Theoretische Chemie (TC II) Computational Chemistry

Größe: px
Ab Seite anzeigen:

Download "Theoretische Chemie (TC II) Computational Chemistry"

Transkript

1 Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung): Fr Computing Center (BCC) Web site: 1

2 Mehrelektronenatome H-Atom (exakt lösbares Referenzsystem) Mehrelektronenatome 1. Hamilton-Operator 2. einfache Orbitalnäherung + Aufbauprinzip 3. Orbitalnäherung mit Abschirmung 4. verbesserte 1-Elektronenfunktionen: STO s (Slater Type Orbitals) 5. Störungstheorie 6. Hartree-Fock-Orbitale und Energien 2

3 Störungstheorie: explizite Betrachtung der Elektron-Elektron-WW Berechnung der Gesamtenergie als Summe: H = H (0) + H (1) Beispiel Helium: H (1) = Ψ(1, 2) V ee Ψ(1, 2) V ee = e2 1 4πɛ 0 r 12 Ψ(1, 2) = Produkt von Wasserstofforbitalen, oder antisymmetrisiertes Produkt (Slaterdeterminante) 3

4 Helium, Forts. Ĥ = h2 2m e ( ) + = Ĥ 1 + Ĥ 2 + ˆV 12 e2 4πɛ 0 j ff r 1 r 2 r 12 ˆT 1 + ˆT 2 + ˆV 1n + ˆV 2n + ˆV 12 Betrachte ˆV 12 zunächst als Störung Ĥ = Ĥ (0) + Ĥ (1) mit Ĥ (0) = Ĥ 1 + Ĥ 2 wobei Ĥ i = ˆT i + ˆV 1i und Ĥ (1) = ˆV 12 berechne Energiekorrekturen als Matrixelemente des Störoperators in der Basis der ungestörten Funktionen: E (1) = ψ (0) Ĥ (1) ψ (0) 4

5 Modell nullter Ordnung: Unabhängige Teilchen Annahme: Ĥ = Ĥ 1 + Ĥ 2 Lösung durch Separationsansatz: Ψ(r 1, r 2 ) = ψ 1 (r 1 )ψ 2 (r 2 ) Einsetzen in die Schrödingergleichung ergibt: (Ĥ 1 + Ĥ 2 )ψ 1 (r 1 )ψ 2 (r 2 ) = Eψ 1 (r 1 )ψ 2 (r 2 ) oder Ĥ 1 ψ 1 ψ 1 + Ĥ2ψ 2 ψ 2 = E d.h. jeder Quotient muss einzeln konstant sein: Ĥ 1 ψ 1 ψ 1 + Ĥ2ψ 2 ψ 2 = E 1 + E 2 so dass Ĥ 1 ψ 1 = E 1 ψ 1 und Ĥ 2 ψ 2 = E 2 ψ 2 E = E 1 + E 2 5

6 Ungestörte Eigenfunktionen von H (0) : Minimal-Basis ψ (0) = n 1 l 1 m 1 n 2 l 2 m 2 n 1 l 1 m 1 ; n 2 l 2 m 2 Ortsdarstellung: ψ (0) (r 1, r 2 ) = ψ n1 l 1 m 1 (r 1 )ψ n2 l 2 m 2 (r 2 ) j ff Eigenwerte: E (0) = m ee 4 2 h 2 1 n 2 1 Betrachte den Grundzustand 1s 2 : + 1 n 2 2 ψ (0) 1s1s = n 1 = 1, l 1 = 0, m 1 = 0; n 2 = 1, l 2 = 0, m 2 = 0 a(1)a(2) Nun betrachte einen angeregten Zustand, z.b. 1s2s: ψ (0) 1s2s = n 1 = 1, l 1 = 0, m 1 = 0; n 2 = 2, l 2 = 0, m 2 = 0 a(1)b(2) und die dazu symmetrische Wellenfunktion: ψ (0) 2s1s = n 1 = 2, l 1 = 0, m 1 = 0; n 2 = 1, l 2 = 0, m 2 = 0 b(1)a(2) berechne die Matrixelemente der Störung Ĥ (1) = ˆV 12 in dieser Basis. Beachte, dass 6 die Störung die beiden Zustände a(1)b(2) und b(1)a(2) koppeln kann

7 Helium, cont d In der Basis der Zustände a(1)a(2), a(1)b(2) und b(1)a(2) lautet die Matrixdarstellung des Hamilton-Operators wie folgt: H (0) + H (1) = 2E a E a + E b E a + E b mit den Coulombintegralen J, z.b.: 1 A + J ab,ab = a(1)b(2) Ĥ (1) a(1)b(2) e 2 Z = dr 1 dr 2 ψ 100 4πɛ (r 1)ψ 200 (r 2) 1 ψ 100 (r 1 )ψ 200 (r 2 ) 0 r 12 und dem Austauschintegral K: J aa,aa J ab,ab K ab,ba 0 K ba,ab J ba,ba 1 A K ab,ba = a(1)b(2) Ĥ (1) b(1)a(2) e 2 Z = dr 1 dr 2 ψ 100 4πɛ (r 1)ψ 200 (r 2) 1 ψ 200 (r 1 )ψ 100 (r 2 ) 0 r 12 7

8 Lösung via Säkulardeterminante: H E1 = 0 Helium, cont d Eigenwerte: E 0 = 2E a ; E ± = E a + E b + J ± K Eigenfunktionen: ψ 0 = a(1)a(2) q ψ ± = 1 2 a(1)b(2) ± b(1)a(2) die beiden Linearkombinationen sind symmetrisch bzw. antisymmetrisch bzgl. des Austauschs von Elektron 1 vs. 2 «Was ist die Wahrscheinlichkeit, die beiden Elektronen an einem Ort zu finden? (s. Skizze rechts) 8

9 z.b. Grundzustand Helium: Slater-Determinanten Ψ(1, 2) = ψ 1s (r 1 )ψ 1s (r 2 ){ 1 2 (α 1 β 2 β 1 α 2 )} = 1 2 ψ 1s (r 1 )α 1 ψ 1s (r 1 )β 1 ψ 1s (r 2 )α 2 ψ 1s (r 2 )β ψ α 1s (1) ψβ 1s (1) ψ α 1s (2) ψβ 1s (2) ψ1s α (1) etc.: Spinorbitale Vertauschung der Elektronen führt zum Austausch zweier Zeilen und damit zur Vorzeichenänderung Werden die Elektronen als identisch angenommen, so sind die beiden Zeilen gleich und die Determinante verschwindet 9

10 Singulett- und Triplettzustände 4 Kombinationen für zwei Spins 1/2: Gesamtspin S = 1: Triplett) α 1 α 2 (1/ 2)( α 1 β 2 + β 2 α 1 ) β 1 β 2 Gesamtspin S = 0: Singulett) (1/ 2)( α 1 β 2 β 2 α 1 ) NB: Multiplizität = 2 S

11 Helium angeregter Zustand ψ 1 (1, 2) = 1 1s(1)α(1) 2s(1)β(1) 2 1s(2)α(2) 2s(2)β(2) ψ 2 (1, 2) = 1 1s(1)α(1) 2s(1)α(1) 2 1s(2)α(2) 2s(2)α(2) ψ 3 (1, 2) = 1 1s(1)β(1) 2s(1)β(1) 2 1s(2)β(2) 2s(2)β(2) ψ 4 (1, 2) = 1 1s(1)β(1) 2s(1)α(1) 2 1s(2)β(2) 2s(2)α(2) 11

12 Ortho- und Para-Helium Ortho-Helium: antisymmetrischer Raumanteil, symmetrischer Spinanteil (Triplett) Para-Helium: symmetrischer Raumanteil, antisymmetrischer Spinanteil (Singulett) 12

13 Hartree-Fock-Methode Startpunkt: Schrödingergleichung für N Elektronen, 1 Kern: HΨ = EΨ H = NX i=1 h 2 2m e 2 i e2 4πɛ 0 j N X i=1 Z r ir NX i=1 NX j>i 1 r ij ff = X i h i + e2 4πɛ 0 NX i=1 NX j>i 1 r ij Ψ ist als Slaterdeterminante gegeben: Ψ(1, 2,... N) = 1 N φ a (1) φ b (1)... φ z (1) φ a (2) φ b (2)... φ z (2) φ a (N) φ b (N)... φ z (N) 1 N φa (1) φ b (2)... φ z (N) 13

14 Hartree-Fock-Methode, Forts. Welche Spinorbitale liefern die niedrigste ( beste ) Grundzustandsenergie? Variationsproblem, i.e., der Energieerwartungswert soll minimiert werden: δe = 0 wobei E = Ψ H Ψ = Ψ X i h i + e2 4πɛ 0 NX i=1 NX j>i 1 r ij Ψ Variation liefert eine effektive Schrödingergleichung (= Hartree- Fock-Gleichung) für jedes Spinorbital 14

15 NB. Variationstheorie für den Grundzustand Die Grundzustands(GZ)-Energie, die mit der genäherten Wellenfunktion ψ test assoziiert ist, liegt immer oberhalb der exakten GZ-Energie da die Energien, die wir bereits erhalten haben, keine Energieeigenwerte sind, müssen wir sie als Erwartungswerte schreiben: E test = ψ test Ĥ ψ test ψ test ψ test ψ test lässt sich als Linearkombination der Eigenfunktionen ψ n schreiben: ψ test = X n a n ψ n wir betrachten nun die Differenz E test E 0 dass die Testfunktion normiert ist): E test E 0 = ψ test Ĥ E 0 ψ test = X n und erhalten (unter der Annahme, X a n a n ψ n Ĥ E 0 ψ n n 15

16 = X n = X n X a n a n (E n E 0) ψ n ψ n n X a n a n(e n E 0 ) 0 n Daher gilt, dass ψ test H E 0 ψ test 0 E test E 0 Daraus folgt, dass Minimierung der Variationslösung das beste variationelle Resultat ergibt 16

17 Die Hartree-Fock-Gleichungen { h 1 + r } (2J r K r ) φ s (1) = ɛ s φ s (1) mit den mean-field Operatoren J r und K r : J r φ s (1) = e2 4πɛ 0 jz dτ 2 φ r (2)( 1 ff )φ r (2) φ s (1) r 12 Coulomb-Operator K r φ s (1) = e2 4πɛ 0 jz dτ 2 φ r (2)( 1 ff )φ s (2) φ r (1) r 12 Austausch-Operator die HF-Gleichung für φ s hängt von allen anderen Spinorbitalen φ r ab! 17

18 Coulomb/Austausch-Operatoren vs. -Integrale Coulomb-Integral: J sr = Z dτ 1 φ s (1)J rφ s (1) = Z jz dτ 1 φ e2 s (1) 4πɛ 0 dτ 2 φ r (2)( 1 ff )φ r (2) φ s (1) r 12 Austausch-Integral: K sr = Z dτ 1 φ s (1)K rφ s (1) = Z jz dτ 1 φ e2 s (1) 4πɛ 0 dτ 2 φ r (2)( 1 ff )φ s (2) φ r (1) r 12 Orbitalenergie: ɛ s = Z dτ 1 φ s (1)h 1φ s (1) + X r (2J sr K sr ) 18

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

Elektronenstrukturrechungen

Elektronenstrukturrechungen Seminar zur Theorie der Atome, Kerne und kondensierten Materie WS 13/14 Elektronenstrukturrechungen Basissätze und Elektronenkorrelation Bastian Schäfer 9.1.014 Inhaltsverzeichnis 1 Einleitung 1 Lösung

Mehr

4.2) Mehrelektronenatome

4.2) Mehrelektronenatome 4.) Mehrelektronenatome Elektronen besetzen Zustände mit verschiedenen Kombinationen von n,l,m,s Reihenfolge der Füllung bestimmt durch Wechselwirkung zwischen V ( r) und dem Zentrifugalpotential l (l+1)/r

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 3 Mehrelektronensysteme Markus Perner, Rolf Ripszam, Christoph Kastl 17.02.2010 1 Das Heliumatom Das Heliumatom als einfachstes Mehrelektronensystem besteht aus

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Atome mit mehreren Elektronen

Atome mit mehreren Elektronen Atome mit mehreren Elektronen In diesem Kapitel wollen wir uns in die reale Welt stürzen und Atome mit mehr als einem Elektron untersuchen. Schließlich besteht sie Welt nicht nur aus Wasserstoff. Die wesentlichen

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Electronic Structure of the Periodic Table. Schriftliche Fassung des Seminarvortrags gehalten am von Angnis Schmidt-May

Electronic Structure of the Periodic Table. Schriftliche Fassung des Seminarvortrags gehalten am von Angnis Schmidt-May Electronic Structure of the Periodic Table Schriftliche Fassung des Seminarvortrags gehalten am 18.4.008 von Angnis Schmidt-May Inhaltsverzeichnis 1 Einleitung 1 Das Pauli-Verbot 1 3 Der Aufbau der Elektronenhülle

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 4. Vorlesung Mehrelektronensysteme Felix Bischoff, Christoph Kastl, Max v. Vopelius 27.08.2009 1 Atome mit mehreren Elektronen 1.1 Das Heliumatom Das Heliumatom besteht

Mehr

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht,

ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, 10 MEHRELEKTRONENATOME 6 ihr Vorzeichen wechselt, wenn man zwei Zeilen oder Kolonnen vertauscht, erhält man die gewünschten antisymmetrischen Wellenfunktionen als Determinanten, deren Kolonnen jeweils

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell...

ORGANISCHE CHEMIE 1. Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... Stoff der 15. Vorlesung: Atommodell, Bindungsmodell... ORGANISCHE CHEMIE 1 15. Vorlesung, Dienstag, 07. Juni 2013 - Einelektronensysteme: H-Atom s,p,d Orbital - Mehrelektronensysteme: He-Atom Pauli-Prinzip,

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Übungen zur Quantenmechanik

Übungen zur Quantenmechanik Übungen zur Quantenmechanik SS11, Peter Lenz, 1. Blatt 13. April 011 Abgabe (Aufgabe ) bis 18.4.07, 1:00 Uhr, Übungskästen RH 6 Aufgabe 1: Gegeben sei ein Wellenpaket der Form Ψ( x, t) = 1 8π 3 Ψ( [ (

Mehr

Einführung in die numerische Quantenchemie

Einführung in die numerische Quantenchemie Einführung in die numerische Quantenchemie Michael Martins michael.martins@desy.de Characterisation of clusters and nano structures using XUV radiation p.1 Literatur A. Szabo, N.S. Ostlund, Modern Quantum

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 2005 Dr. Jan Friedrich Nr. 7 06.06.2005 Email Jan.Friedrich@ph.tum.de Telefon 089/289-2586 Physik Department E8, Raum 3564

Mehr

Kapitel 4 Zur Theorie der ab-initio-rechnungen In diesem Abschnitt soll die Theorie, welche den Berechnungen der Potentialfachen zugrunde liegt, naher vorgestellt werden. Ausgehend von der Born-Oppenheimer-

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Claudia Schrodt (Autor) Untesuchungen binärer Metall- und Halbleitercluster mit Dichtefunktionalmethoden

Claudia Schrodt (Autor) Untesuchungen binärer Metall- und Halbleitercluster mit Dichtefunktionalmethoden Claudia Schrodt (Autor) Untesuchungen binärer Metall- und Halbleitercluster mit Dichtefunktionalmethoden https://cuvillier.de/de/shop/publications/2377 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

7. Übungsaufgabe: Angeregte Zustände und Dissoziation

7. Übungsaufgabe: Angeregte Zustände und Dissoziation Theoretische Chemie II Übungen am Computer Prof. Bernhard Dick Christian Neiß Uni Regensburg WS 003/004 7. Übungsaufgabe: Angeregte Zustände und Dissoziation A. Exkurs: Methoden zur Bestimmung angeregter

Mehr

Zusammenfassung Wasserstoffatom

Zusammenfassung Wasserstoffatom Zusammenfassung Wasserstoffatom Empirisch hat man folgenden Zusammenhang zwischen Frequenzen des Wasserstoffatoms gefunden ) ν Frequenz in cm 1 ν = R H ( 1 n 2 1 1 n 2 2 R H Rydbergkonstante R H = 109

Mehr

Ferienkurs Experimentalphysik 4 - SS 2008

Ferienkurs Experimentalphysik 4 - SS 2008 Physik Departement Technische Universität München Karsten Donnay (kdonnay@ph.tum.de) Musterlösung latt 3 Ferienkurs Experimentalphysik - SS 28 1 Verständnisfragen (a) Was ist eine gute Quantenzahl? Was

Mehr

Ab initio Methoden zur Berechnung der elektronischen Struktur

Ab initio Methoden zur Berechnung der elektronischen Struktur Hauptseminar Elektronentransport in anostrukturen Ab initio Methoden zur Berechnung der elektronischen Struktur Michael Kühn 3.0.2009 Inhalt Inhalt:. Vorbemerkung 2. Die Hartree-Fock-Theorie (HF) 3. Die

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

3 Moleküle. X = (R 1,R 2,...R M ) und x = (r 1,s 1,r 2,s 2,...r N,s N ).

3 Moleküle. X = (R 1,R 2,...R M ) und x = (r 1,s 1,r 2,s 2,...r N,s N ). 3 Moleküle Bei M gebundenen Atomen werden die gleichen Näherungen wie bei den Atomen zugrunde gelegt, wobei aber die Koordinaten R J der Atomkerne, ihre Massen M J und Ladungen Z J e 0 mit J = 1,2,...M

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Zur Berechnung relativistischer Effekte und zum Verständnis ihrer Trends bei Atomen und Molekülen. Dissertation

Zur Berechnung relativistischer Effekte und zum Verständnis ihrer Trends bei Atomen und Molekülen. Dissertation Zur Berechnung relativistischer Effekte und zum Verständnis ihrer Trends bei Atomen und Molekülen Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften vorgelegt von Dipl. Chem. Jochen

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden.

Die zu dieser Zeit bekannten 63 Elemente konnten trotzdem nach ihren chemischen Eigenschaften in einem periodischen System angeordnet werden. phys4.022 Page 1 12.4 Das Periodensystem der Elemente Dimitri Mendeleev (1869): Ordnet man die chemischen Elemente nach ihrer Ladungszahl Z, so tauchen Elemente mit ähnlichen chemischen und physikalischen

Mehr

Der dynamische Eigenschaftsbegriff in der Quantenmechanik: Anwendung beim Wasserstoff-Atom 1

Der dynamische Eigenschaftsbegriff in der Quantenmechanik: Anwendung beim Wasserstoff-Atom 1 Der dynamische Eigenschaftsbegriff in der Quantenmechanik: Anwendung beim Wasserstoff-Atom Rainer Müller, Roland Berger und Hartmut Wiesner Einleitung Der dynamische Eigenschaftsbegriff ist einer der Züge,

Mehr

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Die Hückel-Theorie (HMO)

Die Hückel-Theorie (HMO) Die ückel-theorie (MO) Voraussetzungen: Rechenregeln für Integrale, Matrizen, Determinanten, LCAO-Methode, Überlappungsintegrale/Erwartungswerte, Dirac-Schreibweise, Ritzquotient, Variationsprinzip, Säkulardeterminante

Mehr

Theoretische Grundlagen der ab initio -Quantenchemie

Theoretische Grundlagen der ab initio -Quantenchemie Kapitel 4 Theoretische Grundlagen der ab initio -Quantenchemie Mit dem Bewußtsein für die Notwendigkeit einer neuen, über die klassische Newtonsche Physik hinausgehende, physikalisch-theoretische Beschreibung

Mehr

Q2: Detaillierte Eingabebeschreibungen

Q2: Detaillierte Eingabebeschreibungen Q2: Detaillierte Eingabebeschreibungen Martin Lehner, Gymnasium Biel-Seeland, Schweiz martin.lehner@gymbiel-seeland.ch Inhaltsverzeichnis 1 Allgemeines 2 2 Elektronische Rechnungen 2 2.1 Elektronische

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

7. Übungsblatt - 1. Teil

7. Übungsblatt - 1. Teil Praktikum Theoretische Chemie Universität Regensburg Prof. Martin Schütz, Dr. Denis Usvyat, Thomas Merz Themenblock - Jenseits von Hartree Fock 7. Übungsblatt - 1. Teil In vielen Fällen liefert die Hartree-Fock-Methode

Mehr

8 Mehrteilchensysteme

8 Mehrteilchensysteme 8. Symmetrie 8.. Unterscheidbarkeit von Elementarteilchen Wir diskutieren im Folgenden Systeme von mehrern Teilchen. Diese werden formal in einem Hilbertraum dargestellt, welcher dem direkten Produkt (Tensorprodukt)

Mehr

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Physikalische Chemie Prof. Dr. Walter Langel Gruppentheorie Molekülschwingungen

Mehr

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen

9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9 Weitreichende Wechselwirkungen zwischen zwei Molekülen 9.1 Elektrostatische Wechselwirkungen als Beiträge erster Ordnung Die elektrostatische Wechselwirkung zwischen zwei Molekülen A und B kann durch

Mehr

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt Kapitel 2 Atome im Magnetfeld quantenmechanische Behandlung 2.1 Normaler Zeeman-Effekt Zur quantentheoretischen Behandlung des normalen Zeeman-Effekts verwenden wir, dass sich ein Magnetfeld B aus einem

Mehr

Berechnung von Reaktionsenergien und molekularen Eigenschaften mit lokalen Korrelationsmethoden

Berechnung von Reaktionsenergien und molekularen Eigenschaften mit lokalen Korrelationsmethoden Berechnung von Reaktionsenergien und molekularen Eigenschaften mit lokalen Korrelationsmethoden Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften

Mehr

Wie wir wissen, besitzt jedes Elektron einen Bahndrehimpuls und einen Spin. bezeichnen die zugehörigen Einteilchenoperatoren mit. L i und S i (5.

Wie wir wissen, besitzt jedes Elektron einen Bahndrehimpuls und einen Spin. bezeichnen die zugehörigen Einteilchenoperatoren mit. L i und S i (5. http://oobleck.chem.upenn.edu/ rappe/qm/qmmain.html finden Sie ein Programm, welches Ihnen gestattet, die Mehrelektronenverteilung für alle Elemente zu berechnen und graphisch darzustellen. Einen Hatree-Fock

Mehr

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Quantenchemie auf dem Rechner

Quantenchemie auf dem Rechner Physikalisch-Chemische Praktika Quantenchemie auf dem Rechner Versuch S1 Einleitung Dieser Praktikumsversuch ist der erste Teil eines dreiteiligen Blocks von Versuchen im Rahmen des Praktikums zur Molekülspektroskopie

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

2. Quadratische Lagrangefunktionen und Fourierreihe.

2. Quadratische Lagrangefunktionen und Fourierreihe. 0. Einführung Wir haben gerade das klassische Wirkungsprinzip betrachtet, nachdem wir wissen, dass der dynamische Verlauf eines Teilchens in dem Diagramm die Kurve darstellen soll, die die minimale Wirkung

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Elektronenkonfigurationen von Mehrelektronenatomen

Elektronenkonfigurationen von Mehrelektronenatomen Elektronenkonfigurationen von Mehrelektronenatomen Der Grundzustand ist der Zustand, in dem alle Elektronen den tiefstmöglichen Zustand einnehmen. Beispiel: He: n 1 =n 2 =1 l 1 =l 2 =0 m l1 =m l2 =0 Ortsfunktion

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Vorlesung Berechnung elektrischer Energienetze (BEE)

Vorlesung Berechnung elektrischer Energienetze (BEE) Vorlesung Berechnung elektrischer Energienetze (BEE) 1. Das Drehstromsystem 2. Berechnung von Energieübertragungsnetzen und -systemen 3. Der 3-polige Kurzschluss 4. Unsymmetrische Fehler in Netzen 5. Hochspannungstechnik

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Hermann Haken Hans Christoph Wolf

Hermann Haken Hans Christoph Wolf Hermann Haken Hans Christoph Wolf Atom- und Quantenphysik Einführung in die experimentellen und theoretischen Grundlagen Fünfte, verbesserte und erweiterte Auflag e mit 273 Abbildungen, 27 Tabellen, 160

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 1 Quantenphysik Grundlagen Florian Lippert & Andreas Trautner 27.08.2012 Inhaltsverzeichnis 1 Das Bohrsche Atommodell 1 1.1 Bohrsche Postulate..............................

Mehr

6.1 Hohenberg-Kohn-Theoreme 6.2 Kohn-Sham-Ansatz 6.3 Funktionale 6.4 TD-DFT KAPITEL 6: DICHTEFUNKTIONALTHEORIE

6.1 Hohenberg-Kohn-Theoreme 6.2 Kohn-Sham-Ansatz 6.3 Funktionale 6.4 TD-DFT KAPITEL 6: DICHTEFUNKTIONALTHEORIE 6.1 Hohenberg-Kohn-Theoreme 6. Kohn-Sham-Ansatz 6.3 Funktionale 6.4 TD-DFT KAPITEL 6: DICHTEFUNKTIONALTHEORIE 6.1 Dichtefunktionaltheorie (DFT) 51 Überlegung: Anstelle der Wellenfunktion könnte man auch

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

1 Chemische Bindung in Festkörpern

1 Chemische Bindung in Festkörpern Chemische Bindung in Festkörpern In diesem Kapitel befassen wir uns mit verschiedenen Mechanismen, die zu einer Bindung zwischen Atomen führen, sodass daraus ein Festkörper entsteht. Dabei werden wir verschiedene

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Orbitalmodell SPF BCH am

Orbitalmodell SPF BCH am Orbitalmodell Inhaltsverzeichnis Sie können sich unter einer elektromagnetischen Welle etwas vorstellen. Sie kennen typische Eigenschaften von Wellen im Vergleich zu Teilchen-Strahlen...2 Sie können die

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 04. Juni 2009 5 Fortsetzung: Atome mit mehreren Elektronen In der bisherigen

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

2.1 Das quantenmechanische Vielteilchenproblem. Das Problem besteht darin, für ein System die zeitabhängige Schrödinger-Gleichung

2.1 Das quantenmechanische Vielteilchenproblem. Das Problem besteht darin, für ein System die zeitabhängige Schrödinger-Gleichung Kapitel 2 Näherungslösungen für das quantenmechanische Vielteilchenproblem In diesem Kapitel werden das quantenmechanische Vielteilchen-Problem formuliert und die gängigsten Näherungslösungen vorgestellt.

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

NMR-Spektroskopie Teil 2

NMR-Spektroskopie Teil 2 BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram Stefanie.Wolfram.1@uni-jena.de Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung

Mehr

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben:

Man betrachte zunächst die Quantenmechanik zweier Teilchen. Jedes Teilchen für sich werde durch die übliche Einteilchen-Quantenmechanik beschrieben: Kapitel 9 Quantenmechanik von Mehr-Teilchen-Systeme Mehr-Teilchen-Systeme sind aus zwei Gründen schwieriger zu behandeln als Ein-Teilchen-Systeme. Zum einen führt Wechselwirkung zwischen Teilchen dazu,

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr