Deduktion in der Aussagenlogik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Deduktion in der Aussagenlogik"

Transkript

1 Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus wahren Aussagen andere notwendigerweise wahre Aussagen ableiten Beispiele Wenn es regnet, dann wird die Strasse nass. Es regnet Die Strasse wird nass. Vögel können fliegen. Tweetie ist ein Vogel Tweetie kann fliegen. verallgemeinert zur universellen Schlussregel "modus ponens" Wenn A gilt, dann gilt B. A gilt B gilt. Wie kann man diese und andere Schlussregeln formalisieren? Weitere Logik: Deduktion in der Aussagenlogik 1

2 Semantische Folgerungsbeziehung Wenn in einer bestimmten Situation die Aussagen M wahr sind, ist dann notwendigerweise auch die Aussage P wahr? Folgerung sollte unabhängig von der Situation sein, d.h. unabhängig von der Zuordnung von Wahrheitwerten, die M und P erfüllen Definition: eine Aussage P ist die logische Konsequenz einer Menge von Aussagen M, wenn jede Zuordnung von Wahrheitswerten, die M wahr macht, auch P wahr macht M = P Beispiel: Aussage P = p (q r) ist logische Konsequenz von M = {p q, q r, r (p s)} d.h. {p q, q r, r (p s)} = ( p (q r)) Beweis durch Wahrheitstabellen oder wie früher gezeigt durch Widerspruch Weitere Logik: Deduktion in der Aussagenlogik 2

3 Syntaktische Folgerungsbeziehung nach festen syntaktischen Regeln Deduktionsregeln oder Inferenzregeln werden aus Aussagen andere Aussagen hergeleitet Aussage P ist aus einer Menge von Aussagen M herleitbar, wenn man P nach endlichen vielen Anwendungen der Regeln auf M erhält M P Ausgangsaussagen M werden Axiome genannt, hergeleitete Aussagen P Theoreme Ableitung wird auch Beweis genannt Beweis ist endliche Folge von Aussagen P 1, P 2,..., P n wobei jedes P i ein Axiom oder eine nach den Regeln hergeleitete Aussage ist Beweis gelingt, wenn die letzte Aussage P n das zu beweisende Theorem ist Axiome werden in logische Axiome und nichtlogische oder eigentliche Axiome eingeteilt logische Axiome sind Tautologien eigentliche Axiome heissen auch Hypothesen Weitere Logik: Deduktion in der Aussagenlogik 3

4 Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktionssystem besteht aus Axiomen, Deduktionsregeln und was oft vergessen wird einer Beweisstrategie Deduktionssystem muss korrekt sein, d.h. jedes hergeleitete Theorem muss logische Konsequenz der Axiome sein M P M = P Deduktionssystem sollte vollständig sein, d.h. jede logische Konsequenz der Axiome sollte auch hergeleitet werden können M = P M P wenn ein Deduktionssystem korrekt und vollständig ist, dann kann man die (aufwendige) logische Konsequenz durch einen endlichen Beweis ersetzen Weitere Logik: Deduktion in der Aussagenlogik 4

5 Natürliche Deduktion natürliche Deduktion ist ein Deduktionssystem mit ungefähr einem Dutzend von Deduktionsregeln; es gibt nur Hypothesen, keine logischen Axiome natürliche Deduktion soll das menschliche Argumentieren formalisieren natürliche Deduktion erklärt die Bedeutung der Konnektoren unabhängig von Wahrheitstabellen Wann kann man eine Aussage mit einem bestimmten Konnektor als Hauptkonnektor herleiten? Die Antwort führt zu I-Deduktionsregeln, die Konnektoren einführen. Welche Aussagen kann man aus einer Aussage mit einem bestimmten Hauptkonnektor herleiten? Die Antwort führt zu E-Deduktionsregeln, die Konnektoren eliminieren. Regeln und Beweise werden als Bäume geschrieben, deren Blätter die Hypothesen und deren Wurzeln die Schlüsse sind Weitere Logik: Deduktion in der Aussagenlogik 5

6 Natürliche Deduktion: Konjunktion Einführung der Konjunktion P Q I P Q Bedeutung: wenn P und Q entweder als Hypothesen gegeben sind oder hergeleitet wurden, dann kann man die Konjunktion P Q herleiten. man kann auch {P, Q} (P Q) schreiben Beispiel: p q I p q r I (p q) r d.h. {p, q, r} (p q) r Weitere Logik: Deduktion in der Aussagenlogik 6

7 Natürliche Deduktion: Konjunktion Eliminierung der Konjunktion P Q E P P Q E Q Bedeutung: aus der Konjunktion P Q kann man sowohl P wie Q herleiten. Beispiel: d.h. p q p q E E p q I q p p q q p (Kommutativität von ) Weitere Logik: Deduktion in der Aussagenlogik 7

8 Natürliche Deduktion: Implikation Eliminierung der Implikation (modus ponens) P Q P E Q Beispiel: p r E p r r r q E E p q I p q d.h. {p r, r q} p q Weitere Logik: Deduktion in der Aussagenlogik 8

9 Natürliche Deduktion: Implikation Einführung der Implikation Um P Q herzuleiten, nehmen wir P als Hypothese und leiten Q her. Dann können wir den Schluss P Q ziehen. Die Hypothese P wird anschliessend nicht länger benötigt und "gestrichen", d.h. sie ist nicht mehr verfügbar. [P].. Q I P Q Man kann sich die Einführung der Implikation über die Wahrheitstabelle von klarmachen. Hinter der Einführung der Implikation steht eine Richtung des Deduktionstheorems der Aussagenlogik M {P} Q genau dann, wenn M (P Q) Weitere Logik: Deduktion in der Aussagenlogik 9

10 Natürliche Deduktion: Implikation Beispiel: (p q) r (q p) r Herleitung [q p] 1 [q p] E E q p I p q (p q) r E r I 1 (q p) r NB. nach I 1 ist die Hypothese [q p] 1 gestrichen Wie geht man vor, um (q p) r herzuleiten? Heuristische Regel: man nimmt die Vorbedingung der Implikation in diesem Fall (q p) und versucht, die Konsequenz in diesem Fall r herzuleiten. Die Aussage selber kann dann mit Hilfe von I abgeleitet werden. Weitere Logik: Deduktion in der Aussagenlogik 10

11 Natürliche Deduktion: Disjunktion Einführung der Disjunktion P I P Q Q I P Q Eliminierung der Disjunktion Um aus einer Disjunktion P Q einen Schluss R zu ziehen, muss R aus P und aus Q hergeleitet werden können. [P] [Q].... R R P Q E R Beispiel p q q p Herleitung [p] 1 [q] I I 2 q p q p p q E q p Weitere Logik: Deduktion in der Aussagenlogik 11

12 Natürliche Deduktion: Negation Einführung der Negation [P] I P Eliminierung der Negation P P E P wird effektiv als P interpretiert Beispiel: (p p) Herleitung [p p] 1 [p p] E E p p E I 1 ( p p) Weitere Logik: Deduktion in der Aussagenlogik 12

13 Natürliche Deduktion: ex falso quodlibet aus einer falschen Annahme kann alles hergeleitet werden E (auch EFSQ genannt) P Beispiel: p (p q) Herleitung [ p] 1 [p] 2 (zweimal Heuristik für ) E E q I 2 p q I 1 p (p q) Weitere Logik: Deduktion in der Aussagenlogik 13

14 Natürliche Deduktion: reductio ad absurdum RAA (reductio ad absurdum) [ P] RAA P Wenn wir aus der Annahme [ P] die Aussage ableiten können, dann dürfen wir P schliessen. intuitionistische Logik lehnt diese Regel als nichtkonstruktiv ab alternativ zu RAA können auch die Regeln vom ausgeschlossenen Dritten (tertium non datur) oder die Regel der doppelten Verneinung verwendet werden ausgeschlossenes Drittes (tertium non datur) TND P P doppelte Verneinung P DV P Weitere Logik: Deduktion in der Aussagenlogik 14

15 Natürliche Deduktion: Reflexivität & Monotonie natürliche Deduktion ist reflexiv M {P} P natürliche Deduktion ist monoton Wenn M P und M N, dann N P Weitere Logik: Deduktion in der Aussagenlogik 15

16 Natürliche Deduktion: Heuristiken für die Herleitung von Aussagen gibt es eine Reihe von Heuristiken, die eine Art Beweisstrategie nahelegen Um P Q herzuleiten, nehme man P als Annahme und versuche, Q abzuleiten. Um P Q herzuleiten, versuche man, P und Q abzuleiten. Um P Q herzuleiten, versuche man, P oder Q abzuleiten. Um R aus P Q herzuleiten, versuche man, R aus P und R aus Q abzuleiten. Um P abzuleiten, nehme man P als Annahme und versuche, zwei Aussagen Q und Q abzuleiten. trotzdem erfordert natürliche Deduktion Erfahrung und ein gewisses Mass an Ausprobieren Weitere Logik: Deduktion in der Aussagenlogik 16

17 Natürliche Deduktion: Beispiel Beispiel von Folie 2 Auf Folie 2 wurde gezeigt, dass {p q, q r, r (p s)} = (p (q r)) Hier wird nun gezeigt, dass {p q, q r, r (p s)} (p (q r)) Herleitung [p] 1 p q E q q r E r I q r I 1 p (q r) Weitere Logik: Deduktion in der Aussagenlogik 17

18 Natürliche Deduktion: Beispiel umfangreicheres Beispiel (Truss, p. 290); die Zahlen numerieren die Annahmen und zeigen ausserdem an, wann die Annahmen gestrichen werden, d.h. anschliessend nicht mehr zur Verfügung stehen ( p q) (( p q) p) zum Erzeugen der (zu streichenden) Hypothesen wird mehrfach die Heuristik für verwendet [ p ] 1 [ p q] 3 [ p ] 1 [ p q] E E q q E RAA 1 p I 2 ( p q) p I 3 ( p q) (( p q) p) Weitere Logik: Deduktion in der Aussagenlogik 18

19 Natürliche Deduktion: Korrektheit & Vollständigkeit natürliche Deduktion ist korrekt, d.h. wenn M P, dann M = P Beweis durch Wahrheitstafeln Menge M von Aussagen heisst inkonsistent, wenn man aus ihr herleiten kann; sonst ist M konsistent M P genau dann, wenn M { P} inkonsistent ist Spezialfall des Deduktionstheorems M {A} B genau dann, wenn M (A B) setze A = P und B = M { P} genau dann, wenn M ( P ), d.h. wenn M P M = P genau dann, wenn M { P} unerfüllbar ist natürliche Deduktion ist vollständig, d.h. wenn M = P, dann M P Skizze des Beweises: wenn M = P, dann M P ist M { P} unerfüllbar, dann ist M { P} inkonsistent ist M { P} konsistent, dann ist M { P} erfüllbar angenommen, dass M { P} konsistent ist, wird eine Belegung gefunden, die M { P} wahr macht Weitere Logik: Deduktion in der Aussagenlogik 19

20 Resolution Resolution ist ein Deduktionssystem mit einer einzigen Deduktionsregel; es gibt nur Hypothesen, keine logischen Axiome Resolution entstand beim Versuch, Deduktion zu automatisieren, d.h. Beweise durch den Computer automatisch ausführen zu lassen Resolution ist u.a. die Grundlage der logischen Programmierung Grundidee der Resolution: aus den beiden wahren Aussagen P Q P R kann man die wahre Aussage Q R schliessen, denn entweder ist P wahr, dann muss R wahr sein, oder P ist falsch, dann muss Q wahr sein; in jedem Fall ist dann Q R wahr Resolution setzt voraus, dass Aussagen in der Klauselform, d.h. als konjunktive Normalform, dargestellt werden Weitere Logik: Deduktion in der Aussagenlogik 20

21 Klauselform der Aussagenlogik konjunktive Normalform einer aussagenlogischen Formel: Konjunktion von Disjunktionen von atomaren und negierten atomaren Aussagen D 1 D 2... D n D i = L i1 L i2... L im (D i heissen Klauseln) (L ij heissen Literale) systematische Umwandlung in Klauselform Beispiel (A (B C)) 1. Schritt: Elimination von (A (B C)) [Regel: P Q P Q] ( A ( B C)) 2. Schritt: Verteilung von auf atomare Ausdrücke ( A ( B C)) [Regel: (P Q) P Q)] ( A ( B C)) [Regel: P P] ( A (B C)) 3. Schritt: Umwandlung in eine Konjunktion von Disjunktionen durch distributive Regel ( A (B C)) [Regel: P (Q R) (P Q) (P R)] (( A B) ( A C)) 4. Schritt: Darstellung als Menge von Klauseln {( A B), ( A C)} Weitere Logik: Deduktion in der Aussagenlogik 21

22 Klauselform der Aussagenlogik Klausel ist Aussage der Form P 1 P 2... P n N 1 N 2... N m äquivalente Formen P 1 P 2... P n (N 1 N 2... N m ) N 1 N 2... N m P 1 P 2... P n Notation der logischen Programmierung P 1, P 2,..., P n N 1, N 2,..., N m (NB. Kommata auf der linken Seite bedeuten Disjunktion, auf der rechten Seite Konjunktion) Weitere Logik: Deduktion in der Aussagenlogik 22

23 Schlussregel Resolution Resolutionsregel (Robinson) Klausel K 1 mit dem positiven Literal L Klausel K 2 mit dem negativen Literal L Aus den Klauseln K 1 und K 2 leitet man die Resolvente, d.h. die Klausel {K 1 - {L}} { K 2 - { L}} ab. K 1 K {K 1 - {L}} { K 2 - { L}} Beispiel p q r s p q r s Weitere Logik: Deduktion in der Aussagenlogik 23

24 Andere Schlussregeln als Resolution Resolution ist eine mächtige Schlussregel, die andere Schlussregeln als Spezialfälle enthält modus ponens P Q P Q als Resolution P Q P Q modus tollens P Q Q P als Resolution P Q Q P Weitere Logik: Deduktion in der Aussagenlogik 24

25 Leere Klausel leere Klausel {}, d.h. Klausel ohne positive und negative Literale, steht für die widersprüchliche Aussage, d.h. für Inkonsistenz Beispiel Klauselmenge M = { p q, p, q} Resolutionen p q p q q {} d.h. die Klauselmenge M ist inkonsistent andere Ableitung der leeren Klausel p q q p p {} Eine Klauselmenge ist inkonsistent, wenn man durch Resolution auf irgendeine Weise die leere Klausel {} ableiten kann. Weitere Logik: Deduktion in der Aussagenlogik 25

26 Deduktion mit Resolution Deduktion mit Resolution verwendet Beweise durch Widerspruch (Refutation) Vorgehensweise M P genau dann, wenn M { P} inkonsistent ist Um nachzuweisen, dass M { P} inkonsistent ist, transformiert man M { P} in Klauselform. Dabei verwendet man den Satz: Eine Menge M von aussagenlogischen Formeln kann in eine Menge von Klauseln transformiert werden, die genau dann konsistent ist, wenn M konsistent ist. Wenn man aus den aus M { P} entstandenen Klauseln durch Resolution die leere Klausel ableiten kann, dann ist diese Klauselmenge inkonsistent. Damit ist auch M { P} inkonsistent, und somit gilt M P. Falls man die leere Klausel nicht ableiten kann, ist M { P} konsistent und somit kann P nicht aus M abgeleitet werden. Weitere Logik: Deduktion in der Aussagenlogik 26

27 Deduktion mit Resolution: Beispiele Beispiel Beweis von (p q) r p (q r) Ist {(p q) r, (p (q r))} inkonsistent? Umwandlung in Klauselform { ( p q) r, ( p ( q r))} {(p q) r, p q r} {(p r) ( q r), p q r} { p r, q r, p, q, r} Resolution q r r q q {} Beweis wurde erbracht Weitere Logik: Deduktion in der Aussagenlogik 27

28 Deduktion mit Resolution: Beispiele Beispiel (Umkehrung der Aussagen) Beweis von p (q r) (p q) r Ist { p (q r), ((p q) r)} inkonsistent? Umwandlung in Klauselform { p ( q r), ( ( p q) r)} { p q r, ( p q) r } { p q r, p q, r} Resolution führt in diesem Fall nicht zur leeren Klausel; man kann sich leicht überzeugen, dass immer eine Resolvente p übrigbleibt D.h. die obige Ableitung gilt nicht. Weitere Logik: Deduktion in der Aussagenlogik 28

29 Korrektheit und Vollständigkeit Korrektheit der Resolution Wenn eine Klausel K aus einer Menge M von Klauseln durch Resolution abgeleitet werden kann, dann ist K eine logische Konsequenz von M. Korollar Wenn die leere Klausel aus einer Menge M von Klauseln durch Resolution abgeleitet werden kann, dann ist die leere Klausel eine logische Konsequenz von M, d.h. M inkonsistent. Vollständigkeit der Resolution bezüglich Refutation Wenn eine Menge von Klauseln inkonsistent ist, dann kann man aus ihr durch Resolution die leere Klausel ableiten. Weitere Logik: Deduktion in der Aussagenlogik 29

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Kategorie 1 Notieren Sie die Definitionen

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

wenn es regnet ist die Straße nass.

wenn es regnet ist die Straße nass. Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz diestraßeistnass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER FORMALE SPRACHEN Wie jede natürliche Sprache, hat auch auch jede formale Sprache Syntax/Grammatik Semantik GRAMMATIK / SYNTAX Die Grammatik / Syntax einer formalen

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

6. AUSSAGENLOGIK: TABLEAUS

6. AUSSAGENLOGIK: TABLEAUS 6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen

Mehr

Grundlagen der Kognitiven Informatik

Grundlagen der Kognitiven Informatik Grundlagen der Kognitiven Informatik Wissensrepräsentation und Logik Ute Schmid Kognitive Systeme, Angewandte Informatik, Universität Bamberg letzte Änderung: 14. Dezember 2010 U. Schmid (CogSys) KogInf-Logik

Mehr

Ableitungen im Kalkül des Natürlichen Schließens

Ableitungen im Kalkül des Natürlichen Schließens Ableitungen im Kalkül des Natürlichen Schließens Beispiele für typische Rechenwege in der Fitch-Notation Wie viele Logik-Kalküle setzt auch der Kalkül des Natürlichen Schließens (NK, nach Jaśkowski und

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

1 Einführung Aussagenlogik

1 Einführung Aussagenlogik 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden!

Mehr

Logik Vorlesung 6: Resolution

Logik Vorlesung 6: Resolution Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Kleiner Ausflug in Logik und Verkehrssteuerung

Kleiner Ausflug in Logik und Verkehrssteuerung Kleiner usflug in Logik und Verkehrssteuerung Ein logisches Rätsel usgangslage: Drei Frauen stehen hintereinander. Jede trägt einen Hut auf dem Kopf und sieht nur die Hüte der voran stehenden Personen.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012 Mathematische Logik Grundlagen, Aussagenlogik, Semantische Äquivalenz Felix Hensel February 21, 2012 Dies ist im Wesentlichen eine Zusammenfassung der Abschnitte 1.1-1.3 aus Wolfgang Rautenberg s Buch

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Arbeitsblatt 3 Übungsaufgaben Aufgabe 3.1. Beweise mittels Wahrheitstabellen, dass die folgenden Aussagen Tautologien sind.

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik (Erläuterungen zu Kapitel 6, Teil 2 des FGI-1 Skriptes) Frank Heitmann 1 Motivation Wenn man sich erstmal darauf eingelassen hat, dass man mit Formeln etwas sinnvolles machen

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr