Huffman-Kodierung. Prof. Dr. Margarita Esponda

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Huffman-Kodierung. Prof. Dr. Margarita Esponda"

Transkript

1 uffman-kodierung rof. r. argarita sponda

2 otivation ir möchten achrichten komprimieren: - peicherplatzreduzierung => nergie und Zeit bei Übertragung sparen - ohne nformationsverlust - mit einer effizienten iederherstellung der originalen nformation

3 Zwei ösungen auflängenkodierung atenkompression ange Folgen sich wiederholender Zeichen können in einer kompakten Form kodiert werden, indem jede Folge durch die nzahl der iederholungen und eine einmalige ngabe des sich wiederholenden Zeichens ersetzt wird. Kodierung mit variabler änge äufige Zeichen werden mit möglichst kurzen itfolgen kodiert und längere itfolgen werden für nicht sehr häufige Zeichen benutzt.

4 atenkomprimierung auflängenkodierung eispiele: original XXXXXXXQKKKKK Kompakte Form 7XQ5K ei binär kodierten ateien brauchen wir nicht einmal die Zeichen anzugeben, weil wir wissen, dass die äufe sich nur zwischen und abwechseln. 7

5 auflängenkodierung compress :: (q a) [a] [(a, nt)] compress [] = [] compress (x:xs) = enc [] (x,) xs enc :: (q a) [(a, nt)] (a, nt) [a] [(a, nt)] enc ls (x, n) [] = ls ++ [(x, n)] enc ls (x, n) (y:ys) x==y = enc ls (x, n+) ys otherwise = enc (ls++[(x, n)]) (y, ) ys

6 auflängenkodierung GF-Kompression * * 5 * * 7 * * 5 7 gut für GF-Kompression schlecht für GF-Kompression

7 Frage Kodierung mit variabler änge ie können Zeichen kodiert werden, sodass die it-änge eines extes minimiert wird enn wir n verschiedene Zeichen mit einer festen it- änge kodieren möchten, brauchen wir mindestens : log n its für die Kodierung jedes Zeichens. Zeichen werden normalerweise mit its (-ode) oder its (O) kodiert.

8 Kodierung mit variabler änge Grundlegende dee: ie nzahl der its für die Kodierung der einzelnen Zeichen an die äufigkeit innerhalb des extes anzupassen. Kürzere itfolgen für häufige Zeichen und längere itfolgen für seltene Zeichen.

9 ntropie nformationstheorie athematical heory of ommunication laude hannon ie ntropie eines Zeichensystems ist ein aß für den mittleren nformationsgehalt des ystems.

10 ntropie achricht ie nformation, die ein Zeichen trägt, hängt von seiner äufigkeit ab. eltene Zeichen vermitteln mehr nformation als häufige Zeichen. eispiel: Quelle z..z..z..z z 7 eim orträtsel hilft es viel mehr, zu wissen, dass ein seltener uchstabe vorkommt als einer, der sehr häufig auftritt. enn die ahrscheinlichkeit des uftretens eines bestimmten Zeichens z i gleich p i ist ird der nformationsgehalt eines Zeichen wie folgt definiert: i = log (/p i )

11 ntropie achricht Quelle z..z..z..z z 7 er mittlere nformationsgehalt der gesamten Quelle wird als die ntropie der achricht bezeichnet und wie folgt definiert: () = n ) i= p i log( p i ir brauchen log (/p i ) its um ein Zeichen zu kodieren

12 atenkomprimierung Kodierung mit variabler änge ie äufigkeit der Zeichen hängt von der rt der nformation ab. eispiel: ÄFG

13 Kodierung mit variabler änge ie kann man für eine beliebige Zeichenfolge die optimale Kodierung mit variabler änge festlegen ch will die itfolge dekodieren. ie kann ich wissen, wann die Kodierung eines Zeichens zu nde ist

14 uffman-kodierung avid. uffman stellte 5 einen lgorithmus der aus einer gegebenen achricht einen räfixkode, der die änge einer kodierten achricht minimiert. ine konstante ahrscheinlichkeitsverteilung der einzelnen Zeichen wird verwendet. it dem uffman-lgorithmus wird die Kodierung und ekodierung der nformation realisiert.

15 Kodierung mit variabler änge räfix-kodierung m aus einer itfolge Zeichen mit einer variablen itlänge eindeutig zu erkennen, muss die Kodierung die igenschaft haben: Keine itkodierung eines Zeichens darf als räfix in der Kodierung eines anderen Zeichens vorkommen. eispiel: enn die Kodierung von ist, darf keine andere Zeichenkodierung die its am nfang haben.

16 rzeugung des uffman-ode rie Für die ekodierung und Kodierung aller Zeichen wird eine rie- atenstruktur verwendet. in rie ist eine aumstruktur mit der igenschaft, dass die nformation sich nur in den lättern befindet. ie inneren Knoten sind nur erkettungsknoten.

17 rzeugung des uffman-ode. ie äufigkeiten der Zeichen werden berechnet ehmen wir an, wir wollen eine extdatei komprimieren. Zuerst zählen wir, wie oft jedes Zeichen in der atei vorkommt. eispiel: ÄFG äufigkeiten

18 rzeugung des uffman-ode. er rie-aum wird wie folgt erzeugt. ie äufigkeiten werden in einer in-riority-queue gespeichert. ine in-riority-queue ist nichts anderes als eine atenstruktur, auf der die Operationen xtract-in und nsert definiert sind.

19 rzeugung des uffman-aumes. ie zwei Knoten mit den kleinsten äufigkeiten in der prioriry-queue werden extrahiert und deren äufigkeiten addiert.. ie umme wird in einem neu erzeugten Knoten gespeichert, der als linkes und rechtes Kind die zwei extrahierten Knoten hat.

20 rzeugung des uffman-aumes. Zum chluss wird die urzel des neuen inärbaums wieder in die priority-queue eingefügt.

21 rzeugung des uffman-aumes

22 rzeugung des uffman-aumes

23 rzeugung des uffman-aumes

24 rzeugung des uffman-aumes

25 rzeugung des uffman-aumes

26 rzeugung des uffman-aumes

27 rzeugung des uffman-aumes

28 rzeugung des uffman-aumes

29 rzeugung des uffman-aumes

30 rzeugung des uffman-aumes

31 rzeugung des uffman-aumes

32 rzeugung des uffman-aumes

33 rzeugung des uffman-aumes

34 rzeugung des uffman-aumes

35 rzeugung des uffman-aumes

36 rzeugung des uffman-aumes

37 rzeugung des uffman-aumes

38 rzeugung des uffman-aumes

39 rzeugung des uffman-aumes

40 rzeugung des uffman-aumes

41 rzeugung des uffman-aumes

42 rzeugung des uffman-aumes

43 rzeugung des uffman-aumes

44 rzeugung des uffman-aumes

45 rzeugung des uffman-aumes 7

46 rzeugung des uffman-aumes 7

47 rzeugung des uffman-aumes 7

48 rzeugung des uffman-aumes 7

49 rzeugung des uffman-aumes 7

50 rzeugung des uffman-aumes 7

51 rzeugung des uffman-aumes 7

52 rzeugung des uffman-aumes 7

53 rzeugung des uffman-aumes 7 7

54 Kodierung der Zeichen ie Kodierung jedes Zeichens wird aus dem eg von der urzel des aumes bis zu dem entsprechenden uchstaben aus den Kanten abgelesen.... 7

55 ekodierung 7

56 ekodierung 7

57 ekodierung 7

58 ekodierung amit die nformation später dekodiert werden kann, muss der dazu gehörige uffman- aum in der komprimierten atei beinhaltet sein. 7

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Beispiellösungen zu Blatt 107

Beispiellösungen zu Blatt 107 µ κ Mathematisches Institut eorg-ugust-universität öttingen ufgabe 1 eispiellösungen zu latt 107 onstruiere eine Menge M aus 107 positiven ganzen Zahlen mit der folgenden igenschaft: eine zwei der Werte

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Prof. r. V. Linnemann Lübeck, den. Oktober 00 Universität zu Lübeck Institut für Informationssysteme lgorithmen und atenstrukturen Sommersemester 00. Klausur Lösungen Hinweis: chten Sie bei Programmieraufgaben

Mehr

Einführung in (Binäre) Bäume

Einführung in (Binäre) Bäume edeutung und Ziele inführung in (inäre) äume Marc Rennhard http://www.tik.ee.ethz.ch/~rennhard rennhard@tik.ee.ethz.ch äume gehören ganz allgemein zu den wichtigsten in der Informatik auftretenden atenstrukturen,

Mehr

I.4 Warshall - Algorithmus

I.4 Warshall - Algorithmus I.4 Warshall - lgorithmus er ijkstra - lgorithmus bietet eine relativ schnelle öglichkeit den minimalen Weg zwischen zwei Knoten in einem Graphen zu bestimmen. ei anderer bbruchbedingung erhält man auch

Mehr

7/17/06. Huffman-Kodierung. Morsecode. Erstellung eindeutiger Codes

7/17/06. Huffman-Kodierung. Morsecode. Erstellung eindeutiger Codes 7/7/6 Huffmn-Kodierung Morsecode Kodierung = Konvertierung der rstellung von Informtion in eine ndere rstellung eispiel: Schriftzeichen sind ein ode, SII ein nderer ode Morsecode kodiert uchstben in bhängigkeit

Mehr

englisch: 1 einsam 2 Anstrengung 3 immer 4 Tal 5 genug 6 System Lösungswort (1 6): Blätter

englisch: 1 einsam 2 Anstrengung 3 immer 4 Tal 5 genug 6 System Lösungswort (1 6): Blätter eispiel lphaube echs Vokabeln und ein ösungswort sind gefragt. ine kleine Hilfe findet man auf den sechs Würfeln: sie zeigen auf den sichtbaren eiten jeweils drei der sechs uchstaben. ei jedem ätsel ist

Mehr

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann Seminar über Algorithmen, SS2004 Textkompression von Christian Grümme und Robert Hartmann 1. Einleitung Textkompression wird zur Verringerung des Speicherbedarfs und der Übertragungskapazität von allgemeinen

Mehr

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung:

Mehr

Herbstsemester 6 5. Übung zur Vorlesung igitaltechnik Musterlösung Übung 5 ufgabe a) arstellung der negativen Tahlen im Zweierkomplement: nschliessende erechnung: 7 : 7 = 7 = + = 2 : 2 = 2 = + = 4 : 4

Mehr

=SVERWEIS ( B2; $G$2:$H$7; 2; FALSCH)

=SVERWEIS ( B2; $G$2:$H$7; 2; FALSCH) SVRWIS ei mehrfacher uswahl können so viele verschachtelte "Wenn-ufrufe" vorkommen, dass eine andere Lösung sinnvoller ist. m einfachen eispiel von Noten sehen wir das am schnellsten. Zwischen,0 und,...

Mehr

Referat zum Thema Huffman-Codes

Referat zum Thema Huffman-Codes Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung

Mehr

Eigenschaften von Kompressionsverfahren

Eigenschaften von Kompressionsverfahren 6 Textkompression Eigenschaften von Kompressionsverfahren Das Ziel der Datenkompression ist es, eine gegebene Information (Datenquelle) auf eine kompaktere Weise zu repräsentieren. Dies geschieht, indem

Mehr

ROHRE FUER HOHE TEMPERATUREN ASTM A 106

ROHRE FUER HOHE TEMPERATUREN ASTM A 106 ROHRE FUER HOHE TEMPERATUREN ASTM A 106 1/8 10,300 1,240 0,280 10 1/8 10,300 1,450 0,320 30 1/8 10,300 1,730 0,370 STD 40 1/8 10,300 2,410 0,470 XS 80 1/4 13,700 1,650 0,490 10 1/4 13,700 1,850 0,540 30

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen 9.2.5 HUT 9.2.5 3 atenstrukturen im omputer atenstrukturen ie beiden fundamentalen atenstrukturen in der Praxis sind rray und Liste Rekursion Feedback valuation rray Zugriff: schnell Umordnung: langsam

Mehr

Gierige Algorithmen Interval Scheduling

Gierige Algorithmen Interval Scheduling Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:

Mehr

X U O F U L E R T. gemischt:

X U O F U L E R T. gemischt: eispiel lphaube echs Vokabeln und ein ösungswort sind gefragt. ine kleine ilfe findet man auf den sechs Würfeln: sie zeigen auf den sichtbaren eiten jeweils drei der sechs uchstaben. ie eingefärbte enkrecht-palte

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Fachhochschule Wedel Seminararbeit Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Sven Reinck 7. Januar 2007 Inhaltsverzeichnis Inhaltsverzeichnis Motivation 2 Wörterbuch 2.

Mehr

Lösungen Die Seite 7 berücksichtigt die Kärtchen A, B, E. Kärtchen C und D kann man mit Angaben aus der Tabelle Seite 8 vergleichen.

Lösungen Die Seite 7 berücksichtigt die Kärtchen A, B, E. Kärtchen C und D kann man mit Angaben aus der Tabelle Seite 8 vergleichen. as Sonnensystem Planeten-Puzzle ine astel- und enkarbeit Ziel ie Kenntnisse über Planeten in spielerischer rt repetieren. Nochmals eine Übersicht zu den Planeten gewinnen. Material usgedruckte Seiten nach

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung Eine Funktion wird als Funktion höherer Ordnung bezeichnet, wenn Funktionen als Argumente verwendet werden, oder wenn eine Funktion als Ergebnis zurück gegeben wird. Beispiel: twotimes :: ( a -> a ) ->

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen. Hashing 6. Algorithmische Geometrie 4/6, Folie 1 2014 Prof. Steffen Lange - HDa/FbI

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe:

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe: Fachbereich Medieninformatik Hochschule Harz Huffman-Kodierung Referat Henner Wöhler 11459 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung...I 1. Entropiekodierung...1 1.1 Morse Code...2 1.2 Shannon-Fano-Kodierung...3

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Basisinformationstechnologie II

Basisinformationstechnologie II Basisinformationstechnologie II Sommersemester 2014 28. Mai 2014 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G.

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Amortisierte Analysen

Amortisierte Analysen Amortisierte Analysen 26. Mai 2016 1 Einleitung Es gibt viele Datenstrukturen, bei deren Komplexitätsanalyse das Problem auftaucht, dass die Ausführung mancher Operationen Einfluss auf die Komplexität

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Grundlagen der Programmierung 2. Sortierverfahren

Grundlagen der Programmierung 2. Sortierverfahren Grundlagen der Programmierung 2 Sortierverfahren Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 30. Mai 2006 Sortieren Ziel: Bringe Folge von Objekten in eine Reihenfolge

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Dr. Michael Savorić Hohenstaufen-Gymnasium (HSG) Kaiserslautern Version 20120622 Überblick Wichtige Eigenschaften Einführungsbeispiele Listenerzeugung und Beispiel

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Add-on MailingWorkCenter

Add-on MailingWorkCenter dd-on ailingorkenter Schnittstelle Sage zu ailingwork Der Versand von ailings und ewsletter gehört zum festen Bestandteil von arketing- ampagnen. ir haben ein dd-on entwickelt, welches hnen ermöglicht,

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Institut für Programmierung und Reaktive Systeme 19. August Programmier-Labor. 1. Übungsblatt

Institut für Programmierung und Reaktive Systeme 19. August Programmier-Labor. 1. Übungsblatt echnische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 19. August 2014 Aufgabe 1: Programmier-Labor 1. Übungsblatt a) Welche primitiven Datentypen kennt

Mehr

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie».

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie». 4 9 2 3 5 7 8 6 2 Magische Quadrate Magische Quadrate ie bbildung zeigt einen usschnitt aus lbrecht ürers Kupferstich «Melancholie». ei genauem Hinsehen erkennen Sie ein magisches Quadrat vierter Ordnung.

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Hinweis: Weitere ufgaben zu diesem Thema finden sie in den egleitbüchern zur Vorlesung.

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen Dr. David Sabel Institut für Informatik Fachbereich Informatik und Mathematik Johann Wolfgang Goethe-Universität Frankfurt am Main Praktikum BKSPP Sommersemester 21 Aufgabenblatt Nr. 1 Abgabe: Mittwoch,

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

Grundlagen von Rasterdaten

Grundlagen von Rasterdaten LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 7: Grundlagen von Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2014/15 Ludwig-Maximilians-Universität

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Probeklausur der Tutoren

Probeklausur der Tutoren Probeklausur der Tutoren Informatik II SS2005 Lösungsvorschlag Aufgabe 1: Verständnis- und Wissensfragen (6 Punkte) Kreuzen Sie an, ob die Aussage wahr ( W ) oder falsch ( F ) ist. Hinweis: Jedes korrekte

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5 Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische

Mehr

Schreibweise in IGOR: 6.02E-23

Schreibweise in IGOR: 6.02E-23 2. IGOR Objekte 2.1 Variable Eine Variable in IGOR ist eine Zahl, die einen Namen trägt. So ist es zum Beispiel möglich, unter dem Namen var1 die Zahl 4 abzuspeichern. Wichtig hierbei ist, dass IGOR Zahlen

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

10 Dynamische Programmierung

10 Dynamische Programmierung 137 Dynamische Programmierung Das Prinzip der Dynamischen Programmierung wird häufig bei Fragestellungen auf Worten angewendet..1 Längste gemeinsame Teilfolge Wir betrachten Worte der rt w = a 1 a 2 a

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Erst die rechte und dann die linke Hand heben: Zweimal nacheinander die rechte Hand heben:

Erst die rechte und dann die linke Hand heben: Zweimal nacheinander die rechte Hand heben: 7.7.7. Codierung mit variabler Wortlänge Vom schweigsamen König, der gern chweinebraten aß (Frei nach Walter. Fuchs: Knaur s Buch der Denkmaschinen, 968) n einem fernen Land lebte vor langer, langer Zeit

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Abschnitt 18: Effizientes Suchen in Mengen

Abschnitt 18: Effizientes Suchen in Mengen Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen nwendung der Rekursion 11. Rekursion, Komplexität von lgorithmen Teil 2 Java-eispiele: Power1.java Hanoi.java Rekursiv definierte Funktionen - Fibonacci-Funktion - Fakultät, Potenz -... Rekursiver ufbau

Mehr

Verbesserungsdetails: PTC Mathcad Prime 3.0. Copyright 2013 Parametric Technology Corporation. weiter Infos unter www.mcg-service.

Verbesserungsdetails: PTC Mathcad Prime 3.0. Copyright 2013 Parametric Technology Corporation. weiter Infos unter www.mcg-service. : PTC Mathcad Prime 3.0 Copyright 2013 Parametric Technology Corporation PTC Mathcad Angepasste Funktionen Sie können eigene Funktionen, die in C++ oder anderen Sprachen geschrieben sind, in die PTC Mathcad

Mehr

Nach allen Einstell / Programmierarbeiten sollten nur noch folgende Brücken gesteckt sein: NCS(JP4), RS232 (JP5, Standard serielles Protokoll)

Nach allen Einstell / Programmierarbeiten sollten nur noch folgende Brücken gesteckt sein: NCS(JP4), RS232 (JP5, Standard serielles Protokoll) NS (Fanuc) edienungs und Programmieranleitung V Nach allen Einstell / Programmierarbeiten sollten nur noch folgende rücken gesteckt sein: NS(JP), RS (JP, Standard serielles Protokoll) edeutung der drei

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Textkompression: Burrows-Wheeler-Transformation

Textkompression: Burrows-Wheeler-Transformation Proseminar Algorithmen der Bioinformatik WS 2010/11 Textkompression: Burrows-Wheeler-Transformation Johann Hawe Johann Hawe, WS 2010/11 1 Gliederung 1. Einleitung 2. BWT Kompressionstransformation 2.1

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Checkliste H ochzeitsplanung

Checkliste H ochzeitsplanung Checkliste H ochzeitsplanung 9 bis 12 M onate vor der H ochzeit E in D atum für die H ochzeit festlegen Term inabsprache m it F am ilie und Trauzeugen Standesam t & K irche festlegen U rlaub für die heiße

Mehr

Übung: AutoID Barcodes Teil 1

Übung: AutoID Barcodes Teil 1 Identifizierungs- und Automatisierungstechnik Übung: AutoID Barcodes Teil 1 Prof. Dr. Michael ten Hompel Sascha Feldhorst Lehrstuhl für Förder- und Lagerwesen TU Dortmund 1 AutoID - Barcodes Gliederung

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme Mod - 3.1 In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

4.2 Die Chomsky Normalform

4.2 Die Chomsky Normalform 4.2 Die Chomsky Normalform Für algorithmische Problemstellungen (z.b. das Wortproblem) aber auch für den Nachweis von Eigenschaften kontextfreier Sprachen ist es angenehm, von CFG in Normalformen auszugehen.

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Java Kurs für Anfänger Einheit 4 Klassen und Objekte

Java Kurs für Anfänger Einheit 4 Klassen und Objekte Java Kurs für Anfänger Einheit 4 Klassen und Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 13. Juni 2009 Inhaltsverzeichnis klasse

Mehr

Divide and Conquer. Teile-und-herrsche. Ferd van Odenhoven. 7. Oktober 2010

Divide and Conquer. Teile-und-herrsche. Ferd van Odenhoven. 7. Oktober 2010 7. Oktober 2010 eile und Herrsche eile-und-herrsche (Divide-and-conquer) Divide and Conquer Ferd van Odenhoven Fontys Hogeschool voor echniek en ogistiek Venlo Software ngineering 7. Oktober 2010 OD/FHB

Mehr

, 2015W Übungsgruppen: Mo., Mi.,

, 2015W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 8: Peripherie, Netzwerke 8.79, 0W Übungsgruppen: Mo., 8.0. Mi., 0.0.0 ufgabe : Virtuelle dressierung Sie arbeiten auf einem etriebssystem mit it virtuellem

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

5. Schaltwerke und Speicherelemente S Q

5. Schaltwerke und Speicherelemente S Q 5. chaltwerke und peicherelemente T chaltwerke Takt, peicherelemente, Flip-Flops Verwendung von Flip-Flops peicherzellen, egister Kodierer, peicher 72 chaltwerke vs. chaltkreise chaltkreise bestehen aus

Mehr

5. Schaltwerke und Speicherelemente

5. Schaltwerke und Speicherelemente 5. chaltwerke und peicherelemente T chaltwerke Takt, peicherelemente, Flip-Flops Verwendung von Flip-Flops peicherzellen, egister Kodierer, peicher 74 chaltwerke vs. chaltkreise chaltkreise bestehen aus

Mehr

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge.

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge. Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 7, 8 ufgabe 1 (3+7+10 Punkte). Gegeben seien die Zahlenfolgen: n n-te Zahlenfolge 1 1 2 1, 2, 2, 3 3 1, 2, 2, 3, 3, 3, 4, 4, 5

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Arbeitsblatt 1: Bestimmung der eigenen Teamrolle

Arbeitsblatt 1: Bestimmung der eigenen Teamrolle MNT Modul «nergie macht mobil» Wahlpflichtfach L/S rbeitsblatt 1 ragebogen Teamrollen rbeitsblatt 1: estimmung der eigenen Teamrolle er folgende ragebogen bietet dir die Möglichkeit, deine Teamrolle zu

Mehr

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form 14 14.1 Einführung und Begriffe Gleichungen, in denen die Unbekannte in der zweiten Potenz vorkommt, heissen quadratische Gleichungen oder Gleichungen zweiten Grades. Beispiele: 4, t 3t, y y y 4, 5z 3z

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr