christian Malorny. Total Quality Management. Tipps für die Einführung. ISBN (Buch): 978-3-446-41609-3 Leseprobe Thomas Hummel, Christian Malorny Total Quality Management Tipps für die Einführung ISBN (Buch): 978-3-446-41609-3 ISBN (E-Book): 978-3-446-42813-3 Weitere Informationen oder Bestellungen unter

Mehr

Whittaker, Holtermann, Hänni / Einführung in die griechische Sprache

Whittaker, Holtermann, Hänni / Einführung in die griechische Sprache $ 8. Auflage Vandenhoeck & Ruprecht Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte

Mehr

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte)

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Wirtschaftlichkeitsbetrachtung Als Jungingenieur arbeiten Sie in einer mittleren Firma an der Auslegung eines neuen Produktionsprozesses. Bei der Planung haben Sie

Mehr

Formelsammlung Thermodynamik

Formelsammlung Thermodynamik Formelsammlung Thermodynamik Fachbereich Maschinenbau und Kunststofftechnik Hochschule Darmstadt Geschrieben von: Semester: Bastian Pfau WS 07/08 und SS 08 für TD1/TD2 Diese Formelsammlung ist im Rahmen

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Berechnungsprogramm für Feuchte Luft / Verbrennungsgas in Anlehnung an VDI 4670

Berechnungsprogramm für Feuchte Luft / Verbrennungsgas in Anlehnung an VDI 4670 Berechnungsprogramm für Feuchte Luft / Verbrennungsgas in Anlehnung an VDI 4670 Internet: www.technikexpertise.de Email: info@technikexpertise.de Prof. Dr.-Ing. Thomas Maurer 2011-1 - Inhaltsverzeichnis

Mehr

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Technische Thermodynamik. FB Maschinenwesen. LibIDGAS FluidEXL

Technische Thermodynamik. FB Maschinenwesen. LibIDGAS FluidEXL University of Applied Sciences Stoffwertprogramme für Gase und Gasgemische im Idealgaszustand nach der VDI-Richtlinie 4670 LibIDGAS FluidEXL Version für Studierende Prof. Dr.-Ing. habil. H.-J. Kretzschmar

Mehr

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group "CFD Steam Property Formulation"

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group CFD Steam Property Formulation M. Kunick, H. J. Kretzschmar Hochschule Zittau/Görlitz, Fachgebiet Technische Thermodynamik, Zittau Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task

Mehr

Technische Thermodynamik Vorlesungs- Rumpfmanuskript

Technische Thermodynamik Vorlesungs- Rumpfmanuskript Prof. Dr.- ing. Jens Jensen Hochschule Bremen (FH) Fachbereich 05 Maschinenbau Technische Thermodynamik Vorlesungs- Rumpfmanuskript Edition 02, März 2005 2 Vorwort Thermodynamik gilt insbesondere unter

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für HLKS-Fachpersonen

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für HLKS-Fachpersonen Der direkteste Weg zur richtigen Formel Die Formelsammlung für HLKS-Fachpersonen 1 Der direkteste Weg für alle HLKS-Fachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Stoffwertprogrammbibliothek für die Industrie-Formulation IAPWS-IF97 von Wasser und Wasserdampf

Stoffwertprogrammbibliothek für die Industrie-Formulation IAPWS-IF97 von Wasser und Wasserdampf Fachbereich MASCHINENWESEN Fachgebiet TECHNISCHE THERMODYNAMIK Stoffwertprogrammbibliothek für die Industrie-Formulation IAPWS-IF97 von Wasser und Wasserdampf FluidEXL Graphics LibIF97 für Excel Prof.

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Die schriftliche Arbeit

Die schriftliche Arbeit Die schriftliche Arbeit Von der Ideenfindung bis zur fertigen Arbeit Tipps zum Recherchieren in Bibliotheken, Datenbanken und im Internet Hinweise zum Gliedern, Zitieren und Gestalten Für Schule, Hochschule

Mehr

Thermodynamik I SS 2010

Thermodynamik I SS 2010 1 Thermodynamik I SS 2010 Prof. Dr.-Ing. G. Wilhelms Größen/Größengleichungen (GR) GR 1 - Größen, Größengleichungen Basisgrößen (BGR) BGR 1 - Masse, Stoffmenge BGR 2 - Länge, Längenausdehnung BGR 3 - Temperatur

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger Mag. Dipl.-Ing. Katharina Danzberger 1. Zielsetzung Im Rahmen der Übung sollen die Wärmebilanz und die Leistungszahl bzw. der COP (Coefficient Of Performance) der installierten n bestimmt und diskutiert

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Design for Six Sigma umsetzen POCKET POWER

Design for Six Sigma umsetzen POCKET POWER Design for Six Sigma umsetzen POCKET POWER Der Herausgeber Prof. Dr.-Ing. Gerd F. Kamiske, ehemals Leiter der Qualitätssicherung im Volkswagenwerk Wolfsburg und Universitätsprofessor für Quali - täts wissenschaft

Mehr

POCKET POWER. Change Management. 4. Auflage

POCKET POWER. Change Management. 4. Auflage POCKET POWER Change Management 4. Auflage Der Herausgeber Prof.Dr.-Ing. GerdF.Kamiske, ehemalsleiter der Qualitätssicherung im Volkswagenwerk Wolfsburg und Universitätsprofessor für Qualitätswissenschaft

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

DEUTSCHE NORM DIN EN ISO 6976

DEUTSCHE NORM DIN EN ISO 6976 DEUTSCHE NORM DIN EN ISO 6976 September 2005 X ICS 75.060 Erdgas Berechnung von Brenn- und Heizwert, Dichte, relativer Dichte und Wobbeindex aus der Zusammensetzung (ISO 6976:1995 + Corrigendum 1:1997

Mehr

Allgemeine Chemie WS 04/05

Allgemeine Chemie WS 04/05 Allgemeine Chemie WS 04/05 Vorlesung: Dienstag 8:30-10:00, Beginn 19. 10. 2004 Grüner Hörsaal D5104 Übungen: Mittwoch 8:30-9:00, Beginn 20. 10. 2004 Grüner Hörsaal D5104 Gez. Prof. A. J. Meixner für die

Mehr

Soziale Kompetenzen von Studierenden

Soziale Kompetenzen von Studierenden Soziale Kompetenzen von Studierenden RHOMBOS Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

3.3 Die Anwendung des 2. Hauptsatzes auf Energieumwandlungen: Exergie und Anergie

3.3 Die Anwendung des 2. Hauptsatzes auf Energieumwandlungen: Exergie und Anergie 150 3 Der 2. Hauptsatz der Thermodynamik 10 8 kpa Eis V Eis VI Eis VII 10 6 10 4 Eis II Eis III Flüssigkeit KP p 10 2 Eis I Schmelzdruck Dampfdruck Wasserdampf 10 0 Tripelpunkt 10 2 Sublimationsdruck 200

Mehr

Experimentalphysik Wintersemester 2015/2016 Bachelorstudiengang Chemie 1. Fachsemester

Experimentalphysik Wintersemester 2015/2016 Bachelorstudiengang Chemie 1. Fachsemester Experimentalphysik Wintersemester 2015/2016 Bachelorstudiengang Chemie 1. Fachsemester Vorlesung Mittwoch 08.30 10.00 GHS Physik Prof. A. Pöppl Seminar Gruppe 1 Dienstag 12.45 14.15 R 101 J. Kohlrautz

Mehr

VTG (Verfahrenstechnik Grundlagen)

VTG (Verfahrenstechnik Grundlagen) Modulhandbuch Modulbezeichnung: ggf. Kürzel 313 Naturwissenschaftliche Grundlagen verfahrenstechnischer Prozesse: VTG (Verfahrenstechnik Grundlagen) ggf. Untertitel ggf. Lehrveranstaltungen: Grundlagen

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Wärme Vorlesung. Prof. Dr. Hansjürg Leibundgut. Chair of Building Systems Prof. Hansjürg Leibundgut

Wärme Vorlesung. Prof. Dr. Hansjürg Leibundgut. Chair of Building Systems Prof. Hansjürg Leibundgut Chair of Building Systems Prof. Hansjürg Leibundgut Wärme Vorlesung Prof. Dr. Hansjürg Leibundgut / ITA Institute of Technology in Architecture Faculty of Architecture / ETH Zürich Temperatur, thermische

Mehr

Michael Schmidt. 1993-1997 Maschinenbaustudium, Fachrichtung Konstruktion, an der Hochschule für Technik und Wirtschaft des Saarlandes

Michael Schmidt. 1993-1997 Maschinenbaustudium, Fachrichtung Konstruktion, an der Hochschule für Technik und Wirtschaft des Saarlandes LEBENSLAUF Persönliche Daten Name Michael Schmidt Geburtsdatum 17. Mai 1970 Studium Juli 1997 Oktober 1997 Diplomarbeit: Prozesskostenanalyse und Optimierung der Verbindung Tür- Karosserie für MCC (Smart)

Mehr

Mensch und Technik. Berechnungen und Beispiele

Mensch und Technik. Berechnungen und Beispiele 1 Berechnungen und Beispiele Wärmekapazität Wird einem Stoff durch Erwärmen Energie zugeführt, so steigt deren Temperatur, dies ist stoffabhängig und der Temperaturanstieg ist proportional zur Wärmemenge:

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr