Kapitel 11. Rekursion

Größe: px
Ab Seite anzeigen:

Download "Kapitel 11. Rekursion"

Transkript

1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kapitel 11 Rekursio Rekursio 1

2 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Ziele Das Prizip der rekursive Berechugsvorschrift verstehe. was? Rekursive Methode i Java implemetiere köe. wie? Verschiedee Forme der Rekursio kee lere. welche Arte? Quicksort als rekursive Methode zur Sortierug eies Arrays formuliere köe ud verstehe. reales Beispiel? Rekursio 2

3 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Rekursive Algorithme ud Methode Ei Algorithmus ist rekursiv, we i seier (edliche) Beschreibug derselbe Algorithmus wieder aufgerufe wird. Der Algorithmus ist da selbstbezüglich defiiert. Rekursive Algorithme köe i Java durch rekursive Methode implemetiert werde. Eie Methode ist rekursiv, we i ihrem Rumpf (Aweisugsteil) die Methode selbst wieder aufgerufe wird. Rekursio

4 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Erläuteruge zu Folie Beispiel: Treppe hochgehe We keie Stufe mehr, da fertig. Asoste (d.h. es gibt och Stufe): steige eie Stufe hoch ud steige de Rest der Treppe hoch (d.h. wede de gleiche Algorithmus auf die kürzere Treppe a) Allgemeies Prizip: für eie eifache Fall weiß ma das Ergebis sofort -> Basisfall Asoste: Idee 1: Mache ei bissche Arbeit, um das Problem zu verkleier, ud wede de Algorithmus auf das kleiere Problem a -> Rekursio (d.h. eie rekursive Vorschrift verkleiert das Problem so lage, bis der Basisfall erreicht wird ud die Rekursio beedet wird bzw. termiiert) Idee 2: Nimm a, dass das Ergebis für ei kleieres Problem scho bekat ist, ud bereche daraus das Gesamtergebis Rekursio 4

5 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Rekursive Defiitio der Fakultät: 0! = 1 Die Fakultätsfuktio! = * (-1)! für alle atürliche Zahle 1 Rekursive Methode: public static it fact(it ) { } if ( == 0) retur 1; else retur * fact(-1); z.b.! = *2*1 =>! = * (-1) * * 1 z.b.! = *2! = *(2*1!) = *(2*(1*0!)) = *(2*(1*1)) = = 6 rekursiver Aufruf! (-1)! z.b. fact() = *fact(2) = *(2*fact(1)) = *(2*(1*fact(0)) = = *(2*(1*1)) = *(2*1) = *2 = 6 schrittweise (pro rek. Aufruf) ausmultipliziere Rekursio 5

6 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Auswertug rekursiver Methodeaufrufe Bei der Auswertug wird ei Stack für die Zwischeergebisse der geschachtelte Methodeaufrufe aufgebaut, der am Ede gemäß des Rekursiosschemas rückwärts abgearbeitet wird. Beispiel: it k = fact(); Speicherplatz für de Aufruf fact() k Parameter Speicherplatz für lokale Variable Parameter if (==0) retur 1; else retur *fact(-1); Speicherplatz für rekursive Aufruf fact(2) fact() k 2 *fact(2) s 0 s 1 Rekursio 6

7 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Aufbau des Stacks zur Berechug vo fact(2) Speicherplatz für rekursive Aufruf Parameter fact(1) fact(2) 2 if (==0) retur 1; else retur *fact(-1); fact(2) 1 2*fact(1) 2 fact() *fact(2) fact() *fact(2) k k s 1 s 2 Rekursio 7

8 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 fact(1) fact(2) fact() k Aufbau des Stacks zur Berechug vo fact(1) 1 2*fact(1) 2 *fact(2) Parameter if (==0) retur 1; else retur *fact(-1); Speicherplatz für rekursive Aufruf fact(0) fact(1) fact(2) fact() k 0 1*fact(0) 1 2*fact(1) 2 *fact(2) s 2 s Rekursio 8

9 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Berechug vo fact(0) Speicherplatz für Basisfall fact(0) 0 if (==0) retur 1; else retur *fact(-1); fact(0) 1 0 fact(1) 1*fact(0) fact(1) 1*fact(0) 1 1 fact(2) 2*fact(1) fact(2) 2*fact(1) 2 2 fact() *fact(2) fact() *fact(2) k k s s 4 Rekursio 9

10 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Berechug vo fact(1) ud Abbau des Stacks fact(0) 1 0 fact(1) 1*fact(0) 1 fact(2) 2*fact(1) 2 fact() *fact(2) k schrittweise ausmultipliziere fact(1)=1*fact(0); Speicherplatz für rekursive Aufruf fact(1) 1 1 fact(2) 2*fact(1) 2 fact() *fact(2) k s 4 s 5 Rekursio 10

11 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Berechug vo fact(2) ud Abbau des Stacks fact(1) fact(2) fact() k 1 1 2*fact(1) 2 *fact(2) fact(2)=2*fact(1); Speicherplatz für rekursive Aufruf fact(2) 2 2 fact() *fact(2) k s 5 s 6 Rekursio 11

12 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Berechug vo fact(), Abbau des Stacks ud Zuweisug des Ergebisses fact(2) fact() k 2 2 *fact(2) fact()=*fact(2); Speicherplatz für rekursive Aufruf fact() 6 k s 6 s 7 fact() 6 Speicherplatz für lokale Variable k k = fact(); k 6 s 7 s 8 Rekursio 12

13 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Termiierug Der Aufruf eier rekursive Methode termiiert, we ach edlich viele rekursive Aufrufe ei Abbruchfall erreicht wird. Beispiel: wichtig: sost edlose Berechug Für alle atürliche Zahle 0 termiiert der Methodeaufruf fact(). Für alle egative gaze Zahle < 0 termiiert der Methodeaufruf fact()icht. besser: static it fact(it ) { if(<0) retur -1; else if (==0) else } Rekursio 1

14 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Rekursio ud Iteratio (1) Zu jedem rekursive Algorithmus gibt es eie sematisch äquivalete iterative Algorithmus, d.h. eie Algorithmus mit Wiederholugsaweisuge, der dasselbe Problem löst. Beispiel: static it factiterativ(it ) { } Whl: 0! = 1! = *(-1)* *1 it result = 1; while (!= 0) { result = result * ; --; } retur result; z.b. factiterativ() 1 result für >= 0 gilt: factiterativ() = fact() Rekursio

15 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Rekursio ud Iteratio (2) Rekursive Algorithme sid häufig elegater ud übersichtlicher als iterative Lösuge. Gute Compiler köe aus rekursive Programme auch effiziete Code erzeuge; trotzdem sid iterative Programme meist scheller als rekursive. Für mache Problemstelluge ka es wesetlich eifacher sei eie rekursive Algorithmus azugebe als eie iterative. (z.b. Türme vo Haoi ; vgl. Übuge) siehe auch ZÜ (Lotto) Rekursio 15

16 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Fiboacci-Zahle: rekursive Defiitio ud Methode Rekursive Defiitio der Fiboacci-Zahle: fib(0) = 1, fib(1) = 1, fib() = fib(-2) + fib(-1) für alle atürliche Zahle 2 Rekursive Methode: static it fib(it ) { if ( <= 1) retur 1; else retur fib(-2) + fib(-1); } Deutug: fib() = Azahl der eu geboree Kaiche im Jahr. Aahme: Im Jahr 0 wird ei Paar gebore. -> fib(0) = 1 Im Jahr 1 hat dieses Paar ei eues Paar gebore. I jedem Jahr 2 habe die ei- ud zweijährige Paare jeweils ei eues Paar gebore -> fib() = fib(-1) + fib(-2) -> fib(1) = 1 Rekursio 16

17 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kaskade rekursiver Aufrufe fib() fib(5) 8 fib(4) fib(1) fib(2) fib(2) fib() fib(0) fib(1) fib(0) fib(1) fib(1) fib(2) Die Zeit- ud die Speicherplatzkomplexitäte der rekursive Fiboacci-Fuktio sid i jedem Fall expoetiell, i O(2 ). Warum? Wir müsse -1 Schritte mache (siehe rechter Ast); i jedem Schritt wird die Azahl der rekursive Aufrufe verdoppelt. fib(0) fib(1) 1 1 Rekursio 17 5

18 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Fiboacci-Zahle: Iterative Methode static it fibiterativ(it ) { it f0 = 1; fib(0) it f1 = 1; fib(1) } it f = 1; for (it i = 2; i <= ; i++) { f = f0 + f1; fib() = fib(-2) + fib(-1) f0 = f1; f0 wird fib(-1) f1 = f; f1 wird fib() } retur f; eie for-schleife Die Zeitkomplexität der iterative Methode ist liear, d.h. i O(). Die Speicherplatzkomplexität der iterative Methode ist kostat, d.h. i O(1). feste Azahl vo lokale Variable Rekursio 18

19 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Forme der Rekursio Lieare Rekursio: I jedem Zweig (der Falluterscheidug) kommt höchstes ei rekursiver Aufruf vor, z.b. Fakultätsfuktio fact. Kaskadeartige Rekursio: Mehrere rekursive Aufrufe stehe ebeeiader ud sid durch Operatioe verküpft, z.b. Fiboacci-Zahle fib. Verschachtelte Rekursio: Rekursive Aufrufe komme i Parameter vo rekursive Aufrufe vor, z.b. Ackerma-Fuktio. d.h. geschachtelte rekursiveaufrufe Rekursio 19

20 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Die Ackerma-Fuktio static it ack(it, it m) { if ( == 0) retur m + 1; else if (m == 0) retur ack( - 1, 1); else retur ack( - 1, ack(, m - 1)); } Schachtelug Die Ackerma-Fuktio ist eie Fuktio mit expoetieller Zeitkomplexität, die extrem schell wächst. Sie ist das klassische Beispiel für eie berechebare, termiierede Fuktio, die icht primitiv-rekursiv ist (erfude 1926 vo Ackerma). Beispiele: ack(4,0) = 1 ack(4,1) = 655 ack(4,2) = (eie Zahl mit Dezimalstelle). ack(4,4) > Azahl der Atome im Uiversum Rekursio 20

21 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Quicksort Eier der schellste Sortieralgorithme (vo C.A.R. Hoare, 1960). Idee: Falls das zu sortierede Array midestes zwei Elemete hat: 1. Wähle irgedei Elemet aus dem Array als Pivot ( Dreh- ud Agelpukt ), z.b. das erste Elemet. 2. Partitioiere das Array i eie like ud eie rechte Teil, so dass alle Elemete im like Teil kleier-gleich dem Pivot sid ud alle Elemete im rechte Teil größer-gleich dem Pivot sid.. Wede das Verfahre rekursiv auf die beide Teilarrays a. Der Quicksort-Algorithmus folgt eiem ähliche Lösugsasatz wie die biäre Suche. Diese Lösugsasatz et ma Divide-ad-Coquer ( Teile ud herrsche ). Rekursio 21

22 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Quicksort: Beispiel Pivot = Partitioierug geauer auf Folie Sortierug (rekursiv) Sortierug (rekursiv) geauer auf Folie Rekursio 22

23 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Quicksort i Java static void quicksort(double[] a) { qsort(a, 0, a.legth - 1); } // Sortiert de Teilbereich a[from]...a[to] vo a. static void qsort(double[] a, it from, it to) { if (from < to) { //mehr als ei Elemet zu sortiere double pivot = a[from]; //waehle erstes Elemet als Pivot //Partitioierug ud Rückgabe des Grezidex it gidx = partitio(a, from, to, pivot); //rekursiver Aufruf für de like Teilarray geauer auf Folie qsort(a, from, gidx); //rekursiver Aufruf für de rechte Teilarray qsort(a, gidx + 1, to); } } Rekursio 2

24 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Partitioierug: Vorgehesweise Laufe vo der utere ud der obere Arraygreze mit Idizes i ud j ach ie ud vertausche icht passede Elemete a[i] ud a[j] bis sich die Idizes treffe oder überkreuzt habe. Der zuletzt erreichte Idex j wird als Grezidex der Partitioierug zurückgegebe. Vo ute kommed sid Elemete icht passed, we sie größer-gleich dem Pivot sid. Vo obe kommed sid Elemete icht passed, we sie kleier-gleich dem Pivot sid. Bemerkug: Gegebeefalls werde auch gleiche Elemete vertauscht. Dies ist aus techische Grüde ötig, damit der Idex j so stoppt, dass der letzte Wert vo j immer der richtige Grezidex ist. Rekursio 24

25 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Pivot = 65 Partitioierug: Beispiel icht passed a[i] a[j] 65 i j a[i] a[j] 65 i i j j icht passed i j Grezidex j Rekursio 25 i Idices überkreuzt

26 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Partitioierug i Java static it partitio(double[] a, it from, it to, double pivot) { it i = from - 1; it j = to + 1; while (i < j) { i++; //aechste Startpositio vo liks //vo liks ach ie laufe solage Elemete kleier als Pivot while (a[i] < pivot) i++; j--; //aechste Startpositio vo rechts //vo rechts ach ie laufe solage Elemete größer als Pivot while (pivot < a[j]) j--; if (i < j) { //vertausche a[i] ud a[j] double temp = a[i]; a[i] = a[j]; a[j] = temp; } } //Ede while falls icht überkreuzt solage och icht überkreuzt retur j; //Rückgabe des Grezidex } Rekursio 26

27 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Partitioierugshierarchie des Quicksort Partitioierug geauer auf Folie Partitioierug Partitioierug Partitioierug Partitioierug Rekursio 27

28 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Zeitkomplexität vo Quicksort (1) Beispiel: Das Array vo obe hat die Läge 6. Die Hierarchie der Partitioieruge stellt eie Baum dar mit Etage, wobei = log 2 (6) + 1. jedes Mal i etwa halbiert Alle Partitioieruge eier Etage beötige zusamme maximal c * 6 Schritte (mit eier Kostate c). jedes Elemet im Array aschaue Folglich ist die Zeitkomplexität i diesem Fall durch 6 * log 2 (6) beschräkt. abhägig vom gewählte Pivot Allgemei: We ei Array der Läge immer wieder i zwei etwa gleich große Teile aufgeteilt wird, da ist die Azahl der Partitioierugs-Etage durch log 2 () beschräkt. Die Azahl der Schritte pro Etage ist durch beschräkt ud damit die gesamte Zeitkomplexität i diesem Fall durch * log 2 (). Ma ka zeige, dass die Zeitkomplexität des Quicksort im durchschittliche Fall vo der Ordug * log 2 () ist. Rekursio 28

29 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 d.h. Array wird icht halbiert Zeitkomplexität des Quicksort (2) Im schlechteste Fall ist die Zeitkomplexität des Quicksort quadratisch, d.h. vo der Ordug 2. Dieser Fall tritt z.b. ei, we das Array scho sortiert ist. Etage ud Schritte pro Etage Partitioierug Partitioierug Partitioierug Partitioierug Partitioierug Rekursio 29

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Merge-Sort und Binäres Suchen

Merge-Sort und Binäres Suchen Merge-Sort ud Biäres Suche Ei Bericht vo Daiel Haeh Mediziische Iformatik, Prosemiar WS 05/06 Ihaltsverzeichis I. Eileitug 3 II. III. IV. i. Das Divide-ad-coquer -Verfahre Merge-Sort i. Eileitug ii. Fuktiosweise

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden Byzatiische Eiigug im Full-Iformatio-Modell i O(log ) Rude Martia Hüllma Uiversität Paderbor (martiah@upb.de) Zusammefassug. Byzatiische Eiigug stellt ei grudlegedes Problem im Bereich verteilter Systeme

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Das Rätsel mit der Balkenwaage

Das Rätsel mit der Balkenwaage Das Rätsel mit der Balkewaage Mathematische Abhadlug über ei Iformatiosproblem 6. Juli 998:. Fassug 6. Jauar 999: 2. Fassug 24. Jui 2005: Überarbeitug Marti Abbühl, Thu, CH balkewaage@abbuehl.et 0. Ihalt

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

HG K J = +. Die Lösung

HG K J = +. Die Lösung 5- Nullstelleverfahre, Löse vo Gleichuge 5 Numerische Lösugsverfahre für Gleichuge Numerische Verfahre köe auch Gleichuge ud Gleichugssysteme löse, für die keie aalytische Lösuge bekat sid. Im Regelfall

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

3.2 Die Schrödinger-Gleichung

3.2 Die Schrödinger-Gleichung 3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Die Funktion ist also periodisch mit der Periode 2π. Dabei sind auch Sprungstellen (Sägezahnkurve) (a k cos(kx) + b k sin(kx)) + 1 2 a 0.

Die Funktion ist also periodisch mit der Periode 2π. Dabei sind auch Sprungstellen (Sägezahnkurve) (a k cos(kx) + b k sin(kx)) + 1 2 a 0. Kapitel 7 Fourier-Trasformatio 7.1 Eiführug Diet der Maipulatio vo Date, Darstellug vo Date, beste Möglichkeit. Vgl. Ortsdarstellug, Impulsdarstellug i der QM Utersuchug vo Messdate auf Periodizität, sog.

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Seminar Derivate Finanzprodukte aus mathematischer Sicht Up-and-out Call Option

Seminar Derivate Finanzprodukte aus mathematischer Sicht Up-and-out Call Option Semiar Derivate Fiazprodukte aus mathematischer Sicht Up-ad-out Call Optio UIVERSITÄT TRIER Fachbereich IV Wirtschaftswisseschafte / Mathematik Witersemester 22/3 Leiter: Prof. Dr. H. Luschgy Eigereicht

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Einführung in die mathematische Statistik

Einführung in die mathematische Statistik Kapitel 7 Eiführug i die mathematische Statistik 7.1 Statistische Modellierug Bei der Modellierug eies Zufallsexperimets besteht oft Usicherheit darüber, welche W-Verteilug auf der Ergebismege adäquat

Mehr

Sortierverfahren. Sortierverfahren für eindimensionale Arrays

Sortierverfahren. Sortierverfahren für eindimensionale Arrays Sortierverfahren Sortierverfahren Sortieren durch Einfügen Sortieren durch Auswählen Sortieren durch Vertauschen (Bubblesort) Quicksort Sortierverfahren für eindimensionale Arrays 1 Gegeben ist eine beliebige

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Organisatorische Strukturen und Stammdaten in ERP-Systemen

Organisatorische Strukturen und Stammdaten in ERP-Systemen Attributame Beschreibug Name des Lerobjekts Autor/e Zielgruppe Vorwisse Lerziel Beschreibug Dauer der Bearbeitug Keywords Orgaisatorische Strukture ud Stammdate i ERP-Systeme FH Vorarlberg: Gasser Wirtschaftsiformatik

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Kapitel 4.1: Dr. Jörg Franke. Technische Universität Dortmund. Sommersemester 2011

Kapitel 4.1: Dr. Jörg Franke. Technische Universität Dortmund. Sommersemester 2011 1 Diese Folie diee der Ergäzug des Vorlesugsstoffes im Rahme der Vor- ud Nachbereitug. Sie stelle kei Skript dar; es wird keie Gewähr für Richtigkeit ud/oder Vollstädigkeit überomme. Kapitel 4.1: Öffetliche

Mehr

Bereichsleitung Fitness und GroupFitness (IST)

Bereichsleitung Fitness und GroupFitness (IST) Leseprobe Bereichsleitug Fitess ud GroupFitess (IST) Studieheft Persoalmaagemet Autori Corelia Trikaus Corelia Trikaus ist Diplom-Ökoomi ud arbeitet als wisseschaftliche ud pädagogische Mitarbeiteri bei

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

CampusSourceEngine HISLSF

CampusSourceEngine HISLSF Kopplug Hochschuliformatiossysteme ud elearig CampusSourceEgie Dipl.-Iform. Christof Veltma Uiversität Dortmud leartec, Karlsruhe, 14.02.2006 - Hochschuliformatiossysteme allgemei: Iformatiossysteme ud

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1. Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge

Mehr

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen:

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen: - 2 - - 22-2. Datebaketwurf mittels Etity-Relatioship - Modell (ERM) Ursprug: Che 976, heute viele Variate Bedeutug: grafisches Hilfsmittel zur sematische Modellierug der Diskurswelt (Awedugsgebiet) (d.h.

Mehr

CRM Kunden- und Lieferantenmanagement

CRM Kunden- und Lieferantenmanagement CRM Kude- ud Lieferatemaagemet Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Schelle ud eifache Ersteirichtug... 5 3.2 Zetrales Kotakterfassugsfester...

Mehr

PageRank: Wie Google funktioniert

PageRank: Wie Google funktioniert PageRa: Wie Google futioiert Außermathematische Aweuge im Mathematiuterricht WS 0/ Fraz Embacher, Uiversität Wie Das Erfolgsrezept er Suchmaschie vo Google lag zuächst i er überzeugee Reihug vo reffer.

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr